Server Storage I/O Benchmark Performance Resource Tools

Server Storage I/O Benchmarking Performance Resource Tools

server storage I/O trends

Updated 1/23/2018

Server storage I/O benchmark performance resource tools, various articles and tips. These include tools for legacy, virtual, cloud and software defined environments.

benchmark performance resource tools server storage I/O performance

The best server and storage I/O (input/output operation) is the one that you do not have to do, the second best is the one with the least impact.

server storage I/O locality of reference

This is where the idea of locality of reference (e.g. how close is the data to where your application is running) comes into play which is implemented via tiered memory, storage and caching shown in the figure above.

Cloud virtual software defined storage I/O

Server storage I/O performance applies to cloud, virtual, software defined and legacy environments

What this has to do with server storage I/O (and networking) performance benchmarking is keeping the idea of locality of reference, context and the application workload in perspective regardless of if cloud, virtual, software defined or legacy physical environments.

StorageIOblog: I/O, I/O how well do you know about good or bad server and storage I/Os?
StorageIOblog: Server and Storage I/O benchmarking 101 for smarties
StorageIOblog: Which Enterprise HDDs to use for a Content Server Platform (7 part series with using benchmark tools)
StorageIO.com: Enmotus FuzeDrive MicroTiering lab test using various tools
StorageIOblog: Some server storage I/O benchmark tools, workload scripts and examples (Part I) and (Part II)
StorageIOblog: Get in the NVMe SSD game (if you are not already)
Doridmen.com: Transcend SSD360S Review with tips on using ATTO and Crystal benchmark tools
ComputerWeekly: Storage performance metrics: How suppliers spin performance specifications

Via StorageIO Podcast: Kevin Closson discusses SLOB Server CPU I/O Database Performance benchmarks
Via @KevinClosson: SLOB Use Cases By Industry Vendors. Learn SLOB, Speak The Experts’ Language
Via BeyondTheBlocks (Reduxio): 8 Useful Tools for Storage I/O Benchmarking
Via CCSIObench: Cold-cache Sequential I/O Benchmark
Doridmen.com: Transcend SSD360S Review with tips on using ATTO and Crystal benchmark tools
CISJournal: Benchmarking the Performance of Microsoft Hyper-V server, VMware ESXi and Xen Hypervisors (PDF)
Microsoft TechNet:Windows Server 2016 Hyper-V large-scale VM performance for in-memory transaction processing
InfoStor: What’s The Best Storage Benchmark?
StorageIOblog: How to test your HDD, SSD or all flash array (AFA) storage fundamentals
Via ATTO: Atto V3.05 free storage test tool available
Via StorageIOblog: Big Files and Lots of Little File Processing and Benchmarking with Vdbench

Via StorageIO.com: Which Enterprise Hard Disk Drives (HDDs) to use with a Content Server Platform (White Paper)
Via VMware Blogs: A Free Storage Performance Testing Tool For Hyperconverged
Microsoft Technet: Test Storage Spaces Performance Using Synthetic Workloads in Windows Server
Microsoft Technet: Microsoft Windows Server Storage Spaces – Designing for Performance
BizTech: 4 Ways to Performance-Test Your New HDD or SSD
EnterpriseStorageForum: Data Storage Benchmarking Guide
StorageSearch.com: How fast can your SSD run backwards?
OpenStack: How to calculate IOPS for Cinder Storage ?
StorageAcceleration: Tips for Measuring Your Storage Acceleration

server storage I/O STI and SUT

Spiceworks: Determining HDD SSD SSHD IOP Performance
Spiceworks: Calculating IOPS from Perfmon data
Spiceworks: profiling IOPs

vdbench server storage I/O benchmark
Vdbench example via StorageIOblog.com

StorageIOblog: What does server storage I/O scaling mean to you?
StorageIOblog: What is the best kind of IO? The one you do not have to do
Testmyworkload.com: Collect and report various OS workloads
Whoishostingthis: Various SQL resources
StorageAcceleration: What, When, Why & How to Accelerate Storage
Filesystems.org: Various tools and links
StorageIOblog: Can we get a side of context with them IOPS and other storage metrics?

flash ssd and hdd

BrightTalk Webinar: Data Center Monitoring – Metrics that Matter for Effective Management
StorageIOblog: Enterprise SSHD and Flash SSD Part of an Enterprise Tiered Storage Strategy
StorageIOblog: Has SSD put Hard Disk Drives (HDD’s) On Endangered Species List?

server storage I/O bottlenecks and I/O blender

Microsoft TechNet: Measuring Disk Latency with Windows Performance Monitor (Perfmon)
Via Scalegrid.io: How to benchmark MongoDB with YCSB? (Perfmon)
Microsoft MSDN: List of Perfmon counters for sql server
Microsoft TechNet: Taking Your Server’s Pulse
StorageIOblog: Part II: How many IOPS can a HDD, HHDD or SSD do with VMware?
CMG: I/O Performance Issues and Impacts on Time-Sensitive Applications

flash ssd and hdd

Virtualization Practice: IO IO it is off to Storage and IO metrics we go
InfoStor: Is HP Short Stroking for Performance and Capacity Gains?
StorageIOblog: Is Computer Data Storage Complex? It Depends
StorageIOblog: More storage and IO metrics that matter
StorageIOblog: Moving Beyond the Benchmark Brouhaha
Yellow-Bricks: VSAN VDI Benchmarking and Beta refresh!

server storage I/O benchmark example

YellowBricks: VSAN performance: many SAS low capacity VS some SATA high capacity?
YellowBricsk: VSAN VDI Benchmarking and Beta refresh!
StorageIOblog: Seagate 1200 12Gbs Enterprise SAS SSD StorgeIO lab review
StorageIOblog: Part II: Seagate 1200 12Gbs Enterprise SAS SSD StorgeIO lab review
StorageIOblog: Server Storage I/O Network Benchmark Winter Olympic Games

flash ssd and hdd

VMware VDImark aka View Planner (also here, here and here) as well as VMmark here
StorageIOblog: SPC and Storage Benchmarking Games
StorageIOblog: Speaking of speeding up business with SSD storage
StorageIOblog: SSD and Storage System Performance

Hadoop server storage I/O performance
Various Server Storage I/O tools in a hadoop environment

Michael-noll.com: Benchmarking and Stress Testing an Hadoop Cluster With TeraSort, TestDFSIO
Virtualization Practice: SSD options for Virtual (and Physical) Environments Part I: Spinning up to speed on SSD
StorageIOblog: Storage and IO metrics that matter
InfoStor: Storage Metrics and Measurements That Matter: Getting Started
SilvertonConsulting: Storage throughput vs. IO response time and why it matters
Splunk: The percentage of Read / Write utilization to get to 800 IOPS?

flash ssd and hdd
Various server storage I/O benchmarking tools

Spiceworks: What is the best IO IOPs testing tool out there
StorageIOblog: How many IOPS can a HDD, HHDD or SSD do?
StorageIOblog: Some Windows Server Storage I/O related commands
Openmaniak: Iperf overview and Iperf.fr: Iperf overview
StorageIOblog: Server and Storage I/O Benchmark Tools: Microsoft Diskspd (Part I and Part II)
Quest: SQL Server Perfmon Poster (PDF)
Server and Storage I/O Networking Performance Management (webinar)
Data Center Monitoring – Metrics that Matter for Effective Management (webinar)
Flash back to reality – Flash SSD Myths and Realities (Industry trends & benchmarking tips), (MSP CMG presentation)
DBAstackexchange: How can I determine how many IOPs I need for my AWS RDS database?
ITToolbox: Benchmarking the Performance of SANs

server storage IO labs

StorageIOblog: Dell Inspiron 660 i660, Virtual Server Diamond in the rough (Server review)
StorageIOblog: Part II: Lenovo TS140 Server and Storage I/O Review (Server review)
StorageIOblog: DIY converged server software defined storage on a budget using Lenovo TS140
StorageIOblog: Server storage I/O Intel NUC nick knack notes First impressions (Server review)
StorageIOblog & ITKE: Storage performance needs availability, availability needs performance
StorageIOblog: Why SSD based arrays and storage appliances can be a good idea (Part I)
StorageIOblog: Revisiting RAID storage remains relevant and resources

Interested in cloud and object storage visit our objectstoragecenter.com page, for flash SSD checkout storageio.com/ssd page, along with data protection, RAID, various industry links and more here.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Watch for additional links to be added above in addition to those that appear via comments.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

I/O, I/O how well do you know good bad ugly server storage I/O iops?

How well do you know good bad ugly I/O iops?

server storage i/o iops activity data infrastructure trends

Updated 2/10/2018

There are many different types of server storage I/O iops associated with various environments, applications and workloads. Some I/Os activity are iops, others are transactions per second (TPS), files or messages per time (hour, minute, second), gets, puts or other operations. The best IO is one you do not have to do.

What about all the cloud, virtual, software defined and legacy based application that still need to do I/O?

If no IO operation is the best IO, then the second best IO is the one that can be done as close to the application and processor as possible with the best locality of reference.

Also keep in mind that aggregation (e.g. consolidation) can cause aggravation (server storage I/O performance bottlenecks).

aggregation causes aggravation
Example of aggregation (consolidation) causing aggravation (server storage i/o blender bottlenecks)

And the third best?

It’s the one that can be done in less time or at least cost or effect to the requesting application, which means moving further down the memory and storage stack.

solving server storage i/o blender and other bottlenecks
Leveraging flash SSD and cache technologies to find and fix server storage I/O bottlenecks

On the other hand, any IOP regardless of if for block, file or object storage that involves some context is better than those without, particular involving metrics that matter (here, here and here [webinar] )

Server Storage I/O optimization and effectiveness

The problem with IO’s is that they are a basic operations to get data into and out of a computer or processor, so there’s no way to avoid all of them, unless you have a very large budget. Even if you have a large budget that can afford an all flash SSD solution, you may still meet bottlenecks or other barriers.

IO’s require CPU or processor time and memory to set up and then process the results as well as IO and networking resources to move data too their destination or retrieve them from where they are stored. While IO’s cannot be eliminated, their impact can be greatly improved or optimized by, among other techniques, doing fewer of them via caching and by grouping reads or writes (pre-fetch, write-behind).

server storage I/O STI and SUT

Think of it this way: Instead of going on multiple errands, sometimes you can group multiple destinations together making for a shorter, more efficient trip. However, that optimization may also mean your drive will take longer. So, sometimes it makes sense to go on a couple of quick, short, low-latency trips instead of one larger one that takes half a day even as it accomplishes many tasks. Of course, how far you have to go on those trips (i.e., their locality) makes a difference about how many you can do in a given amount of time.

Locality of reference (or proximity)

What is locality of reference?

This refers to how close (i.e., its place) data exists to where it is needed (being referenced) for use. For example, the best locality of reference in a computer would be registers in the processor core, ready to be acted on immediately. This would be followed by levels 1, 2, and 3 (L1, L2, and L3) onboard caches, followed by main memory, or DRAM. After that comes solid-state memory typically NAND flash either on PCIe cards or accessible on a direct attached storage (DAS), SAN, or NAS device. 

server storage I/O locality of reference

Even though a PCIe NAND flash card is close to the processor, there still remains the overhead of traversing the PCIe bus and associated drivers. To help offset that impact, PCIe cards use DRAM as cache or buffers for data along with meta or control information to further optimize and improve locality of reference. In other words, this information is used to help with cache hits, cache use, and cache effectiveness vs. simply boosting cache use.

SSD to the rescue?

What can you do the cut the impact of IO’s?

There are many steps one can take, starting with establishing baseline performance and availability metrics.

The metrics that matter include IOP’s, latency, bandwidth, and availability. Then, leverage metrics to gain insight into your application’s performance.

Understand that IO’s are a fact of applications doing work (storing, retrieving, managing data) no matter whether systems are virtual, physical, or running up in the cloud. But it’s important to understand just what a bad IO is, along with its impact on performance. Try to identify those that are bad, and then find and fix the problem, either with software, application, or database changes. Perhaps you need to throw more software caching tools, hypervisors, or hardware at the problem. Hardware may include faster processors with more DRAM and faster internal busses.

Leveraging local PCIe flash SSD cards for caching or as targets is another option.

You may want to use storage systems or appliances that rely on intelligent caching and storage optimization capabilities to help with performance, availability, and capacity.

Where to gain insight into your server storage I/O environment

There are many tools that you can be used to gain insight into your server storage I/O environment across cloud, virtual, software defined and legacy as well as from different layers (e.g. applications, database, file systems, operating systems, hypervisors, server, storage, I/O networking). Many applications along with databases have either built-in or optional tools from their provider, third-party, or via other sources that can give information about work activity being done. Likewise there are tools to dig down deeper into the various data information infrastructure to see what is happening at the various layers as shown in the following figures.

application storage I/O performance
Gaining application and operating system level performance insight via different tools

windows and linux storage I/O performance
Insight and awareness via operating system tools on Windows and Linux

In the above example, Spotlight on Windows (SoW) which you can download for free from Dell here along with Ubuntu utilities are shown, You could also use other tools to look at server storage I/O performance including Windows Perfmon among others.

vmware server storage I/O
Hypervisor performance using VMware ESXi / vsphere built-in tools

vmware server storage I/O performance
Using Visual ESXtop to dig deeper into virtual server storage I/O performance

vmware server storage i/o cache
Gaining insight into virtual server storage I/O cache performance

Wrap up and summary

There are many approaches to address (e.g. find and fix) vs. simply move or mask data center and server storage I/O bottlenecks. Having insight and awareness into how your environment along with applications is important to know to focus resources. Also keep in mind that a bit of flash SSD or DRAM cache in the applicable place can go along way while a lot of cache will also cost you cash. Even if you cant eliminate I/Os, look for ways to decrease their impact on your applications and systems.

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

>Keep in mind: SSD including flash and DRAM among others are in your future, the question is where, when, with what, how much and whose technology or packaging.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Nand flash SSD NVM SCM server storage I/O memory conversations

Updated 8/31/19
Server Storage I/O storageioblog SDDC SDDI Data Infrastructure trends

The SSD Place NVM, SCM, PMEM, Flash, Optane, 3D XPoint, MRAM, NVMe Server, Storage, I/O Topics

Now and then somebody asks me if I’m familiar with flash or nand flash Solid State Devices (SSD) along with other non-volatile memory (NVM) technologies and trends including NVM Express (NVMe).

Having been involved with various types of SSD technology, products and solutions since the late 80s initially as a customer in IT (including as a lunch customer for DEC’s ESE20 SSD’s), then later as a vendor selling SSD solutions, as well as an analyst and advisory consultant cover the technologies, I tell the person asking, well, yes, of course.

That gave me the idea as well as to help me keep track of some of the content and make it easy to find by putting it here in this post (which will be updated now and then).

Thus this is a collection of articles, tips, posts, presentations, blog posts and other content on SSD including nand flash drives, PCIe cards, DIMMs, NVM Express (NVMe), hybrid and other storage solutions along with related themes.

Also if you can’t find it here, you can always do a Google search like this or this to find some more material (some of which is on this page).

HDD, SSHD, HHDD and HDD

Flash SSD Articles, posts and presentations

The following are some of my tips, articles, blog posts, presentations and other content on SSD. Keep in mind that the question should not be if SSD are in your future, rather when, where, with what, from whom and how much. Also keep in mind that a bit of SSD as storage or cache in the right place can go a long way, while a lot of SSD will give you a benefit however also cost a lot of cash.

  • How to Prepare for the NVMe Server Storage I/O Wave (Via Micron.com)
  • Why NVMe Should Be in Your Data Center (Via Micron.com)
  • NVMe U2 (8639) vs. M2 interfaces (Via Gamersnexus)
  • Enmotus FuzeDrive MicroTiering (StorageIO Lab Report)
  • EMC DSSD D5 Rack Scale Direct Attached Shared SSD All Flash Array Part I (Via StorageIOBlog)
  • Part II – EMC DSSD D5 Direct Attached Shared AFA (Via StorageIOBlog)
  • NAND, DRAM, SAS/SCSI & SATA/AHCI: Not Dead, Yet! (Via EnterpriseStorageForum)
  • Non Volatile Memory (NVM), NVMe, Flash Memory Summit and SSD updates (Via StorageIOblog)
  • Microsoft and Intel showcase Storage Spaces Direct with NVM Express at IDF ’15 (Via TechNet)
  • MNVM Express solutions (Via SuperMicro)
  • Gaining Server Storage I/O Insight into Microsoft Windows Server 2016 (Via StorageIOblog)
  • PMC-Sierra Scales Storage with PCIe, NVMe (Via EEtimes)
  • RoCE updates among other items (Via InfiniBand Trade Association (IBTA) December Newsletter)
  • NVMe: The Golden Ticket for Faster Flash Storage? (Via EnterpriseStorageForum)
  • What should I consider when using SSD cloud? (Via SearchCloudStorage)
  • MSP CMG, Sept. 2014 Presentation (Flash back to reality – Myths and Realities – Flash and SSD Industry trends perspectives plus benchmarking tips)– PDF
  • Selecting Storage: Start With Requirements (Via NetworkComputing)
  • PMC Announces Flashtec NVMe SSD NVMe2106, NVMe2032 Controllers With LDPC (Via TomsITpro)
  • Exclusive: If Intel and Micron’s “Xpoint” is 3D Phase Change Memory, Boy Did They Patent It (Via Dailytech)
  • Intel & Micron 3D XPoint memory — is it just CBRAM hyped up? Curation of various posts (Via Computerworld)
  • How many IOPS can a HDD, HHDD or SSD do (Part I)?
  • How many IOPS can a HDD, HHDD or SSD do with VMware? (Part II)
  • I/O Performance Issues and Impacts on Time-Sensitive Applications (Via CMG)
  • Via EnterpriseStorageForum: 5 Hot Storage Technologies to Watch
  • Via EnterpriseStorageForum: 10-Year Review of Data Storage
  • Via CustomPCreview: Samsung SM961 PCIe NVMe SSD Shows Up for Pre-Order
  • StorageIO Industry Trends Perspective White Paper: Seagate 1200 Enterprise SSD (12Gbps SAS) with proof points (e.g. Lab test results)
  • Companion: Seagate 1200 12Gbs Enterprise SAS SSD StorgeIO lab review (blog post part I and Part II)
  • NewEggBusiness: Seagate 1200 12Gbs Enterprise SAS SSD StorgeIO lab review Are NVMe m.2 drives ready for the limelight?
  • Google (Research White Paper): Disks for Data Centers (vs. just SSD)
  • CMU (PDF White Paper): A Large-Scale Study of Flash Memory Failures in the Field
  • Via ZDnet: Google doubles Cloud Compute local SSD capacity: Now it’s 3TB per VM
  • EMC DSSD D5 Rack Scale Direct Attached Shared SSD All Flash Array Part I (Via StorageIOBlog)
  • Part II – EMC DSSD D5 Direct Attached Shared AFA (Via StorageIOBlog)
  • NAND, DRAM, SAS/SCSI & SATA/AHCI: Not Dead, Yet! (Via EnterpriseStorageForum)
  • Here’s why Western Digital is buying SanDisk (Via ComputerWorld)
  • HP, SanDisk partner to bring storage-class memory to market (Via ComputerWorld)
  • Non Volatile Memory (NVM), NVMe, Flash Memory Summit and SSD updates (Via StorageIOblog)
  • Microsoft and Intel showcase Storage Spaces Direct with NVM Express at IDF ’15 (Via TechNet)
  • PMC-Sierra Scales Storage with PCIe, NVMe (Via EEtimes)
  • Seagate Grows Its Nytro Enterprise Flash Storage Line (Via InfoStor)
  • New SAS Solid State Drive First Product From Seagate Micron Alliance (Via Seagate)
  • Wow, Samsung’s New 16 Terabyte SSD Is the World’s Largest Hard Drive (Via Gizmodo)
  • Samsung ups the SSD ante with faster, higher capacity drives (Via ITworld)
  • PMC Announces Flashtec NVMe SSD NVMe2106, NVMe2032 Controllers With LDPC (Via TomsITpro)
  • New SATA SSD powers elastic cloud agility for CSPs (Via Cbronline)
  • Toshiba Solid-State Drive Family Features PCIe Technology (Via Eweek)
  • SanDisk aims CloudSpeed Ultra SSD at cloud providers (Via ITwire)
  • Everspin & Aupera reveal all-MRAM Storage Module in M.2 Form Factor (Via BusinessWire)
  • Intel, Micron Launch “Bulk-Switching” ReRAM (Via EEtimes)
  • Exclusive: If Intel and Micron’s “Xpoint” is 3D Phase Change Memory, Boy Did They Patent It (Via Dailytech)
  • Intel & Micron 3D XPoint memory — is it just CBRAM hyped up? Curation of various posts (Via Computerworld)
  • NVMe: The Golden Ticket for Faster Flash Storage? (Via EnterpriseStorageForum)

server I/O hirearchy

  • What should I consider when using SSD cloud? (Via SearchCloudStorage)
  • MSP CMG, September 2014 Presentation (Flash back to reality – Myths and Realities Flash and SSD Industry trends perspectives plus benchmarking tips) – PDF
  • Selecting Storage: Start With Requirements (Via NetworkComputing)
  • Spot The Newest & Best Server Trends (Via Processor)
  • Market ripe for embedded flash storage as prices drop (Via Powermore (Dell))
  • 2015 Tech Preview: SSD and SMBs (Via ChannelProNetworks )
  • How to test your HDD, SSD or all flash array (AFA) storage fundamentals (Via StorageIOBlog)
  • Processor: Comments on What Abandoned Data Is Costing Your Company
  • Processor: Comments on Match Application Needs & Infrastructure Capabilities
  • Processor: Comments on Explore The Argument For Flash-Based Storage
  • Processor: Comments on Understand The True Cost Of Acquiring More Storage
  • Processor: Comments on What Resilient & Highly Available Mean
  • Processor: Explore The Argument For Flash-Based Storage
  • SearchCloudStorage What should I consider when using SSD cloud?
  • StorageSearch.com: (not to be confused with TechTarget, good site with lots of SSD related content)
  • StorageSearch.com: What kind of SSD world… 2015?
  • StorageSearch.com: Various links about SSD
  • FlashStorage.com: (Various flash links curated by Tegile and analyst firm Actual Tech Media [Scott D. Lowe])
  • StorageSearch.com: How fast can your SSD run backwards?
  • Seagate has shipped over 10 Million storage HHDD’s (SSHDs), is that a lot?
  • Are large storage arrays dead at the hands of SSD?
  • Can we get a side of context with them IOPS and other storage metrics?
  • Cisco buys Whiptail continuing the SSD storage I/O flash cash cache dash
  • EMC VFCache respinning SSD and intelligent caching (Part I)
  • Flash Data Storage: Myth vs. Reality (Via InfoStor)
  • Have SSDs been unsuccessful with storage arrays (with poll)?
  • How many IOPS can a HDD, HHDD or SSD do (Part I)?
  • How many IOPS can a HDD, HHDD or SSD do with VMware? (Part II)
  • I/O Performance Issues and Impacts on Time-Sensitive Applications (Via CMG)

server storage i/o memory hirearchy

  • Spiceworks SSD and related conversation here and here, profiling IOPs here, and SSD endurance here.
  • SSD is in your future, How, when, with what and where you will be using it (PDF Presentation)
  • SSD for Virtual (and Physical) Environments: Part I Spinning up to speed on SSD (Via TheVirtualizationPractice), Part II, The call to duty, SSD endurance, Part III What SSD is best for you?, and Part IV what’s best for your needs.
  • IT and storage economics 101, supply and demand
  • SSD, flash and DRAM, DejaVu or something new?
  • The Many Faces of Solid State Devices/Disks (SSD)
  • The Nand Flash Cache SSD Cash Dance (Via InfoStor)
  • The Right Storage Option Is Important for Big Data Success (Via FedTech)

server storage i/o nand flash ssd options

  • Viking SATADIMM: Nand flash SATA SSD in DDR3 DIMM slot?
  • WD buys nand flash SSD storage I/O cache vendor Virident (Via VMware Communities)
  • What is the best kind of IO? The one you do not have to do
  • When and Where to Use NAND Flash SSD for Virtual Servers (Via TheVirtualizationPractice)
  • Why SSD based arrays and storage appliances can be a good idea (Part I)
  • Why SSD based arrays and storage appliances can be a good idea (Part II)
  • Q&A on Access data more efficiently with automated storage tiering and flash (Via SearchSolidStateStorage)
  • InfoStor: Flash Data Storage: Myth vs. Reality (Via InfoStor)
  • Enterprise Storage Forum: Not Just a Flash in the Pan (Via EnterpriseStorageForum)

SSD Storage I/O and related technologies comments in the news

The following are some of my commentary and industry trend perspectives that appear in various global venues.

Storage I/O ssd news

  • Comments on using Flash Drives To Boost Performance (Via Processor)
  • Comments on selecting the Right Type, Amount & Location of Flash Storage (Via Toms It Pro)
  • Comments Google vs. AWS SSD: Which is the better deal? (Via SearchAWS)
  • Tech News World: SANdisk SSD comments and perspectives.
  • Tech News World: Samsung Jumbo SSD drives perspectives
  • Comments on Why Degaussing Isn’t Always Effective (Via StateTech Magazine)
  • Processor: SSD (FLASH and RAM)
  • SearchStorage: FLASH and SSD Storage
  • Internet News: Steve Wozniak joining SSD startup
  • Internet News: SANdisk sale to Toshiba
  • SearchSMBStorage: Comments on SanDisk and wireless storage product
  • StorageAcceleration: Comments on When VDI Hits a Storage Roadblock and SSD
  • Statetechmagazine: Boosting performance with SSD
  • Edtechmagazine: Driving toward SSDsStorage I/O trends
  • SearchStorage: Seagate SLC and MLC flash SSD
  • SearchWindowServer: Making the move to SSD in a SAN/NAS
  • SearchSolidStateStorage: Comments SSD marketplace
  • InfoStor: Comments on SSD approaches and opportunities
  • SearchSMBStorage: Solid State Devices (SSD) benefits
  • SearchSolidState: Comments on Fusion-IO flash SSD and API’s
  • SeaarchSolidStateStorage: Comments on SSD industry activity and OCZ bankruptcy
  • Processor: Comments on Plan Your Storage Future including SSD
  • Processor: Comments on Incorporate SSDs Into Your Storage PlanStorage I/O ssd news
  • Digistor: Comments on SSD and flash storage
  • ITbusinessEdge: Comments on flash SSD and hybrid storage environments
  • SearchStorage: Perspectives on Cisco buying SSD storage vendor Whiptail
  • StateTechMagazine: Comments on all flash SSD storage arrays
  • Processor: Comments on choosing SSDs for your data center needs
  • Searchsolidstatestorage: Comments on how to add solid state devices (SSD) to your storage system
  • Networkcomputing: Comments on SSD/Hard Disk Hybrids Bridge Storage Divide
  • Internet Evolution: Comments on IBM buying flash SSD vendor TMS
  • ITKE: Comments on IBM buying flash SSD vendor TMSStorage I/O trends
  • Searchsolidstatestorage: SSD, Green IT and economic benefits
  • IT World Canada: Cloud computing, dot be scared, look before you leap
  • SearchStorage: SSD in storage systems
  • SearchStorage: SAS SSD
  • SearchSolidStateStorage: Comments on Access data more efficiently with automated storage tiering and flash
  • InfoStor: Comments on EMC’s Light to Speed: Flash, VNX, and Software-Defined
  • EnterpriseStorageForum: Cloud Storage Mergers and Acquisitions: What’s Going On?

Check out the Server StorageIO NVM Express (NVMe) focus page aka www.thenvmeplace.com for additional related content. nterested in data protection, check out the data protection diaries series of posts here, or cloud and object storage here, and server storage I/O performance benchmarking here. Also check out the StorageIO events and activities page here, as well as tips and articles here, news commentary here, along out newsletter here.

Ok, nuff said (for now)

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

USENIX FAST (File and Storage Technologies) 2014 Conference Proceedings

Storage I/O trends

USENIX FAST (File and Storage Technologies) 2014 Conference Proceedings

In case you missed it, the 12th annual USENIX conference on File and Storage Technologies (FAST) was recently held in Santa Clara, CA.

USENIX FAST 2014

Big Data, Little Data, Fast SSD and Erasure Code Data

If like me you are interested in FAST related technologies, trends, tools and related research, check out the conference PDF proceedings here.

You can also go here to the USENIX FAST site to view additional information about the sessions along with other download material.

The PDF format proceedings contain over 320 pages of content including some good white papers and information covering RAID and Erasure code, Big Data and Little Data, Cloud and Virtualization, Flash, DRAM, SSD, Filesystem performance, metrics, measurement and related software along with plenty of file system related material.

USENIX FAST 2014 Proceedings Index

USENIX FAST 2014 Proceedings Index part 3

Heads up though, these are not your usual vendor high-level marketing white papers rather what you would expect from a technical conference such as FAST as you can see in the above index with abstracts.

So add the 2014 USENIX FAST Proceedings to your reading list.

Ok, nuff said

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

IBM Server Side Storage I/O SSD Flash Cache Software

Storage I/O trends

IBM Server Side Storage I/O SSD Flash Cache Software

As I often say, the best server storage I/O or IOP is the one that you do not have to do. The second best storage I/O or IOP is the one with least impact or that can be done in a cost-effective way. Likewise the question is not if solid-state device (SSD) including nand flash are in your future, rather when, where, why, with what, how much along with from whom. Also location matters when it comes to SSD including nand flash with different environments and applications leveraging different placement (locality) options, not to mention how much performance do you need vs. want?

As part of their $1 billion USD (to be spent over three years, or $333.3333 million per year) flash ahead initiative IBM has announced their Flash Cache Storage Accelerator (FCSA) server software. While IBM did not use the term, (congratulations and thank you btw) some creative marketer might want to try calling this Software Defined Cache (SDC) or Software Defined SSD (SDSSD) which if that occurs, apologies in advance ;). Keep in mind that it was about a year ago this time when IBM announced that they were acquiring SSD industry veteran Texas Memory Systems (TMS).

What was announced, introducing Flash Cache Storage Acceleration or FCSA

With this announcement of FCSA slated for customer general availability by end of August, IBM joins EMC and NetApp among other storage systems vendors who developed their own, or have collaborated on server-side IO optimization and cache software. Some of the other startup and established vendors who have IO optimization, performance acceleration and caching software include DataRam (Ramdisk), FusionIO, Infinio (NFS for VMware), Pernix (block for VMware), Proximal and SANdisk (bought flashsoft) among others.

Read more about IBM Flash Cache Software (FCSA) including various questions and perspectives in part two of this two-part post located here.

Ok, nuff said (for now)

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Can we get a side of context with them IOPS server storage metrics?

Can we get a side of context with them server storage metrics?

Storage I/O trends

Updated 2/10/2018

Whats the best server storage I/O network metric or benchmark? It depends as there needs to be some context with them IOPS and other server storage I/O metrics that matter.

There is an old saying that the best I/O (Input/Output) is the one that you do not have to do.

In the meantime, let’s get a side of some context with them IOPS from vendors, marketers and their pundits who are tossing them around for server, storage and IO metrics that matter.

Expanding the conversation, the need for more context

The good news is that people are beginning to discuss storage beyond space capacity and cost per GByte, TByte or PByte for both DRAM or nand flash Solid State Devices (SSD), Hard Disk Drives (HDD) along with Hybrid HDD (HHDD) and Solid State Hybrid Drive (SSHD) based solutions. This applies to traditional enterprise or SMB IT data center with physical, virtual or cloud based infrastructures.

hdd and ssd iops

This is good because it expands the conversation beyond just cost for space capacity into other aspects including performance (IOPS, latency, bandwidth) for various workload scenarios along with availability, energy effective and management.

Adding a side of context

The catch is that IOPS while part of the equation are just one aspect of performance and by themselves without context, may have little meaning if not misleading in some situations.

Granted it can be entertaining, fun to talk about or simply make good press copy for a million IOPS. IOPS vary in size depending on the type of work being done, not to mention reads or writes, random and sequential which also have a bearing on data throughout or bandwidth (Mbytes per second) along with response time.

However, are those million IOP’s applicable to your environment or needs?

Likewise, what do those million or more IOPS represent about type of work being done? For example, are they small 64 byte or large 64 Kbyte sized, random or sequential, cached reads or lazy writes (deferred or buffered) on a SSD or HDD?

How about the response time or latency for achieving them IOPS?

In other words, what is the context of those metrics and why do they matter?

storage i/o iops
Click on image to view more metrics that matter including IOP’s for HDD and SSD’s

Metrics that matter give context for example IO sizes closer to what your real needs are, reads and writes, mixed workloads, random or sequential, sustained or bursty, in other words, real world reflective.

As with any benchmark take them with a grain (or more) of salt, they key is use them as an indicator then align to your needs. The tool or technology should work for you, not the other way around.

Here are some examples of context that can be added to help make IOP’s and other metrics matter:

  • What is the IOP size, are they 512 byte (or smaller) vs. 4K bytes (or larger)?
  • Are they reads, writes, random, sequential or mixed and what percentage?
  • How was the storage configured including RAID, replication, erasure or dispersal codes?
  • Then there is the latency or response time and IO queue depths for the given number of IOPS.
  • Let us not forget if the storage systems (and servers) were busy with other work or not.
  • If there is a cost per IOP, is that list price or discount (hint, if discount start negotiations from there)
  • What was the number of threads or workers, along with how many servers?
  • What tool was used, its configuration, as well as raw or cooked (aka file system) IO?
  • Was the IOP’s number with one worker or multiple workers on a single or multiple servers?
  • Did the IOP’s number come from a single storage system or total of multiple systems?
  • Fast storage needs fast serves and networks, what was their configuration?
  • Was the performance a short burst, or long sustained period?
  • What was the size of the test data used; did it all fit into cache?
  • Were short stroking for IOPS or long stroking for bandwidth techniques used?
  • Data footprint reduction (DFR) techniques (thin provisioned, compression or dedupe) used?
  • Were write data committed synchronously to storage, or deferred (aka lazy writes used)?

The above are just a sampling and not all may be relevant to your particular needs, however they help to put IOP’s into more contexts. Another consideration around IOPS are the configuration of the environment, from an actual running application using some measurement tool, or are they generated from a workload tool such as IOmeter, IOrate, VDbench among others.

Sure, there are more contexts and information that would be interesting as well, however learning to walk before running will help prevent falling down.

Storage I/O trends

Does size or age of vendors make a difference when it comes to context?

Some vendors are doing a good job of going for out of this world record-setting marketing hero numbers.

Meanwhile other vendors are doing a good job of adding context to their IOP or response time or bandwidth among other metrics that matter. There is a mix of startup and established that give context with their IOP’s or other metrics, likewise size or age does not seem to matter for those who lack context.

Some vendors may not offer metrics or information publicly, so fine, go under NDA to learn more and see if the results are applicable to your environments.

Likewise, if they do not want to provide the context, then ask some tough yet fair questions to decide if their solution is applicable for your needs.

Storage I/O trends

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

What this means is let us start putting and asking for metrics that matter such as IOP’s with context.

If you have a great IOP metric, if you want it to matter than include some context such as what size (e.g. 4K, 8K, 16K, 32K, etc.), percentage of reads vs. writes, latency or response time, random or sequential.

IMHO the most interesting or applicable metrics that matter are those relevant to your environment and application. For example if your main application that needs SSD does about 75% reads (random) and 25% writes (sequential) with an average size of 32K, while fun to hear about, how relevant is a million 64 byte read IOPS? Likewise when looking at IOPS, pay attention to the latency, particular if SSD or performance is your main concern.

Get in the habit of asking or telling vendors or their surrogates to provide some context with them metrics if you want them to matter.

So how about some context around them IOP’s (or latency and bandwidth or availability for that matter)?

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Web chat Thur May 30th: Hot Storage Trends for 2013 (and beyond)

Storage I/O trends

Join me on Thursday May 30, 2013 at Noon ET (9AM PT) for a live web chat at the 21st Century IT (21cit) site (click here to register, sign-up, or view earlier posts). This will be an online web chat format interactive conversation so if you are not able to attend, you can visit at your convenience to view and give your questions along with comments. I have done several of these web chats with 21cit as well as other venues that are a lot of fun and engaging (time flies by fast).

For those not familiar, 21cIT is part of the Desum/UBM family of sites including Internet Evolution, SMB Authority, and Enterprise Efficiency among others that I do article posts, videos and live chats for.


Sponsored by NetApp

I like these types of sites in that while they have a sponsor, the content is generally kept separate between those of editors and contributors like myself and the vendor supplied material. In other words I coordinate with the site editors on what topics I feel like writing (or doing videos) about that align with the given sites focus and themes as opposed to following and advertorial calendar script.

During this industry trends perspective web chat, one of the topics and themes planned for discussion include software defined storage (SDS). View a recent video blog post I did here about SDS. In addition to SDS, Solid State Devices (SSD) including nand flash, cloud, virtualization, object, backup and data protection, performance, management tools among others are topics that will be put out on the virtual discussion table.

Storage I/O trends

Following are some examples of recent and earlier industry trends perspectives posts that I have done over at 21cit:

Video: And Now, Software-Defined Storage!
There are many different views on what is or is not “software-defined” with products, protocols, preferences and even press releases. Check out the video and comments here.

Big Data and the Boston Marathon Investigation
How the human face of big-data will help investigators piece together all the evidence in the Boston bombing tragedy and bring those responsible to justice. Check out the post and comments here.

Don’t Use New Technologies in Old Ways
You can add new technologies to your data center infrastructure, but you won’t get the full benefit unless you update your approach with people, processes, and policies. Check out the post and comments here.

Don’t Let Clouds Scare You, Be Prepared
The idea of moving to cloud computing and cloud services can be scary, but it doesn’t have to be so if you prepare as you would for implementing any other IT tool. Check out the post and comments here.

Storage and IO trends for 2013 (& Beyond)
Efficiency, new media, data protection, and management are some of the keywords for the storage sector in 2013. Check out these and other trends, predictions along with comments here.

SSD and Real Estate: Location, Location, Location
You might be surprised how many similarities between buying real estate and buying SSDs.
Location matters and it’s not if, rather when, where, why and how you will be using SSD including nand flash in the future, read more and view comments here.

Everything Is Not Equal in the Data center, Part 3
Here are steps you can take to give the right type of backup and protection to data and solutions, depending on the risks and scenarios they face. The result? Savings and efficiencies. Read more and view comments here.

Everything Is Not Equal in the Data center, Part 2
Your data center’s operations can be affected at various levels, by multiple factors, in a number of degrees. And, therefore, each scenario requires different responses. Read more and view comments here.

Everything Is Not Equal in the Data center, Part 1
It pays to check your data center Different components need different levels of security, storage, and availability. Read more and view comments here.

Data Protection Modernizing: More Than Buzzword Bingo
IT professionals and solution providers should put technologies such as disk based backup, dedupe, cloud, and data protection management tools as assets and resources to make sure they receive necessary funding and buy in. Read more and view comments here.

Don’t Take Your Server & Storage IO Pathing Software for Granted
Path managers are valuable resources. They will become even more useful as companies continue to carry out cloud and virtualization solutions. Read more and view comments here.

SSD Is in Your Future: Where, When & With What Are the Questions
During EMC World 2012, EMC (as have other vendors) made many announcements around flash solid-state devices (SSDs), underscoring the importance of SSDs to organizations future storage needs. Read more here about why SSD is in your future along with view comments.

Changing Life cycles and Data Footprint Reduction (DFR), Part 2
In the second part of this series, the ABCDs (Archive, Backup modernize, Compression, Dedupe and data management, storage tiering) of data footprint reduction, as well as SLOs, RTOs, and RPOs are discussed. Read more and view comments here.

Changing Life cycles and Data Footprint Reduction (DFR), Part 1
Web 2.0 and related data needs to stay online and readily accessible, creating storage challenges for many organizations that want to cut their data footprint. Read more and view comments here.

No Such Thing as an Information Recession
Data, even older information, must be protected and made accessible cost-effectively. Not to mention that people and data are living longer as well as getting larger. Read more and view comments here.

Storage I/O trends

These real-time, industry trends perspective interactive chats at 21cit are open forum format (however be polite and civil) as well as non vendor sales or marketing pitches. If you have specific questions you ‘d like to ask or points of view to express, click here and post them in the chat room at any time (before, during or after).

Mark your calendar for this event live Thursday, May 30, at noon ET or visit after the fact.

Ok, nuff said (for now)

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Part II: How many IOPS can a HDD HHDD SSD do with VMware?

How many IOPS can a HDD HHDD SSD do with VMware?

server storage data infrastructure i/o iop hdd ssd trends

Updated 2/10/2018

This is the second post of a two-part series looking at storage performance, specifically in the context of drive or device (e.g. mediums) characteristics of How many IOPS can a HDD HHDD SSD do with VMware. In the first post the focus was around putting some context around drive or device performance with the second part looking at some workload characteristics (e.g. benchmarks).

A common question is how many IOPS (IO Operations Per Second) can a storage device or system do?

The answer is or should be it depends.

Here are some examples to give you some more insight.

For example, the following shows how IOPS vary by changing the percent of reads, writes, random and sequential for a 4K (4,096 bytes or 4 KBytes) IO size with each test step (4 minutes each).

IO Size for test
Workload Pattern of test
Avg. Resp (R+W) ms
Avg. IOP Sec (R+W)
Bandwidth KB Sec (R+W)
4KB
100% Seq 100% Read
0.0
29,736
118,944
4KB
60% Seq 100% Read
4.2
236
947
4KB
30% Seq 100% Read
7.1
140
563
4KB
0% Seq 100% Read
10.0
100
400
4KB
100% Seq 60% Read
3.4
293
1,174
4KB
60% Seq 60% Read
7.2
138
554
4KB
30% Seq 60% Read
9.1
109
439
4KB
0% Seq 60% Read
10.9
91
366
4KB
100% Seq 30% Read
5.9
168
675
4KB
60% Seq 30% Read
9.1
109
439
4KB
30% Seq 30% Read
10.7
93
373
4KB
0% Seq 30% Read
11.5
86
346
4KB
100% Seq 0% Read
8.4
118
474
4KB
60% Seq 0% Read
13.0
76
307
4KB
30% Seq 0% Read
11.6
86
344
4KB
0% Seq 0% Read
12.1
82
330

Dell/Western Digital (WD) 1TB 7200 RPM SATA HDD (Raw IO) thread count 1 4K IO size

In the above example the drive is a 1TB 7200 RPM 3.5 inch Dell (Western Digital) 3Gb SATA device doing raw (non file system) IO. Note the high IOP rate with 100 percent sequential reads and a small IO size which might be a result of locality of reference due to drive level cache or buffering.

Some drives have larger buffers than others from a couple to 16MB (or more) of DRAM that can be used for read ahead caching. Note that this level of cache is independent of a storage system, RAID adapter or controller or other forms and levels of buffering.

Does this mean you can expect or plan on getting those levels of performance?

I would not make that assumption, and thus this serves as an example of using metrics like these in the proper context.

Building off of the previous example, the following is using the same drive however with a 16K IO size.

IO Size for test
Workload Pattern of test
Avg. Resp (R+W) ms
Avg. IOP Sec (R+W)
Bandwidth KB Sec (R+W)
16KB
100% Seq 100% Read
0.1
7,658
122,537
16KB
60% Seq 100% Read
4.7
210
3,370
16KB
30% Seq 100% Read
7.7
130
2,080
16KB
0% Seq 100% Read
10.1
98
1,580
16KB
100% Seq 60% Read
3.5
282
4,522
16KB
60% Seq 60% Read
7.7
130
2,090
16KB
30% Seq 60% Read
9.3
107
1,715
16KB
0% Seq 60% Read
11.1
90
1,443
16KB
100% Seq 30% Read
6.0
165
2,644
16KB
60% Seq 30% Read
9.2
109
1,745
16KB
30% Seq 30% Read
11.0
90
1,450
16KB
0% Seq 30% Read
11.7
85
1,364
16KB
100% Seq 0% Read
8.5
117
1,874
16KB
60% Seq 0% Read
10.9
92
1,472
16KB
30% Seq 0% Read
11.8
84
1,353
16KB
0% Seq 0% Read
12.2
81
1,310

Dell/Western Digital (WD) 1TB 7200 RPM SATA HDD (Raw IO) thread count 1 16K IO size

The previous two examples are excerpts of a series of workload simulation tests (ok, you can call them benchmarks) that I have done to collect information, as well as try some different things out.

The following is an example of the summary for each test output that includes the IO size, workload pattern (reads, writes, random, sequential), duration for each workload step, totals for reads and writes, along with averages including IOP’s, bandwidth and latency or response time.

disk iops

Want to see more numbers, speeds and feeds, check out the following table which will be updated with extra results as they become available.

Device
Vendor
Make

Model

Form Factor
Capacity
Interface
RPM Speed
Raw
Test Result
HDD
HGST
Desktop
HK250-160
2.5
160GB
SATA
5.4K
HDD
Seagate
Mobile
ST2000LM003
2.5
2TB
SATA
5.4K
HDD
Fujitsu
Desktop
MHWZ160BH
2.5
160GB
SATA
7.2K
HDD
Seagate
Momentus
ST9160823AS
2.5
160GB
SATA
7.2K
HDD
Seagate
MomentusXT
ST95005620AS
2.5
500GB
SATA
7.2K(1)
HDD
Seagate
Barracuda
ST3500320AS
3.5
500GB
SATA
7.2K
HDD
WD/Dell
Enterprise
WD1003FBYX
3.5
1TB
SATA
7.2K
HDD
Seagate
Barracuda
ST3000DM01
3.5
3TB
SATA
7.2K
HDD
Seagate
Desktop
ST4000DM000
3.5
4TB
SATA
HDD
HDD
Seagate
Capacity
ST6000NM00
3.5
6TB
SATA
HDD
HDD
Seagate
Capacity
ST6000NM00
3.5
6TB
12GSAS
HDD
HDD
Seagate
Savio 10K.3
ST9300603SS
2.5
300GB
SAS
10K
HDD
Seagate
Cheetah
ST3146855SS
3.5
146GB
SAS
15K
HDD
Seagate
Savio 15K.2
ST9146852SS
2.5
146GB
SAS
15K
HDD
Seagate
Ent. 15K
ST600MP0003
2.5
600GB
SAS
15K
SSHD
Seagate
Ent. Turbo
ST600MX0004
2.5
600GB
SAS
SSHD
SSD
Samsung
840 PRo
MZ-7PD256
2.5
256GB
SATA
SSD
HDD
Seagate
600 SSD
ST480HM000
2.5
480GB
SATA
SSD
SSD
Seagate
1200 SSD
ST400FM0073
2.5
400GB
12GSAS
SSD

Performance characteristics 1 worker (thread count) for RAW IO (non-file system)

Note: (1) Seagate Momentus XT is a Hybrid Hard Disk Drive (HHDD) based on a 7.2K 2.5 HDD with SLC nand flash integrated for read buffer in addition to normal DRAM buffer. This model is a XT I (4GB SLC nand flash), may add an XT II (8GB SLC nand flash) at some future time.

As a starting point, these results are raw IO with file system based information to be added soon along with more devices. These results are for tests with one worker or thread count, other results will be added with such as 16 workers or thread counts to show how those differ.

The above results include all reads, all writes, mix of reads and writes, along with all random, sequential and mixed for each IO size. IO sizes include 4K, 8K, 16K, 32K, 64K, 128K, 256K, 512K, 1024K and 2048K. As with any workload simulation, benchmark or comparison test, take these results with a grain of salt as your mileage can and will vary. For example you will see some what I consider very high IO rates with sequential reads even without file system buffering. These results might be due to locality of reference of IO’s being resolved out of the drives DRAM cache (read ahead) which vary in size for different devices. Use the vendor model numbers in the table above to check the manufactures specs on drive DRAM and other attributes.

If you are used to seeing 4K or 8K and wonder why anybody would be interested in some of the larger sizes take a look at big fast data or cloud and object storage. For some of those applications 2048K may not seem all that big. Likewise if you are used to the larger sizes, there are still applications doing smaller sizes. Sorry for those who like 512 byte or smaller IO’s as they are not included. Note that for all of these unless indicated a 512 byte standard sector or drive format is used as opposed to emerging Advanced Format (AF) 4KB sector or block size. Watch for some more drive and device types to be added to the above, along with results for more workers or thread counts, along with file system and other scenarios.

Using VMware as part of a Server, Storage and IO (aka StorageIO) test platform

vmware vexpert

The above performance results were generated on Ubuntu 12.04 (since upgraded to 14.04 which was hosted on a VMware vSphere 5.1 (upgraded to 5.5U2) purchased version (you can get the ESXi free version here) with vCenter enabled system. I also have VMware workstation installed on some of my Windows-based laptops for doing preliminary testing of scripts and other activity prior to running them on the larger server-based VMware environment. Other VMware tools include vCenter Converter, vSphere Client and CLI. Note that other guest virtual machines (VMs) were idle during the tests (e.g. other guest VMs were quiet). You may experience different results if you ran Ubuntu native on a physical machine or with different adapters, processors and device configurations among many other variables (that was a disclaimer btw ;) ).

Storage I/O trends

All of the devices (HDD, HHDD, SSD’s including those not shown or published yet) were Raw Device Mapped (RDM) to the Ubuntu VM bypassing VMware file system.

Example of creating an RDM for local SAS or SATA direct attached device.

vmkfstools -z /vmfs/devices/disks/naa.600605b0005f125018e923064cc17e7c /vmfs/volumes/dat1/RDM_ST1500Z110S6M5.vmdk

The above uses the drives address (find by doing a ls -l /dev/disks via VMware shell command line) to then create a vmdk container stored in a dat. Note that the RDM being created does not actually store data in the .vmdk, it’s there for VMware management operations.

If you are not familiar with how to create a RDM of a local SAS or SATA device, check out this post to learn how.This is important to note in that while VMware was used as a platform to support the guest operating systems (e.g. Ubuntu or Windows), the real devices are not being mapped through or via VMware virtual drives.

vmware iops

The above shows examples of RDM SAS and SATA devices along with other VMware devices and dats. In the next figure is an example of a workload being run in the test environment.

vmware iops

One of the advantages of using VMware (or other hypervisor) with RDM’s is that I can quickly define via software commands where a device gets attached to different operating systems (e.g. the other aspect of software defined storage). This means that after a test run, I can quickly simply shutdown Ubuntu, remove the RDM device from that guests settings, move the device just tested to a Windows guest if needed and restart those VMs. All of that from where ever I happen to be working from without physically changing things or dealing with multi-boot or cabling issues.

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

So how many IOPs can a device do?

That depends, however have a look at the above information and results.

Check back from time to time here to see what is new or has been added including more drives, devices and other related themes.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

How many I/O iops can flash SSD or HDD do?

How many i/o iops can flash ssd or hdd do with vmware?

sddc data infrastructure Storage I/O ssd trends

Updated 2/10/2018

A common question I run across is how many I/O iopsS can flash SSD or HDD storage device or system do or give.

The answer is or should be it depends.

This is the first of a two-part series looking at storage performance, and in context specifically around drive or device (e.g. mediums) characteristics across HDD, HHDD and SSD that can be found in cloud, virtual, and legacy environments. In this first part the focus is around putting some context around drive or device performance with the second part looking at some workload characteristics (e.g. benchmarks).

What about cloud, tape summit resources, storage systems or appliance?

Lets leave those for a different discussion at another time.

Getting started

Part of my interest in tools, metrics that matter, measurements, analyst, forecasting ties back to having been a server, storage and IO performance and capacity planning analyst when I worked in IT. Another aspect ties back to also having been a sys admin as well as business applications developer when on the IT customer side of things. This was followed by switching over to the vendor world involved with among other things competitive positioning, customer design configuration, validation, simulation and benchmarking HDD and SSD based solutions (e.g. life before becoming an analyst and advisory consultant).

Btw, if you happen to be interested in learn more about server, storage and IO performance and capacity planning, check out my first book Resilient Storage Networks (Elsevier) that has a bit of information on it. There is also coverage of metrics and planning in my two other books The Green and Virtual Data Center (CRC Press) and Cloud and Virtual Data Storage Networking (CRC Press). I have some copies of Resilient Storage Networks available at a special reader or viewer rate (essentially shipping and handling). If interested drop me a note and can fill you in on the details.

There are many rules of thumb (RUT) when it comes to metrics that matter such as IOPS, some that are older while others may be guess or measured in different ways. However the answer is that it depends on many things ranging from if a standalone hard disk drive (HDD), Hybrid HDD (HHDD), Solid State Device (SSD) or if attached to a storage system, appliance, or RAID adapter card among others.

Taking a step back, the big picture

hdd image
Various HDD, HHDD and SSD’s

Server, storage and I/O performance and benchmark fundamentals

Even if just looking at a HDD, there are many variables ranging from the rotational speed or Revolutions Per Minute (RPM), interface including 1.5Gb, 3.0Gb, 6Gb or 12Gb SAS or SATA or 4Gb Fibre Channel. If simply using a RUT or number based on RPM can cause issues particular with 2.5 vs. 3.5 or enterprise and desktop. For example, some current generation 10K 2.5 HDD can deliver the same or better performance than an older generation 3.5 15K. Other drive factors (see this link for HDD fundamentals) including physical size such as 3.5 inch or 2.5 inch small form factor (SFF), enterprise or desktop or consumer, amount of drive level cache (DRAM). Space capacity of a drive can also have an impact such as if all or just a portion of a large or small capacity devices is used. Not to mention what the drive is attached to ranging from in internal SAS or SATA drive bay, USB port, or a HBA or RAID adapter card or in a storage system.

disk iops
HDD fundamentals

How about benchmark and performance for marketing or comparison tricks including delayed, deferred or asynchronous writes vs. synchronous or actually committed data to devices? Lets not forget about short stroking (only using a portion of a drive for better IOP’s) or even long stroking (to get better bandwidth leveraging spiral transfers) among others.

Almost forgot, there are also thick, standard, thin and ultra thin drives in 2.5 and 3.5 inch form factors. What’s the difference? The number of platters and read write heads. Look at the following image showing various thickness 2.5 inch drives that have various numbers of platters to increase space capacity in a given density. Want to take a wild guess as to which one has the most space capacity in a given footprint? Also want to guess which type I use for removable disk based archives along with for onsite disk based backup targets (compliments my offsite cloud backups)?

types of disks
Thick, thin and ultra thin devices

Beyond physical and configuration items, then there are logical configuration including the type of workload, large or small IOPS, random, sequential, reads, writes or mixed (various random, sequential, read, write, large and small IO). Other considerations include file system or raw device, number of workers or concurrent IO threads, size of the target storage space area to decide impact of any locality of reference or buffering. Some other items include how long the test or workload simulation ran for, was the device new or worn in before use among other items.

Tools and the performance toolbox

Then there are the various tools for generating IO’s or workloads along with recording metrics such as reads, writes, response time and other information. Some examples (mix of free or for fee) include Bonnie, Iometer, Iorate, IOzone, Vdbench, TPC, SPC, Microsoft ESRP, SPEC and netmist, Swifttest, Vmark, DVDstore and PCmark 7 among many others. Some are focused just on the storage system and IO path while others are application specific thus exercising servers, storage and IO paths.

performance tools
Server, storage and IO performance toolbox

Having used Iometer since the late 90s, it has its place and is popular given its ease of use. Iometer is also long in the tooth and has its limits including not much if any new development, never the less, I have it in the toolbox. I also have Futremark PCmark 7 (full version) which turns out has some interesting abilities to do more than exercise an entire Windows PC. For example PCmark can use a secondary drive for doing IO to.

PCmark can be handy for spinning up with VMware (or other tools) lots of virtual Windows systems pointing to a NAS or other shared storage device doing real world type activity. Something that could be handy for testing or stressing virtual desktop infrastructures (VDI) along with other storage systems, servers and solutions. I also have Vdbench among others tools in the toolbox including Iorate which was used to drive the workloads shown below.

What I look for in a tool are how extensible are the scripting capabilities to define various workloads along with capabilities of the test engine. A nice GUI is handy which makes Iometer popular and yes there are script capabilities with Iometer. That is also where Iometer is long in the tooth compared to some of the newer generation of tools that have more emphasis on extensibility vs. ease of use interfaces. This also assumes knowing what workloads to generate vs. simply kicking off some IOPs using default settings to see what happens.

Another handy tool is for recording what’s going on with a running system including IO’s, reads, writes, bandwidth or transfers, random and sequential among other things. This is where when needed I turn to something like HiMon from HyperIO, if you have not tried it, get in touch with Tom West over at HyperIO and tell him StorageIO sent you to get a demo or trial. HiMon is what I used for doing start, stop and boot among other testing being able to see IO’s at the Windows file system level (or below) including very early in the boot or shutdown phase.

Here is a link to some other things I did awhile back with HiMon to profile some Windows and VDI activity test profiling.

What’s the best tool or benchmark or workload generator?

The one that meets your needs, usually your applications or something as close as possible to it.

disk iops
Various 2.5 and 3.5 inch HDD, HHDD, SSD with different performance

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

That depends, however continue reading part II of this series to see some results for various types of drives and workloads.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

In the data center or information factory, not everything is the same

StorageIO Industry trends and perspectives image

Sometimes what should be understood, or that is common sense or that you think everybody should know needs to be stated. After all, there could be somebody who does not know what some assume as common sense or what others know for various reasons. At times, there is simply the need to restate or have a reminder of what should be known.

Storage I/O data center image

Consequently, in the data center or information factory, either traditional, virtual, converged, private, hybrid or public cloud, everything is not the same. When I say not everything is the same, is that different applications with various service level objectives (SLO’s) and service level agreements (SLA’s). These are based on different characteristics from performance, availability, reliability, responsiveness, cost, security, privacy among others. Likewise, there are different size and types of organizations with various requirements from enterprise to SMB, ROBO and SOHO, business or government, education or research.

Various levels of HA, BC and DR

There are also different threat risks for various applications or information services within in an organization, or across different industry sectors. Thus various needs for meeting availability SLA’s, recovery time objectives (RTO’s) and recovery point objectives (RPO’s) for data protection ranging from backup/restore, to high-availability (HA), business continuance (BC), disaster recovery (DR) and archiving. Let us not forget about logical and physical security of information, assets and people, processes and intellectual property.

Storage IO RTO and RPO image

Some data centers or information factories are compute intensive while others are data centric, some are IO or activity intensive with a mix of compute and storage. On the other hand, some data centers such as a communications hub may be network centric with very little data sticking or being stored.

SLA and SLO image

Even within in a data center or information factory, various applications will have different profiles, protection requirements for big data and little data. There can also be a mix of old legacy applications and new systems developed in-house, purchased, open-source based or accessed as a service. The servers and storage may be software defined (a new buzzword that has already jumped the shark), virtualized or operated in a private, hybrid or community cloud if not using a public service.

Here are some related posts tied to everything is not the same:
Optimize Data Storage for Performance and Capacity
Is SSD only for performance?
Cloud conversations: Gaining cloud confidence from insights into AWS outages
Data Center Infrastructure Management (DCIM) and IRM
Saving Money with Green IT: Time To Invest In Information Factories
Everything Is Not Equal in the Datacenter, Part 1
Everything Is Not Equal in the Datacenter, Part 2
Everything Is Not Equal in the Datacenter, Part 3

Storage I/O data center image

Thus, not all things are the same in the data center, or information factories, both those under traditional management paradigms, as well as those supporting public, private, hybrid or community clouds.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Who will be winner with Oracle $10 Million dollar challenge?

Oracle 10 million dollar challenge ad image

In case you missed it, Oracle has a ten million dollar challenge (here, here and here) to prove that their servers and database software technologies are 5 times faster than IBM.

Up to 10 winners open to U.S. Fortune 1000 companies running an Oracle 11g data warehouse on IBM Power system. Offer expires August 31, 2012 with configuration terms. See this URL for official rules: https://oracle.com/IBMchallenge

Click here to view entry form or click on form below.

Oracle 10 million dollar challenge entry form image

Taking a step back for a moment, if you forgot or had not heard, Oracle earlier this summer had their hands slapped by the US Better Business Bureau (BBB) National Advertising Directive (NAD) over performance claims and ads. IBM complained to the BBB that unfair marketing claims about their servers and database products were being made by Oracle (read more here).

Not one to miss a beat or bit or byte of data, not to mention dollars, Oracle has run ads in newspapers and other venues for the Oracle IBM challenge with the winner receiving $10,000,000.00 USD (details here).

Oracle exadata servers image

This begs the question, who wins, the company or entity that actually can standup and meet the challenge? How about Oracle, do they win if enough people see, hear, talk (or complain) about the ads and challenges? What about the cost, how will Oracle cover that or is it simply a drop in the bucket of an even larger amount of dollars potentially valued in the billions of dollars (e.g. servers, storage, software, services)?

Now for some fun, using an inflation calculator with 1974 dollars as that is when the TV show the six million dollar man made its debut. If you do not know, that is a TV show where an injured government employee (Steve Austin) played by actor Lee Majors was rebuilt using bionic in order to be faster and stronger with the then current technology (ok, TV technology). Using the inflation calculator, the 1974 six million dollar man and machine would cost about $27,882,839.76 in 2012 USD (364.7% increase).

Now using todays what Oracle is calling faster, stronger machine and associated staff for $10,000,000 challenge prize award, would have cost $2,151,861.17 in 1974 dollars. Note that the equal amount of compute processing, storage performance and capacity, networking capability and software abilities in 1974 similar to what is available today would have cost even more than what the inflation calculator shows. For that, we would need to have something like a technology inflation (or improvement) calculator.

Learn more about the Oracle challenge here, here and here, as well as the NAD announcement here, and the six million dollar man here

Ok, nuff said for now.

Cheers Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

NAD recommends Oracle discontinue certain Exadata performance claims

I Received the following press release in my inbox today from the National Advertising Division (NAD) recommending that Oracle stop making certain performance claims about Exadata after a complaint from IBM.

Oracle Exadata

In case you are not familiar with ExaData, it is a database machine or storage appliance that only supports Oracle database systems (learn more here). Oracle having bought Sun microsystems a few years back moved from being a software vendor that competed with other vendors software solutions including those from IBM while running on hardware from Dell, HP and IBM among others. Now that Oracle is in the hardware business, while you will still find Oracle software products running on their competitors hardware (servers and storage), Oracle is also more aggressively competing with those same partners, particularly IBM.

Hmm, to quote Scooby Doo: Rut Roh!

Looks like IBM complained to the Better Business Bureau (BBB) National Advertising Division (NAD) that resulted in the Advertising Self-Regulatory Council (ASRC) making their recommendation below (more about NAD and ASRC can be found here). Based on a billboard sign that I saw while riding from JFK airport into New York City last week, I would not be surprised if a company with two initials that start with an H and end with a P were to file a similar complaint.

I Wonder if the large wall size Oracle advertisement that used to be in the entry way to the white plains (IATA:HPN) airport (e.g. in IBM’s backyard) welcoming you to the terminal as you get off the airplanes is still there?

The following is the press release that I received:

For Immediate Release
Contact: Linda Bean
212.705.0129

NAD Finds Oracle Took Necessary Action in Discontinuing Comparative Performance Claims for Exadata; Oracle to Appeal NAD Decision

New York, NY – July 24,  2012 –TheNational Advertising Division has recommended that Oracle Corporation discontinue certain comparative product-performance claims for the company’s Exadata database machines, following a challenge by International Business Machines Corporation. Oracle said it would voluntarily discontinue the challenged claims, but noted that it would appeal NADs decision to the National Advertising Review Board.

The advertising claims at issue appeared in a full-page advertisement in the Wall Street Journal and included the following:

  • “Exadata 20x Faster … Replaces IBM Again”
  • “Giant European Retailer Moves Databases from IBM Power to Exadata … Runs 20 Times Faster”

NAD also considered whether the advertising implied that all Oracle Exadata systems are twenty times faster than all IBM Power systems.

The advertisement featured the image of an Oracle Exadata system, along with the statement: “Giant European Retailer Moves Databases from IBM Power to Exadata Runs 20 Times Faster.” The advertisement also offered a link to the Oracle website: “For more details oracle.com/EuroRetailer.” 

IBM argued that the “20x Faster” claim makes overly broad references to “Exadata” and “IBM Power,” resulting in a misleading claim, which the advertiser’s evidence does not support.  In particular, the challenger argued that by referring to the brand name “IBM Power” without qualification, Oracle was making a broad claim about the entire IBM Power systems line of products. 

The advertiser, on the other hand, argued that the advertisement represented a case study, not a line claim, and noted that the sophisticated target audience would understand that the advertisement is based on the experience of one customer – the “Giant European Retailer” referenced in the advertisement.

In a NAD proceeding, the advertiser is obligated to support all reasonable interpretations of its advertising claims, not just the message it intended to convey.   In the absence of reliable consumer perception evidence, NAD uses its experienced judgment to determine what implied messages, if any, are conveyed by an advertisement.   When evaluating the message communicated by an advertising claim, NAD will examine the claims at issue in the context of the entire advertisement in which they appear.

In this case, NAD concluded that while the advertiser may have intended to convey the message that in one case study a particular Exadata system was up to 20 times faster when performing two particular functions than a particular IBM Power system, Oracle’s general references to “Exadata” and “IBM Power,” along with the bold unqualified headline “Exadata 20x Faster Replaces IBM Again,” conveyed a much broader message.

NAD determined that at least one reasonable interpretation of the challenged advertisement is that all – or a vast majority – of Exadata systems consistently perform 20 times faster in all or many respects than all – or a vast majority – of IBM Power systems. NAD found that the message was not supported by the evidence in the record, which consisted of one   particular comparison of one consumer’s specific IBM Power system to a specific Exadata System. 

NAD further determined that the disclosure provided on the advertiser’s website was not sufficient to limit the broad message conveyed by the “20x Faster” claim. More importantly, NAD noted that even if Oracle’s website disclosure was acceptable – and had appeared clearly and conspicuously in the challenged advertisement – it would still be insufficient because an advertiser cannot use a disclosure to cure an otherwise false claim.

NAD noted that Oracle’s decision to permanently discontinue the claims at issue was necessary and proper.

Oracle, in its advertiser’s statement, said it was “disappointed with the NAD’s decision in this matter, which it believes is unduly broad and will severely limit the ability to run truthful comparative advertising, not only for Oracle but for others in the commercial hardware and software industry.”

Oracle noted that it would appeal all of NAD’s findings in the matter.

 

###

NAD’s inquiry was conducted under NAD/CARU/NARB Procedures for the Voluntary Self-Regulation of National Advertising.  Details of the initial inquiry, NAD’s decision, and the advertiser’s response will be included in the next NAD/CARU Case Report.

About Advertising Industry Self-Regulation:  The Advertising Self-Regulatory Council establishes the policies and procedures for advertising industry self-regulation, including the National Advertising Division (NAD), Children’s Advertising Review Unit (CARU), National Advertising Review Board (NARB), Electronic Retailing Self-Regulation Program (ERSP) and Online Interest-Based Advertising Accountability Program (Accountability Program.) The self-regulatory system is administered by the Council of Better Business Bureaus.

Self-regulation is good for consumers. The self-regulatory system monitors the marketplace, holds advertisers responsible for their claims and practices and tracks emerging issues and trends. Self-regulation is good for advertisers. Rigorous review serves to encourage consumer trust; the self-regulatory system offers an expert, cost-efficient, meaningful alternative to litigation and provides a framework for the development of a self-regulatory to emerging issues.

To learn more about supporting advertising industry self-regulation, please visit us at: www.asrcreviews.org.

 

 

Linda Bean l Director, Communications,
Advertising Self-Regulatory Council

Tel: 212.705.0129
Cell: 908.812.8175
lbean@asrc.bbb.org

112 Madison Ave.
3rd Fl.
New York, NY
10016

 

Ok, Oracle is no stranger to benchmark and performance claims controversy having amassed several decades of experience. Anybody remember the silver bullet database test from late 80s early 90s when Oracle set a record performance except that they never committed the writes to disk?

Something tells me that Oracle and Uncle Larry (e.g. Larry Ellison who is not really my uncle) will treat this as any kind of press or media coverage is good and probably will issue something like IBM must be worried if they have to go to the BBB.

Will a complaint which I’m sure is not the fist to be lodged with the BBB against Oracle deter customers, or be of more use to IBM sales and their partners in deals vs. Oracle?

What’s your take?

Is this much ado about nothing, a filler for a slow news or discussion day, a break from talking about VMware acquisition of Nicira or VMware CEO management changes? Perhaps this is an alternative to talking about the CEO of SSD vendor STEC being charged with insider trading, or something other than Larry Ellison buying an Hawaiian island (IMHO he could have gotten a better deal buying Greece), or is this something that Oracle will need to take seriously?

Ok, nuff said for now

Cheers Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

Give HP storage some love and short strokin

Server and StorageIO industry trends and perspective DAS

Following up from my last post over at InfoStor about metrics that matter, here is a link to a new piece that I did on storage vendors benchmarking and related topics. This new post looked at an storage performance council (SPC1) benchmark that HP did with their P10000 (e.g. 3PAR) storage system under assertions by some in the industry that they were short stroking to meet better performance.

Amazon Web Services (AWS)

I’m surprised some creative technical marketer, blogger or prankster has yet to rework Clarence Carters (e.g. Dr. CC) iconic song into something about storage performance and capacity short strokin.


Ok, nuff said before I get a visit from the HP truth squads, in the meantime, give HP a hug and some love if so inclined.

Cheers Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

Why FC and FCoE vendors get beat up over bandwidth?

Storage I/O Industry Trends and Perspectives

Have you noticed how Fibre Channel (FC) and FC over Ethernet (FCoE) switch and adapter vendors and their followers focus around bandwidth vs. response time, latency or other performance activity? For example, 8Gb FC (e.g. 8GFC), or 10Gb as opposed to latency and response time, or IOPS and other activity indicators.

When you look at your own environment, or that of a customers or prospects or hear of a conversation involving storage networks, is the focus on bandwidth, or lack of it, or perhaps throughput being a non-issue? For example, a customer says why go to 16GFC when they are barely using 8Gb with their current FC environment.

This is not a new phenomenon and is something I saw when working for a storage-networking vendor who had SAN, MAN and WAN solutions (E.g. INRANGE). Those with networking backgrounds tended to focus on bandwidth when discussing storage networks while those with storage, server or applications background also look at latency or IO completion time (response time), queuing, message size, IOPs or frames and packets per second. Thus there are different storage and networking metrics that matter that are also discussed further in my first book Resilient Storage Networks: Designing Flexible Scalable Data Infrastructures.

When I hear a storage networking vendor talk about their latest 16GFC based product I like to ask them what is the biggest benefit vs. 8GFC and not surprisingly, the usual response is like twice the bandwidth. When I ask them about what that means in terms of more IOPS in a given amount of time, or reduced IO completion time, lower latency, sometimes I often get the response along the lines of Yeah, that too, however it has twice the bandwidth.

Ok, I get it, yes, bandwidth is important for some applications, however so too are activity measured in IOPS, transactions, packets, frames, pages, sequences and exchanges among other units of measure along with response time and latency (e.g. different storage and networking metrics that matter).

What many storage networking vendors actually get, however they don’t talk about it for various reasons, perhaps because they are not be asked about it, or engaged in the conversation is that there is an improvement in response time in going from such as 8GFC to 16GFC. Likewise, there can be improvements in response time in addition to the more commonly discussed bandwidth.

If you are a storage networking switch, adapter or other component vendor, var or channel partner expand your conversation to include activity and response time as part of your value proposition. Likewise, if you are a customer, ask your technology providers to expand on the conversation of how new technologies help in areas other than bandwidth.

Ok, nuff said for now

Cheers Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved