July 2018 Server StorageIO Data Infrastructure Update Newsletter

July 2018 Server StorageIO Data Infrastructure Update Newsletter

July 2018 Server StorageIO Data Infrastructure Update Newsletter

Volume 18, Issue 7 (July 2018)

Hello and welcome to the July 2018 Server StorageIO Data Infrastructure Update Newsletter.

In cased you missed it, the June 2018 Server StorageIO Data Infrastructure Update Newsletter can be viewed here ( HTML and PDF).

In this issue buzzwords topics include Dell Technology and VMware, AWS and Google public, private and hybrid cloud, machine learning, 3D XPoint, SCM, SSD, NVMe, data infrastructure management tools among other topics.

Enjoy this edition of the Server StorageIO Data Infrastructure update newsletter.

Cheers GS

Data Infrastructure and IT Industry Activity Trends

July 2018 data infrastructure, server, storage, I/O network, hardware, software, cloud, converged, and container as well as data protection industry activity includes among others:

Amazon Web Services AWS July 2018 Updates include enhancements to machine learning (ML) Sagemaker service, faster S3 access, new EC2 instances along with Snowball Edge (SBE) for on-prem converged server and compute appliance ( read more about SBE here). In other public cloud activity, Google Cloud Platform GCP announced new Los Angeles Region.

Intel and Micron have announced that they will be pursuing different paths when they complete the second generation in 2019 of 3D XPoint used in Intel Optane NVMe SSD and Storage Class Memory (SCM) technologies, read more here Intel Micron 3D XPoint Evolving. Meanwhile, Broadcom buying CA, Brilliant or a Brainbuster? This deal is a bit of a head scratcher with Broadcom spending $18.9 Billion USD (cash) to by CA Technologies.

In other data infrastructures news and activity, DataDirect Networks Stages Bid to Acquire Tintri’s Assets and Expand Its Storage Portfolio into the Enterprise. Dell EMC announced a new integrated data protection appliance ( IDPA DP4400) for small and midsize organizations. In other activity, VMware declared a dividend, with Dell Technologies being a majority owner, will use cash to fund Dell business structuring. Read more about Dell Technologies Announces Class V VMware Tracking Stock exchange for stock or cash here.

Spectra (e.g. who some of you know as Spectra Logic) has announced enhancements to their tape libraries. Note that one of the larger growth (or sustainment) markets for tape based technologies in recent years have been the larger cloud scale service providers. Granted those providers are not using tape in old ways (e.g. for direct backup), rather, in new ways where it is a companion to SSD, HDD as another storage class, tier or technology enabler.

IBM has jumped on the NVMe bandwagon announcing updates to their Flashsystems 9100 systems (e.g. what they acquired via TMS a few years ago). Opvisor has announced a new VMware vSAN performance monitoring and troubleshooting feature for their insight, awareness management tools.

Check out other industry news, comments, trends perspectives here.

Data Infrastructure Server StorageIO Comments Content

Server StorageIO Commentary in the news, tips and articles

Recent Server StorageIO industry trends perspectives commentary in the news.

Via : SearchStorage: Comments on GDPR and Cloudian File Sync Share 
Via : NetworkComputing: Comments Software Defined Storage SDS Getting Started 
Via SearchStorage: Comments The storage administrator skills you need to keep up today
Via SearchStorage: Comments Managing storage for IoT data at the enterprise edge
Via SearchCloudComputing: Comments Hybrid cloud deployment demands a change in security mind set

View more Server, Storage and I/O trends and perspectives comments here.

Data Infrastructure Server StorageIOblog posts

Server StorageIOblog Data Infrastructure Posts

Recent and popular Server StorageIOblog posts include:

2018 Hot Popular New Trending Data Infrastructure Vendors to Watch
June 2018 Server StorageIO Data Infrastructure Update Newsletter
May 2018 Server StorageIO Data Infrastructure Update Newsletter
Have you heard about the new CLOUD Act data regulation?
Data Protection Recovery Life Post World Backup Day Pre GDPR
Microsoft Windows Server 2019 Insiders Preview
Server Storage I/O Benchmark Performance Resource Tools
Data Infrastructure Primer Overview (Its Whats Inside The Data Center)
If NVMe is the answer, what are the questions?

View other recent as well as past StorageIOblog posts here

Server StorageIO Recommended Reading (Watching and Listening) List

Software-Defined Data Infrastructure Essentials SDDI SDDC

In addition to my own books including Software Defined Data Infrastructure Essentials (CRC Press 2017) available at Amazon.com (check out special sale price), the following are Server StorageIO data infrastructure recommended reading, watching and listening list items. The Server StorageIO data infrastructure recommended reading list includes various IT, Data Infrastructure and related topics including Intel Recommended Reading List (IRRL) for developers is a good resource to check out.

Duncan Epping ( @DuncanYB), Frank Denneman ( @FrankDenneman) and Neils Hagoort ( @NHagoort) have released their VMware vSphere 6.7 Clustering Deep Dive book available at venues including Amazon.com. This is the latest in a series of Cluster and deep dive books from Frank and Duncan which if you are involved with VMware, SDDC and related software defined data infrastructures these should be on your bookshelf.

Watch for more items to be added to the recommended reading list book shelf soon.

Data Infrastructure Server StorageIO event activities

Events and Activities

Recent and upcoming event activities.

July 25, 2018 – Webinar – Data Protect & Storage

June 27, 2018 – Webinar – App Server Performance

June 26, 2018 – Webinar – Cloud App Optimize

See more webinars and activities on the Server StorageIO Events page here.

Data Infrastructure Server StorageIO Industry Resources and Links

Various useful links and resources:

Data Infrastructure Recommend Reading and watching list
Microsoft TechNet – Various Microsoft related from Azure to Docker to Windows
storageio.com/links – Various industry links (over 1,000 with more to be added soon)
objectstoragecenter.com – Cloud and object storage topics, tips and news items
OpenStack.org – Various OpenStack related items
storageio.com/downloads – Various presentations and other download material
storageio.com/protect – Various data protection items and topics
thenvmeplace.com – Focus on NVMe trends and technologies
thessdplace.com – NVM and Solid State Disk topics, tips and techniques
storageio.com/converge – Various CI, HCI and related SDS topics
storageio.com/performance – Various server, storage and I/O benchmark and tools
VMware Technical Network – Various VMware related items

What this all means and wrap-up

Summer is here in North America and the Northern Hemisphere which means holidays as well as vacations. However Data Infrastructures continue to evolve as do the tools, technologies, trends, hardware, software, services along with those who take care of, and define them. Enjoy your summer vacation, holidays as well as this July 2018 Server StorageIO Data Infrastructure Update Newsletter edition.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Part IV Dell Technology World 2018 PowerEdge MX Gen-Z Composable Infrastructure

Part IV Dell Technology World 2018 PowerEdge MX Gen-Z Composable Infrastructure

Part IV Dell Technology World 2018 PowerEdge MX Gen-Z Composable Infrastructure
This is Part IV Dell Technology World 2018 PowerEdge MX Gen-Z Composable Infrastructure that is part of a five-post series (view part I here, part II here, part III here and part V here). Last week (April 30-May 3) I traveled to Las Vegas Nevada (LAS) to attend Dell Technology World 2018 (e.g., DTW 2018) as a guest of Dell (that is a disclosure btw).

Introducing PowerEdge MX Composable Infrastructure (the other CI)

Dell announced at Dell Technology World 2018 a preview of the new PowerEdge MX (kinetic) family of data infrastructure resource servers. PowerEdge MX is being developed to meet the needs of resource-centric data infrastructures that require scalability, as well as performance availability, capacity, economic (PACE) flexibility for diverse workloads. Read more about Dell PowerEdge MX, Gen-Z and composable infrastructures (the other CI) here.

Some of the workloads being targeted by PowerEdge MX include large-scale dense SDDC virtualization (and containers), private (or public clouds by service providers). Other workloads include AI, ML, DL, data analytics, HPC, SC, big data, in-memory database, software-defined storage (SDS), software-defined networking (SDN), network function virtualization (NFV) among others.

The new PowerEdge MX previewed will be announced later in 2018 featuring a flexible, decomposable, as well as composable architecture that enables resources to be disaggregated and reassigned or aggregated to meet particular needs (e.g., defined or composed). Instead of traditional software defined virtualization carving up servers in smaller virtual machines or containers to meet workload needs, PowerEdge MX is part of a next-generation approach to enable server resources to be leveraged at a finer granularity.

For example, today an entire server including all of its sockets, cores, memory, PCIe devices among other resources get allocated and defined for use. A server gets defined for use by an operating system when bare metal (or Metal as a Service) or a hypervisor. PowerEdge MX (and other platforms expected to enter the market) have a finer granularity where with a proper upper layer (or higher altitude) software resources can be allocated and defined to meet different needs.

What this means is the potential to allocate resources to a given server with more granularity and flexibility, as well as combine multiple server’s resources to create what appears to be a more massive server. There are vendors in the market who have been working on and enabling this type of approach for several years ranging from ScaleMP to startup Liqid and Tidal among others. However, at the heart of the Dell PowerEdge MX is the new emerging Gen-Z technology.

If you are not familiar with Gen-Z, add it to your buzzword bingo lineup and learn about it as it is coming your way. A brief overview of Gen-Z consortium and Gen-Z material and primer information here. A common question is if Gen-Z is a replacement for PCIe which for now is that they will coexist and complement each other. Another common question is if Gen-Z will replace Ethernet and InfiniBand and the answer is for now they complement each other. Another question is if Gen-Z will replace Intel Quick Path and another CPU device and memory interconnects and the answer is potentially, and in my opinion, watch to see how long Intel drags its feet.

Note that composability is another way of saying defined without saying defined, something to pay attention too as well as have some vendor fun with. Also, note that Dell is referent to PowerEdge MX and Kinetic architecture which is not the same as the Seagate Kinetic Ethernet-based object key value accessed drive initiative from a few years ago (learn more about Seagate Kinetic here). Learn more about Gen-Z and what Dell is doing here.

Where to learn more

Learn more about Dell Technology World 2018 and related topics via the following links:

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

Dell has provided a glimpse of what they are working on pertaining composable infrastructure, the other CI, as well as Gen-Z and related next generation of servers with PowerEdge MX as well as Kinetic. Stay tuned for more about Gen-Z and composable infrastructures. Continue reading Part V (servers converged) in this series here, as well as part I here, part II here and part III here.

Ok, nuff said, for now.

Cheers Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Data Infrastructure server storage I/O network Recommended Reading #blogtober

server storage I/O data infrastructure trends recommended reading list

Updated 7/30/2018

The following is an evolving recommended reading list of data infrastructure topics including, server, storage I/O, networking, cloud, virtual, container, data protection and related topics that includes books, blogs, podcast’s, events and industry links among other resources.

Various Data Infrastructure including hardware, software, services related links:

Links A-E
Links F-J
Links K-O
Links P-T
Links U-Z
Other Links

In addition to my own books including Software Defined Data Infrastructure Essentials (CRC Press 2017), the following are Server StorageIO recommended reading list items . The recommended reading list includes various IT, Data Infrastructure and related topics.

Intel Recommended Reading List (IRRL) for developers is a good resource to check out.

Duncan Epping (@DuncanYB), Frank Denneman (@FrankDenneman) and Neils Hagoort (@NHagoort) have released their VMware vSphere 6.7 Clustering Deep Dive book available at venues including Amazon.com. This is the latest in a series of Cluster and deep dive books from Frank and Duncan which if you are involved with VMware, SDDC and related software defined data infrastructures these should be on your bookshelf.

Check out the Blogtober list of check out some of the blogs and posts occurring during October 2017 here.

Preston De Guise aka @backupbear is Author of several books has an interesting new site Foolsrushin.info that looks at topics including Ethics in IT among others. Check out his new book Data Protection: Ensuring Data Availability (CRC Press 2017) and available via Amazon.com here.

Brendan Gregg has a great site for Linux performance related topics here.

Greg Knieriemen has a must read weekly blog, post, column collection of whats going on in and around the IT and data infrastructure related industries, Check it out here.

Interested in file systems, CIFS, SMB, SAMBA and related topics then check out Chris Hertels book on implementing CIFS here at Amazon.com

For those involved with VMware, check out Frank Denneman VMware vSphere 6.5 host resource guide-book here at Amazon.com.

Docker: Up & Running: Shipping Reliable Containers in Production by Karl Matthias & Sean P. Kane via Amazon.com here.

Essential Virtual SAN (VSAN): Administrator’s Guide to VMware Virtual SAN,2nd ed. by Cormac Hogan & Duncan Epping via Amazon.com here.

Hadoop: The Definitive Guide: Storage and Analysis at Internet Scale by Tom White via Amazon.com here.

Systems Performance: Enterprise and the Cloud by Brendan Gregg Via Amazon.com here.

Implementing Cloud Storage with OpenStack Swift by Amar Kapadia, Sreedhar Varma, & Kris Rajana Via Amazon.com here.

The Human Face of Big Data by Rick Smolan & Jennifer Erwitt Via Amazon.com here.

VMware vSphere 5.1 Clustering Deepdive (Vol. 1) by Duncan Epping & Frank Denneman Via Amazon.com here. Note: This is an older title, but there are still good fundamentals in it.

Linux Administration: A Beginners Guide by Wale Soyinka Via Amazon.com here.

TCP/IP Network Administration by Craig Hunt Via Amazon.com here.

Cisco IOS Cookbook: Field tested solutions to Cisco Router Problems by Kevin Dooley and Ian Brown Via Amazon.com here.

I often mention in presentations a must have for anybody involved with software defined anything, or programming for that matter which is the Niklaus Wirth classic Algorithms + Data Structures = Programs that you can get on Amazon.com here.

Seven Databases in Seven Weeks including NoSQL

Another great book to have is Seven Databases in Seven Weeks (here is a book review) which not only provides an overview of popular NoSQL databases such as Cassandra, Mongo, HBASE among others, lots of good examples and hands on guides. Get your copy here at Amazon.com.

Additional Data Infrastructure and related topic sites

In addition to those mentioned above, other sites, venues and data infrastructure related resources include:

aiim.com – Archiving and records management trade group

apache.org – Various open-source software

blog.scottlowe.org – Scott Lowe VMware Networking and topics

blogs.msdn.microsoft.com/virtual_pc_guy – Ben Armstrong Hyper-V blog

brendangregg.com – Linux performance-related topics

cablemap.info – Global network maps

CMG.org – Computer Measurement Group (CMG)

communities.vmware.com – VMware technical community and resources

comptia.org – Various IT, cloud, and data infrastructure certifications

cormachogan.com – Cormac Hogan VMware and vSAN related topics

csrc.nist.gov – U.S. government cloud specifications

dmtf.org – Distributed Management Task Force (DMTF)

ethernetalliance.org – Ethernet industry trade group

fibrechannel.org – Fibre Channel trade group

github.com – Various open-source solutions and projects

Intel Reading List – recommended reading list for developers

ieee.org – Institute of Electrical and Electronics Engineers

ietf.org – Internet Engineering Task Force

iso.org – International Standards Organizations

it.toolbox.com – Various IT and data infrastructure topics forums

labs.vmware.com/flings – VMware Fling additional tools and software

nist.gov – National Institute of Standards and Technology

nvmexpress.org – NVM Express (NVMe) industry trade group

objectstoragecenter.com – Various object and cloud storage items

opencompute.org – Open Compute Project (OCP) servers and related topics

opendatacenteralliance.org – Open Data Center Alliance (ODCA)

openfabrics.org – Open-fabric software industry group

opennetworking.org – Open Networking Foundation (ONF)

openstack.org – OpenStack resources

pcisig.com – Peripheral Component Interconnect (PCI) trade group

reddit.com – Various IT, cloud, and data infrastructure topics

scsita.org – SCSI trade association (SAS and others)

SNIA.org – Storage Network Industry Association (SNIA)

Speakingintech.com – Popular industry and data infrastructure podcast

Storage Bibliography – Collection of Dr. J. Metz storage related content

technet.microsoft.com – Microsoft TechNet data infrastructure–related topics

thenvmeplace.com – various NVMe and related tools, topics and links

thevpad.com – Collection of various virtualization and related sites

thessdplace.com – various NVM, SSD, flash, 3D XPoint related topics, tools, links

tpc.org – Transaction Performance Council benchmark site

vmug.org – VMware User Groups (VMUG)

wahlnetwork.com – Chris Whal Networking and related topics

yellow-bricks.com – Duncan Epping VMware and related topics

Additional Data Infrastructure Venues

Additional useful data infrastructure related information can be found at BizTechMagazine, BrightTalk, ChannelProNetwork, ChannelproSMB, ComputerWeekly, Computerworld, CRN, CruxialCIO, Data Center Journal (DCJ), Datacenterknowledge, and DZone. Other good sourses include Edtechmagazine, Enterprise Storage Forum, EnterpriseTech, Eweek.com, FedTech, Google+, HPCwire, InfoStor, ITKE, LinkedIn, NAB, Network Computing, Networkworld, and nextplatform. Also check out Reddit, Redmond Magazine and Webinars, Spiceworks Forums, StateTech, techcrunch.com, TechPageOne, TechTarget Venues (various Search sites, e.g., SearchStorage, SearchSSD, SearchAWS, and others), theregister.co.uk, TheVarGuy, Tom’s Hardware, and zdnet.com, among many others.

Where To Learn More

Learn more about related technology, trends, tools, techniques, and tips with the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

The above is an evolving collection of recommended reading including what I have on my physical and virtual bookshelves, as well as list of web sites, blogs and podcasts worth listening, reading or watching. Watch for more items to be added to the book shelf soon, and if you have a suggested recommendation, add it to the comments below.

By the way, if you have not heard, its #Blogtober, check out some of the other blogs and posts occurring during October here as part of your recommended reading list.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

NVMe Wont Replace Flash By Itself They Complement Each Other

NVMe Wont Replace Flash By Itself They Complement Each Other

server storage I/O data infrastructure trends

Updated 2/2/2018

NVMe Wont Replace Flash By Itself They Complement Each Other

>various NVM flash and SSD devices
Various Solid State Devices (SSD) including NVMe, SAS, SATA, USB, M.2

There has been some recent industry marketing buzz generated by a startup to get some attention by claiming via a study sponsored by including the startup that Non-Volatile Memory (NVM) Express (NVMe) will replace flash storage. Granted, many IT customers as well as vendors are still confused by NVMe thinking it is a storage medium as opposed to an interface used for accessing fast storage devices such as nand flash among other solid state devices (SSDs). Part of that confusion can be tied to common SSD based devices rely on NVM that are persistent memory retaining data when powered off (unlike the memory in your computer).

NVMe is an access interface and protocol

Instead of saying NVMe will mean the demise of flash, what should or could be said however some might be scared to say it is that other interfaces and protocols such as SAS (Serial Attached SCSI), AHCI/SATA, mSATA, Fibre Channel SCSI Protocol aka FCP aka simply Fibre Channel (FC), iSCSI and others are what can be replaced by NVMe. NVMe is simply the path or roadway along with traffic rules for getting from point a (such as a server) to point b (some storage device or medium e.g. flash SSD). The storage medium is where data is stored such as magnetic for Hard Disk Drive (HDD) or tape, nand flash, 3D XPoint, Optane among others.

NVMe and NVM better together

NVMe and NVM including flash are better together

The simple quick get to the point is that NVMe (e.g. Non Volatile Memory aka NVM Express [NVMe]) is an interface protocol (like SAS/SATA/iSCSI among others) used for communicating with various nonvolatile memory (NVM) and solid state device (SSDs). NVMe is how data gets moved between a computer or other system and the NVM persistent memory such as nand flash, 3D XPoint, Spintorque or other storage class memories (SCM).

In other words, the only thing NVMe will, should, might or could kill off would be the use of some other interface such as SAS, SATA/AHCI, Fibre Channel, iSCSI along with propritary driver or protocols. On the other hand, given the extensibility of NVMe and how it can be used in different configurations including as part of fabrics, it is an enabler for various NVMs also known as persistent memories, SCMs, SSDs including those based on NAND flash as well as emerging 3D XPoint (or Intel version) among others.

Where To Learn More

View additional NVMe, SSD, NVM, SCM, Data Infrastructure and related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Context matters for example, NVM as the medium compared to NVMe as the interface and access protocols. With context in mind you can compare like or similar apples to apples such as nand flash, MRAM, NVRAM, 3D XPoint, Optane among other persistent memories also known as storage class memories, NVMs and SSDs. Likewise with context in mind NVMe can be compared to other interfaces and protocols such as SAS, SATA, PCIe, mSATA, Fibre Channel among others. The following puts all of this into context including various packaging options, interfaces and access protocols, functionality and media.

NVMe is the access for NVM flash
Putting IT all together

Will NVMe kill off flash? IMHO no not by itself, however NVMe combined with some other form of NVM, SCM, persistent memory as a storage medium may eventually combine as an alternative to NVMe and flash (or SAS/SATA and flash). However, for now at least for many applications, NVMe is in your future (along with flash among other storage mediums), the questions include when, where, why, how, with what among other questions (and answers). NVMe wont replace flash by itself (at least yet) as they complement each other.

Keep in mind, if NVMe is the answer, what are the questions.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

New family of Intel Xeon Scalable Processors enable software defined data infrastructures (SDDI) and SDDC

Intel Xeon Scalable Processors SDDI and SDDC

server storage I/O data infrastructure trends

Today Intel announced a new family of Xeon Scalable Processors (aka Purely) that for some workloads Intel claims to be on average of 1.65x faster than their predecessors. Note your real improvement will vary based on workload, configuration, benchmark testing, type of processor, memory, and many other server storage I/O performance considerations.

Intel Scalable Xeon Processors
Image via Intel.com

In general the new Intel Xeon Scalable Processors enable legacy and software defined data infrastructures (SDDI), along with software defined data centers (SDDC), cloud and other environments to support expanding workloads more efficiently as well as effectively (e.g. boosting productivity).

Data Infrastructures and workloads

Some target application and environment workloads Intel is positioning these new processors for includes among others:

  • Machine Learning (ML), Artificial Intelligence (AI), advanced analytics, deep learning and big data
  • Networking including software defined network (SDN) and network function virtualization (NFV)
  • Cloud and Virtualization including Azure Stack, Docker and Kubernetes containers, Hyper-V, KVM, OpenStack VMware vSphere, KVM among others
  • High Performance Compute (HPC) and High Productivity Compute (e.g. the other HPC)
  • Storage including legacy and emerging software defined storage software deployed as appliances, systems or server less deployment modes.

Features of the new Intel Xeon Scalable Processors include:

  • New core micro architecture with interconnects and on die memory controllers
  • Sockets (processors) scalable up to 28 cores
  • Improved networking performance using Quick Assist and Data Plane Development Kit (DPDK)
  • Leverages Intel Quick Assist Technology for CPU offload of compute intensive functions including I/O networking, security, AI, ML, big data, analytics and storage functions. Functions that benefit from Quick Assist include cryptography, encryption, authentication, cipher operations, digital signatures, key exchange, loss less data compression and data footprint reduction along with data at rest encryption (DARE).
  • Optane Non-Volatile Dual Inline Memory Module (NVDIMM) for storage class memory (SCM) also referred to by some as Persistent Memory (PM), not to be confused with Physical Machine (PM).
  • Supports Advanced Vector Extensions 512  (AVX-512) for HPC and other workloads
  • Optional Omni-Path Fabrics in addition to 1/10Gb Ethernet among other I/O options
  • Six memory channels supporting up to 6TB of RDIMM with multi socket systems
  • From two to eight  sockets per node (system)
  • Systems support PCIe 3.x (some supporting x4 based M.2 interconnects)

Note that exact speeds, feeds, slots and watts will vary by specific server model and vendor options. Also note that some server system solutions have two or more nodes (e.g. two or more real servers) in a single package not to be confused with two or more sockets per node (system or motherboard). Refer to the where to learn more section below for links to Intel benchmarks and other resources.

Software Defined Data Infrastructures, SDDC, SDX and SDDI

What About Speeds and Feeds

Watch for and check out the various Intel partners who have or will be announcing their new server compute platforms based on Intel Xeon Scalable Processors. Each of the different vendors will have various speeds and feeds options that build on the fundamental Intel Xeon Scalable Processor capabilities.

For example Dell EMC announced their 14G server platforms at the May 2017 Dell EMC World event with details to follow (e.g. after the Intel announcements).

Some things to keep in mind include the amount of DDR4 DRAM (or Optane NVDIMM) will vary by vendors server platform configuration, motherboards, several sockets and DIMM slots. Also keep in mind the differences between registered (e.g. buffered RDIMM) that give good capacity and great performance, and load reduced DIMM (LRDIMM) that have great capacity and ok performance.

Various nvme options

What about NVMe

It’s there as these systems like previous Intel models support NVMe devices via PCIe 3.x slots, and some vendor solutions also supporting M.2 x4 physical interconnects as well.

server storageIO flash and SSD
Image via Software Defined Data Infrastructure Essentials (CRC)

Note that Broadcom formerly known as Avago and LSI recently announced PCIe based RAID and adapter cards that support NVMe attached devices in addition to SAS and SATA.

server storage data infrastructure sddi

What About Intel and Storage

In case you have not connected the dots yet, the Intel Xeon Scalable Processor based server (aka compute) systems are also a fundamental platform for storage systems, services, solutions, appliances along with tin-wrapped software.

What this means is that the Intel Xeon Scalable Processors based systems can be used for deploying legacy as well as new and emerging software-defined storage software solutions. This also means that the Intel platforms can be used to support SDDC, SDDI, SDX, SDI as well as other forms of legacy and software-defined data infrastructures along with cloud, virtual, container, server less among other modes of deployment.

Image Via Intel.com

Moving beyond server and compute platforms, there is another tie to storage as part of this recent as well as other Intel announcements. Just a few weeks ago Intel announced 64 layer triple level cell (TLC) 3D NAND solutions positioned for the client market (laptop, workstations, tablets, thin clients). Intel with that announcement increased the traditional aerial density (e.g. bits per square inch or cm) as well as boosting the number of layers (stacking more bits as well).

The net result is not only more bits per square inch, also more per cubic inch or cm. This is all part of a continued evolution of NAND flash including from 2D to 3D, MCL to TLC, 32 to 64 layer.  In other words, NAND flash-based Solid State Devices (SSDs) are very much still a relevant and continue to be enhanced technology even with the emerging 3D XPoint and Optane (also available via Amazon in M.2) in the wings.

server memory evolution
Via Intel and Micron (3D XPoint launch)

Keep in mind that NAND flash-based technologies were announced almost 20 years ago (1999), and are still evolving. 3D XPoint announced two years ago, along with other emerging storage class memories (SCM), non-volatile memory (NVM) and persistent memory (PM) devices are part of the future as is 3D NAND (among others). Speaking of 3D XPoint and Optane, Intel had announcements about that in the past as well.

Where To Learn More

Learn more about Intel Xeon Scalable Processors along with related technology, trends, tools, techniques and tips with the following links.

What This All Means

Some say the PC is dead and IMHO that depends on what you mean or define a PC as. For example if you refer to a PC generically to also include servers besides workstations or other devices, then they are alive. If however your view is that PCs are only workstations and client devices, then they are on the decline.

However if your view is that a PC is defined by the underlying processor such as Intel general purpose 64 bit x86 derivative (or descendent) then they are very much alive. Just as older generations of PCs leveraging general purpose Intel based x86 (and its predecessors) processors were deployed for many uses, so to are today’s line of Xeon (among others) processors.

Even with the increase of ARM, GPU and other specialized processors, as well as ASIC and FPGAs for offloads, the role of general purpose processors continues to increase, as does the technology evolution around. Even with so called server less architectures, they still need underlying compute server platforms for running software, which also includes software defined storage, software defined networks, SDDC, SDDI, SDX, IoT among others.

Overall this is a good set of announcements by Intel and what we can also expect to be a flood of enhancements from their partners who will use the new family of Intel Xeon Scalable Processors in their products to enable software defined data infrastructures (SDDI) and SDDC.

Ok, nuff said (for now…).

Cheers
Gs

Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

Dell EMC World 2017 Day One news announcement summary

server storage I/O trends

Dell EMC World 2017 Day One news announcement summary

This is the first day of the first combined Dell EMC World 2017 being held in Las Vegas Nevada. Last year’s event in Las Vegas was the end of the EMC World, while this being the first of the combined Dell EMC World events that succeeded its predecessors.

What this means is an expanded focus because of the new Dell EMC that has added servers among other items to the event focus. Granted, EMC had been doing servers via its VCE and converged divisions, however with the Dell EMC integration completed as of last fall, the Dell Server group is now part of the Dell EMC organization.

The central theme of this Dell EMC world is REALIZE with a focus on four pillars:

  • Digital Transformation (Pivotal focus) of applications
  • IT Transformation (Dell EMC, Virtustream, VMware) data center modernization
  • Workforce transformation (Dell Client Solutions) devices from mobile to IoT
  • Information Security (RSA and Secureworks)

software defined data infrastructures SDDI and SDDC

What Did Dell EMC Announce Today

Note that while there are focus areas of the different Dell Technologies business units aligned to the pillars, there is also leveraging across those areas and groups. For example, VMware NSX spans into security, and  PowerEdge servers span into other pillars as a core data infrastructure building block.

What Dell EMC and Dell Technologies announced today.

  • Wave of Innovations to help customers realize digital transformation
  • New 14th generation PowerEdge Servers that are core building blocks for data infrastructures
  • Flexible consumption models (financing and more) from desktop to data center
  • Hyper-Converged Infrastructure (HCI), Converged (CI) and Cloud like systems
  • New All-Flash (ADA) SSD Storage Systems (VMAX, XtremIO X2, Unity, SC, Isilon)
  • Integrated Data Protection Appliance (IDPA) and Cloud Protection solutions
  • Using Gen14 servers several Software Defined Storage (SDS) enhancements
  • Open Networking and software-defined networks (SDN) with 25G
  • Last week Dell EMC announced Microsoft Azure Stack hybrid cloud solutions

New 14th generation PowerEdge Servers that are core building blocks for data infrastructures

Dell EMC has announced the 14th generation of Intel-powered Dell EMC PowerEdge server portfolio systems. These includes servers that get defined with software for software-defined data centers (SDDC), software-defined data infrastructures (SDDI) for the cloud, virtual, the container as well as storage among other applications. Target application workloads and environments range from high-performance compute (HPC), and high-productivity (or profitability) compute (the other HPC), super compute (SC), little data and big data analytics, legacy and emerging business applications as well as cloud and beyond. Enhancements besides new Intel processor technology includes enhanced iDRAC, OpenManage, REST interface, QuickSync, Secure Boot among other management, automation, security, performance, and capacity updates.

Other Dell EMC enhancements with Gen14 include support for various NVDIMM to enable persistent memory also known as storage class memories such as 3D Xpoint among others. Note at this time, Dell EMC is not saying much about speeds, feeds and other details, stay tuned for more information on these in the weeks and months to come.

Dell EMC has also been leaders with deploying NVMe from PCIe flash cards to 8639 U.2 devices such as 2.5” drives. Thus it makes sense to see continued adoption and deployment of those devices along with SAS, SATA support. Note that Broadcom (formerly known as Avago) recently announced the release of their PCIe SAS, SATA and NVMe based adapters.

The reason this is worth mentioning is that in the past Dell has OEM sourced Avago (formerly known as LSI) based adapters. Given Dell EMC use of NVMe drives, it only makes sense to put two and two together.

Let’s wait a few months to see what the speeds, feeds, and specifications are to put the rest of the puzzle together. Speaking of NVMe, also look for Dell EMC to also supporting PCIe AIC and U.2 (8639) NVMe devices, also leverage M.2 Next Generation Form Factor (NGFF) aka Gum sticks as boot devices.

While these are all Intel focused, I would expect Dell EMC not to sit back, instead, watch for what they do with other processors and servers including ARMs among others.

Increased support for more GPUs to support VDI and other graphic intensive workloads such as video rendering, imaging among others. Part of enhanced GPU support is improvements (multi-vector cooling) to power and cooling including sensing the type of PCIe card, and then adjusting cooling fans and subsequent power draw accordingly. The benefit should be more proper cooling to reduce power to support more work and productivity.

Flexible consumption models (financing and more) from desktop to data center

Dell Technologies has announced several financing, procurement, and consumption models with cloud-like flexible options for different IT and data center, along with mobile device technologies. These range from licensing to deployment as a service, consumption and other options via Dell Financial Services (DFS).

Highlights include:

  • DFS Flex on Demand is available now in select countries globally.
  • DFS Cloud Flex for HCI is available now for Dell EMC VxRail and Dell EMC XC Series and has planned availability for Q3 2017 in Dell EMC VxRack Systems.
  • PC as a Service is available now in select countries globally.
  • Dell EMC VDI Complete Solutions are available now in select countries globally.
  • DFS Flex on Demand is available now in select countries globally.
  • DFS Cloud Flex for HCI is available now for Dell EMC VxRail and Dell EMC XC Series and has planned VxRack systems in Q3 2017.
  • PC as a Service solution is available now in select countries globally.
  • Dell EMC VDI Complete Solutions are available now in select countries.
  • Dell Technologies transformation license agreement (TLA) is available now in select countries

Hyper-Converged Infrastructure (HCI), Converged (CI) and Cloud like systems

Enhancements to VxRail system, VxRACK Systems, and XC Series leveraging Del EMC Gen14 PowerEdge servers along with other improvements. Note that this also includes continued support for VMware, Microsoft as well as Nutanix software-defined solutions.

New All-Flash (ADA) SSD Storage Systems (VMAX, XtremIO X2, Unity, SC, Isilon)

Storage system enhancements include from high-end (VMAX and XtremIO) to mid-range (Unity and SC) along with scale-out NAS (Isilon)

Highlights of the announcements include:

  • New VMAX 950F all flash array (AFA)
  • New XtremIO X2 with enhanced software, more powerful hardware
  • New Unity AFA systems
  • New SC5020 midrange hybrid storage
  • New generation of Isilon storage with improved performance, capacity, density

Integrated Data Protection Appliance (IDPA) and Cloud Protection solutions

Data protection enhancement highlights include:

  • New Turnkey Integrated Data Protection Appliance (IDPA) with four models (DP5300, DP5800, DP8300, and DP8800) starting at 34 TB usable scaling up to 1PB usable. Data services including encryption, data footprint reduction such as dedupe, remote monitoring, Maintenance service dispatch, along with application integration. Application integration includes MongoDB, Hadoop, MySQL.

  • Enhanced cloud capabilities powered by Data Domain virtual edition (DD VE 3.1) along with data protection suite enable data to be protected too, and restored from Amazon Web Services (AWS) Simple Storage Service (S3) as well as Microsoft Azure.

Open Networking and software-defined networks (SDN) with 25G

Dell EMC Open Networking highlights include:

  • Dell EMCs first 25GbE open networking top of rack (TOR) switch including S5100-ON series (With OS10 enterprise edition software) complimenting new PowerEdge Gen14 servers with native 25GbE support. Switches support 100GbE uplinks fabric connectivity for east-west (management) network traffic. Also announced is the S4100-ON series and N1100-ON series that are in addition to recently announce N3100-ON and N2100-ON switches.

  • Dell EMCs first optimized Open Networking platform for unified storage network switching including support for 16Gb/32GB Fibre Channel

  • New Network Function Virtualization (NFV) and IoT advisory consulting services

Note that Dell EMC is announcing the availability of these networking solutions in Dell Technologies 2018 fiscal year which occurs before the traditional calendar year.

Using Gen14 servers, several Software Defined Storage (SDS) enhancements

Dell EMC announced enhancements to their Software Defined Storage (SDS) portfolio that leveraging the PowerEdge 14th generation server portfolio. These improvements include ScaleIO, Elastic Cloud Storage (ECS), IsilonSD Edge and Preview of Project Nautilus.

Where to learn more

What this all means

This is a summary of what has been announced so far on the first morning of the first day of the first new Dell EMC world. Needless to say, there is more detail to look at for the above announcements from speeds, feeds, functionality and related topics that will get addressed in subsequent posts. Overall this is a good set of announcements expanding capabilities of the combined Dell EMC while enhancing existing systems as well as well as solutions.

Ok, nuff said (for now…)

Cheers
Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

SDx Summit London UK (Planning and Enabling Your Journey to Software Defined)

Planning and Enabling Your Journey to Software Defined)

server storage I/O trends

Will 2017 be there year of all software-defined X (e.g. SDx) where X can be everything from data centers (SDDC), data infrastructures (SDDI), infrastructure (SDI), storage (SDS), network (SDN) or marketing (SDM) among others? What about IoT, IoD, ByoD, ByoL (bring your own license), MaaS (metal as a service), clouds, containers, object storage, OpenStack, Mesos, Docker, Kubernetes, NVMe, flash SSD, SCM (Storage Class Memory) among other buzzword bingo terms, technologies and trends, will 2017 be there year for those among others?

What is safe to say is that the above buzzword items, topics, trends, technologies, tools and techniques are in your future, what varies is when, where, how, why, with what and whom to assist you on your journey.

server storage I/O events

On January 26 2017 join me and others at the Savoy hotel in London UK for the SDx summit organized by Wipro.

My presentation titled Planning and Enabling Your Journey to SDx will have a theme of Transiting from Hype and Marketing Hope to Deployment and Management. In other words, moving beyond SDBS and SDM to how to prepare, plan and what you can do today including hybrid deployments. Some of the topics, themes, trends, technologies, tools and tips in my discussion will include among others:

  • Software Defined Management and Data Protection
  • How to pack and prepare for your Software Defined Journey
  • Be prepared, plan for the unexpected, manage your journey
  • Learn the local language, expand your trade craft (skills)
  • Moving and migrating (brownfield) vs. start from scratch (greenfield)
  • ByoD, DiY, IoD, IoT, Cloud and Container conversations
  • What you can do today to prepare for your upcoming journey

Where To Learn More

Learn more and register here for the London UK SDx summit.

What This All Means

Regardless of if 2017 will be the year of SDx or any of the other industry popular buzz term trends, technologies and techniques, it is time to start planning as well as preparing. This means identifying questions, concerns and learning about the new tools and technologies that can be used in new ways, while also leveraging old things in new ways to enable a resilient, scalable, flexible as well as cost-effective data infrastructure. For those of you in the London UK area, learn more about the SDx summit organized by Wipro here and hope to see you there.

Ok, nuff said, for now…

Cheers
Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, vSAN and VMware vExpert. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO All Rights Reserved

Which Enterprise HDD for Content Server Platform

Which Enterprise HDD to use for a Content Server Platform

data infrastructure HDD server storage I/O trends

Updated 1/23/2018

Which enterprise HDD to use with a content server platform?

Insight for effective server storage I/O decision making
Server StorageIO Lab Review

Which enterprise HDD to use for content servers

This post is the first in a multi-part series based on a white paper hands-on lab report I did compliments of Equus Computer Systems and Seagate that you can read in PDF form here. The focus is looking at the Equus Computer Systems (www.equuscs.com) converged Content Solution platforms with Seagate Enterprise Hard Disk Drive (HDD’s). I was given the opportunity to do some hands-on testing running different application workloads with a 2U content solution platform along with various Seagate Enterprise 2.5” HDD’s handle different application workloads. This includes Seagate’s Enterprise Performance HDD’s with the enhanced caching feature.

Issues And Challenges

Even though Non-Volatile Memory (NVM) including NAND flash solid state devices (SSDs) have become popular storage for use internal as well as external to servers, there remains the need for HDD’s Like many of you who need to make informed server, storage, I/O hardware, software and configuration selection decisions, time is often in short supply.

A common industry trend is to use SSD and HDD based storage mediums together in hybrid configurations. Another industry trend is that HDD’s continue to be enhanced with larger space capacity in the same or smaller footprint, as well as with performance improvements. Thus, a common challenge is what type of HDD to use for various content and application workloads balancing performance, availability, capacity and economics.

Content Applications and Servers

Fast Content Needs Fast Solutions

An industry and customer trend are that information and data are getting larger, living longer, as well as there is more of it. This ties to the fundamental theme that applications and their underlying hardware platforms exist to process, move, protect, preserve and serve information.

Content solutions span from video (4K, HD, SD and legacy streaming video, pre-/post-production, and editing), audio, imaging (photo, seismic, energy, healthcare, etc.) to security surveillance (including Intelligent Video Surveillance [ISV] as well as Intelligence Surveillance and Reconnaissance [ISR]). In addition to big fast data, other content solution applications include content distribution network (CDN) and caching, network function virtualization (NFV) and software-defined network (SDN), to cloud and other rich unstructured big fast media data, analytics along with little data (e.g. SQL and NoSQL database, key-value stores, repositories and meta-data) among others.

Content Solutions And HDD Opportunities

A common theme with content solutions is that they get defined with some amount of hardware (compute, memory and storage, I/O networking connectivity) as well as some type of content software. Fast content applications need fast software, multi-core processors (compute), large memory (DRAM, NAND flash, SSD and HDD’s) along with fast server storage I/O network connectivity. Content-based applications benefit from having frequently accessed data as close as possible to the application (e.g. locality of reference).

Content solution and application servers need flexibility regarding compute options (number of sockets, cores, threads), main memory (DRAM DIMMs), PCIe expansion slots, storage slots and other connectivity. An industry trend is leveraging platforms with multi-socket processors, dozens of cores and threads (e.g. logical processors) to support parallel or high-concurrent content applications. These servers have large amounts of local storage space capacity (NAND flash SSD and HDD) and associated I/O performance (PCIe, NVMe, 40 GbE, 10 GbE, 12 Gbps SAS etc.) in addition to using external shared storage (local and cloud).

Where To Learn More

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Fast content applications need fast content and flexible content solution platforms such as those from Equus Computer Systems and HDD’s from Seagate. Key to a successful content application deployment is having the flexibility to hardware define and software defined the platform to meet your needs. Just as there are many different types of content applications along with diverse environments, content solution platforms need to be flexible, scalable and robust, not to mention cost effective.

Continue reading part two of this multi-part series here where we look at how and what to test as well as project planning.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Which Enterprise HDD for Content Applications General I/O Performance

Which HDD for Content Applications general I/O Performance

hdd general i/o performance server storage I/O trends

Updated 1/23/2018

Which enterprise HDD to use with a content server platform general I/O performance Insight for effective server storage I/O decision making
Server StorageIO Lab Review

Which enterprise HDD to use for content servers

This is the sixth in a multi-part series (read part five here) based on a white paper hands-on lab report I did compliments of Servers Direct and Seagate that you can read in PDF form here. The focus is looking at the Servers Direct (www.serversdirect.com) converged Content Solution platforms with Seagate Enterprise Hard Disk Drive (HDD’s). In this post the focus is around general I/O performance including 8KB and 128KB IOP sizes.

General I/O Performance

In addition to running database and file (large and small) processing workloads, Vdbench was also used to collect basic small (8KB) and large (128KB) sized I/O operations. This consisted of random and sequential reads as well as writes with the results shown below. In addition to using vdbench, other tools that could be used include Microsoft Diskspd, fio, iorate and iometer among many others.

These workloads used Vdbench configured (13) to do direct I/O to a Windows file system mounted device using as much of the available disk space as possible. All workloads used 16 threads and were run concurrently similar to database and file processing tests.

(Note 13) Sample vdbench configuration for general I/O, note different settings were used for various tests

Table-7 shows workload results for 8KB random IOPs 75% reads and 75% writes including IOPs, bandwidth and response time.

 

ENT 15K RAID1

ENT 10K RAID1

ENT CAP RAID1

ENT 10K R10
(4 Drives)

ECAP SW RAID (5 Drives)

 

75% Read

25% Read

75% Read

25% Read

75% Read

25% Read

75% Read

25% Read

75% Read

25% Read

I/O Rate (IOPs)

597.11

559.26

514

475

285

293

979

984

491

644

MB/sec

4.7

4.4

4.0

3.7

2.2

2.3

7.7

7.7

3.8

5.0

Resp. Time (Sec.)

25.9

27.6

30.2

32.7

55.5

53.7

16.3

16.3

32.6

24.8

Table-7 8KB sized random IOPs workload results

Figure-6 shows small (8KB) random I/O (75% read and 25% read) across different HDD configurations. Performance including activity rates (e.g. IOPs), bandwidth and response time for mixed reads / writes are shown. Note how response time increases with the Enterprise Capacity configurations vs. other performance optimized drives.

general 8K random IO
Figure-6 8KB random reads and write showing IOP activity, bandwidth and response time

Table-8 below shows workload results for 8GB sized I/Os 100% sequential with 75% reads and 75% writes including IOPs, MB/sec and response time in seconds.

ENT 15K RAID1

ENT 10K RAID1

ENT CAP RAID1

ENT 10K R10
(4 Drives)

ECAP SW RAID (5 Drives)

75% Read

25% Read

75% Read

25% Read

75% Read

25% Read

75% Read

25% Read

75% Read

25% Read

I/O Rate (IOPs)

3,778

3,414

3,761

3,986

3,379

1,274

11,840

8,368

2,891

1,146

MB/sec

29.5

26.7

29.4

31.1

26.4

10.0

92.5

65.4

22.6

9.0

Resp. Time (Sec.)

2.2

3.1

2.3

2.4

2.7

10.9

1.3

1.9

5.5

14.0

Table-8 8KB sized sequential workload results

Figure-7 shows small 8KB sequential mixed reads and writes (75% read and 75% write), while the Enterprise Capacity 2TB HDD has a large amount of space capacity, its performance in a RAID 1 vs. other similar configured drives is slower.

8KB Sequential
Figure-7 8KB sequential 75% reads and 75% write showing bandwidth activity

Table-9 shows workload results for 100% sequential, 100% read and 100% write 128KB sized I/Os including IOPs, bandwidth and response time.

ENT 15K RAID1

ENT 10K RAID1

ENT CAP RAID1

ENT 10K R10
(4 Drives)

ECAP SW RAID (5 Drives)

Read

Write

Read

Write

Read

Write

Read

Write

Read

Write

I/O Rate (IOPs)

1,798

1,771

1,716

1,688

921

912

3,552

3,486

780

721

MB/sec

224.7

221.3

214.5

210.9

115.2

114.0

444.0

435.8

97.4

90.1

Resp. Time (Sec.)

8.9

9.0

9.3

9.5

17.4

17.5

4.5

4.6

19.3

20.2

Table-9 128KB sized sequential workload results

Figure-8 shows sequential or streaming operations of larger I/O (100% read and 100% write) requests sizes (128KB) that would be found with large content applications. Figure-8 highlights the relationship between lower response time and increased IOPs as well as bandwidth.

128K Sequential
Figure-8 128KB sequential reads and write showing IOP activity, bandwidth and response time

Where To Learn More

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Some content applications are doing small random I/Os for database, key value stores or repositories as well as meta data processing while others are doing large sequential I/O. 128KB sized I/O may be large for your environment, on the other hand, with an increasing number of applications, file systems, software defined storage management tools among others, 1 to 10MB or even larger I/O sizes are becoming common. Key is selecting I/O sizes and read write as well as random sequential along with I/O or queue depths that align with your environment.

Continue reading part seven the final post in this multi-part series here where the focus is around how HDD’s continue to evolve including performance beyond traditional RPM based execrations along with wrap up.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

NVMe Place NVM Non Volatile Memory Express Resources

Updated 8/31/19
NVMe place server Storage I/O data infrastructure trends

Welcome to NVMe place NVM Non Volatile Memory Express Resources. NVMe place is about Non Volatile Memory (NVM) Express (NVMe) with Industry Trends Perspectives, Tips, Tools, Techniques, Technologies, News and other information.

Disclaimer

Please note that this NVMe place resources site is independent of the industry trade and promoters group NVM Express, Inc. (e.g. www.nvmexpress.org). NVM Express, Inc. is the sole owner of the NVM Express specifications and trademarks.

NVM Express Organization
Image used with permission of NVM Express, Inc.

Visit the NVM Express industry promoters site here to learn more about their members, news, events, product information, software driver downloads, and other useful NVMe resources content.

 

The NVMe Place resources and NVM including SCM, PMEM, Flash

NVMe place includes Non Volatile Memory (NVM) including nand flash, storage class memories (SCM), persistent memories (PM) are storage memory mediums while NVM Express (NVMe) is an interface for accessing NVM. This NVMe resources page is a companion to The SSD Place which has a broader Non Volatile Memory (NVM) focus including flash among other SSD topics. NVMe is a new server storage I/O access method and protocol for fast access to NVM based storage and memory technologies. NVMe is an alternative to existing block based server storage I/O access protocols such as AHCI/SATA and SCSI/SAS devices commonly used for access Hard Disk Drives (HDD) along with SSD among other things.

Server Storage I/O NVMe PCIe SAS SATA AHCI
Comparing AHCI/SATA, SCSI/SAS and NVMe all of which can coexist to address different needs.

Leveraging the standard PCIe hardware interface, NVMe based devices (that have an NVMe controller) can be accessed via various operating systems (and hypervisors such as VMware ESXi) with both in the box drivers or optional third-party device drivers. Devices that support NVMe can be 2.5″ drive format packaged that use a converged 8637/8639 connector (e.g. PCIe x4) coexisting with SAS and SATA devices as well as being add-in card (AIC) PCIe cards supporting x4, x8 and other implementations. Initially, NVMe is being positioned as a back-end to servers (or storage systems) interface for accessing fast flash and other NVM based devices.

NVMe as back-end storage
NVMe as a “back-end” I/O interface for NVM storage media

NVMe as front-end server storage I/O interface
NVMe as a “front-end” interface for servers or storage systems/appliances

NVMe has also been shown to work over low latency, high-speed RDMA based network interfaces including RoCE (RDMA over Converged Ethernet) and InfiniBand (read more here, here and here involving Mangstor, Mellanox and PMC among others). What this means is that like SCSI based SAS which can be both a back-end drive (HDD, SSD, etc) access protocol and interface, NVMe can also being used for back-end can also be used as a front-end of server to storage interface like how Fibre Channel SCSI_Protocol (aka FCP), SCSI based iSCSI, SCSI RDMA Protocol via InfiniBand (among others) are used.

NVMe features

Main features of NVMe include among others:

  • Lower latency due to improve drivers and increased queues (and queue sizes)
  • Lower CPU used to handle larger number of I/Os (more CPU available for useful work)
  • Higher I/O activity rates (IOPs) to boost productivity unlock value of fast flash and NVM
  • Bandwidth improvements leveraging various fast PCIe interface and available lanes
  • Dual-pathing of devices like what is available with dual-path SAS devices
  • Unlock the value of more cores per processor socket and software threads (productivity)
  • Various packaging options, deployment scenarios and configuration options
  • Appears as a standard storage device on most operating systems
  • Plug-play with in-box drivers on many popular operating systems and hypervisors

Shared external PCIe using NVMe
NVMe and shared PCIe (e.g. shared PCIe flash DAS)

NVMe related content and links

The following are some of my tips, articles, blog posts, presentations and other content, along with material from others pertaining to NVMe. Keep in mind that the question should not be if NVMe is in your future, rather when, where, with what, from whom and how much of it will be used as well as how it will be used.

  • How to Prepare for the NVMe Server Storage I/O Wave (Via Micron.com)
  • Why NVMe Should Be in Your Data Center (Via Micron.com)
  • NVMe U2 (8639) vs. M2 interfaces (Via Gamersnexus)
  • Enmotus FuzeDrive MicroTiering (StorageIO Lab Report)
  • EMC DSSD D5 Rack Scale Direct Attached Shared SSD All Flash Array Part I (Via StorageIOBlog)
  • Part II – EMC DSSD D5 Direct Attached Shared AFA (Via StorageIOBlog)
  • NAND, DRAM, SAS/SCSI & SATA/AHCI: Not Dead, Yet! (Via EnterpriseStorageForum)
  • Non Volatile Memory (NVM), NVMe, Flash Memory Summit and SSD updates (Via StorageIOblog)
  • Microsoft and Intel showcase Storage Spaces Direct with NVM Express at IDF ’15 (Via TechNet)
  • MNVM Express solutions (Via SuperMicro)
  • Gaining Server Storage I/O Insight into Microsoft Windows Server 2016 (Via StorageIOblog)
  • PMC-Sierra Scales Storage with PCIe, NVMe (Via EEtimes)
  • RoCE updates among other items (Via InfiniBand Trade Association (IBTA) December Newsletter)
  • NVMe: The Golden Ticket for Faster Flash Storage? (Via EnterpriseStorageForum)
  • What should I consider when using SSD cloud? (Via SearchCloudStorage)
  • MSP CMG, Sept. 2014 Presentation (Flash back to reality – Myths and Realities – Flash and SSD Industry trends perspectives plus benchmarking tips)– PDF
  • Selecting Storage: Start With Requirements (Via NetworkComputing)
  • PMC Announces Flashtec NVMe SSD NVMe2106, NVMe2032 Controllers With LDPC (Via TomsITpro)
  • Exclusive: If Intel and Micron’s “Xpoint” is 3D Phase Change Memory, Boy Did They Patent It (Via Dailytech)
  • Intel & Micron 3D XPoint memory — is it just CBRAM hyped up? Curation of various posts (Via Computerworld)
  • How many IOPS can a HDD, HHDD or SSD do (Part I)?
  • How many IOPS can a HDD, HHDD or SSD do with VMware? (Part II)
  • I/O Performance Issues and Impacts on Time-Sensitive Applications (Via CMG)
  • Via EnterpriseStorageForum: 5 Hot Storage Technologies to Watch
  • Via EnterpriseStorageForum: 10-Year Review of Data Storage

Non-Volatile Memory (NVM) Express (NVMe) continues to evolve as a technology for enabling and improving server storage I/O for NVM including nand flash SSD storage. NVMe streamline performance enabling more work to be done (e.g. IOPs), data to be moved (bandwidth) at a lower response time using less CPU.

NVMe and SATA flash SSD performance

The above figure is a quick look comparing nand flash SSD being accessed via SATA III (6Gbps) on the left and NVMe (x4) on the right. As with any server storage I/O performance comparisons there are many variables and take them with a grain of salt. While IOPs and bandwidth are often discussed, keep in mind that with the new protocol, drivers and device controllers with NVMe that streamline I/O less CPU is needed.

Additional NVMe Resources

Also check out the Server StorageIO companion micro sites landing pages including thessdplace.com (SSD focus), data protection diaries (backup, BC/DR/HA and related topics), cloud and object storage, and server storage I/O performance and benchmarking here.

If you are in to the real bits and bytes details such as at device driver level content check out the Linux NVMe reflector forum. The linux-nvme forum is a good source if you are developer to stay up on what is happening in and around device driver and associated topics.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

Disclaimer

Disclaimer: Please note that this site is independent of the industry trade and promoters group NVM Express, Inc. (e.g. www.nvmexpress.org). NVM Express, Inc. is the sole owner of the NVM Express specifications and trademarks. Check out the NVM Express industry promoters site here to learn more about their members, news, events, product information, software driver downloads, and other useful NVMe resources content.

NVM Express Organization
Image used with permission of NVM Express, Inc.

Wrap Up

Watch for updates with more content, links and NVMe resources to be added here soon.

Ok, nuff said (for now)

Cheers
Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

August Server StorageIO Update Newsletter – NVM and Flash SSD Focus

Volume 15, Issue VIII

Hello and welcome to this August 2015 Server StorageIO update newsletter. Summer is wrapping up here in the northern hemisphere which means the fall conference season has started, holidays in progress as well as getting ready for back to school time. I have been spending my summer working on various things involving servers, storage, I/O networking hardware, software, services from cloud to containers, virtual and physical. This includes OpenStack, VMware vCloud Air, AWS, Microsoft Azure, GCS among others, as well as new versions of Microsoft Windows and Servers, Non Volatile Memory (NVM) including flash SSD, NVM Express (NVMe), databases, data protection, software defined, cache, micro-tiering and benchmarking using various tools among other things (some are still under wraps).

Enjoy this edition of the Server StorageIO update newsletter and watch for new tips, articles, StorageIO lab report reviews, blog posts, videos and podcast’s along with in the news commentary appearing soon.

Cheers GS

In This Issue

  • Feature Topic
  • Industry Trends News
  • Commentary in the news
  • Tips and Articles
  • StorageIOblog posts
  • Videos and Podcasts
  • Events and Webinars
  • Recommended Reading List
  • Industry Activity Trends
  • Server StorageIO Lab reports
  • New and Old Vendor Update
  • Resources and Links
  • Feature Topic – Non Volatile Memory including NAND flash SSD

    Via Intel History of Memory
    Via Intel: Click above image to view history of memory

    This months feature topic theme is Non Volatile Memory (NVM) which includes technologies such as NAND flash commonly used in Solid State Devices (SSDs) storage today, as well as in USB thumb drive, mobile and hand-held devices among many other uses. NVM spans servers, storage, I/O devices along with mobile and handheld among many other technologies. In addition to NAND flash, other forms of NVM include Non Volatile Random Access Memory (NVRAM), Read Only Memory (ROM) along with some emerging new technologies including the recently announced Intel and Micron 3D XPoint among others.

    • NVMe: The Golden Ticket for Faster Flash Storage? (Via EnterpriseStorageForum)
    • What should I consider when using SSD cloud? (Via SearchCloudStorage)
    • MSP CMG, Sept. 2014 Presentation (Flash back to reality – Myths and Realities
    • Flash and SSD Industry trends perspectives plus benchmarking tips) – PDF
    • Selecting Storage: Start With Requirements (Via NetworkComputing)
    • Spot The Newest & Best Server Trends (Via Processor)
    • Market ripe for embedded flash storage as prices drop (Via Powermore (Dell))

    Continue reading more about NVM, NVMe, NAND flash, SSD Server and storage I/O related topics at www.thessdplace.com as well as about I/O performance, monitoring and benchmarking tools at www.storageperformance.us.

     

    StorageIOblog Posts

    Recent and popular Server StorageIOblog posts include:

    View other recent as well as past blog posts here

    Server Storage I/O Industry Activity Trends (Cloud, Virtual, Physical)

    StorageIO news (image licensed for use from Shutterstock by StorageIO)

    • PMC Announces NVMe SSD Controllers (Via TomsITpro)
    • New SATA SSD powers elastic cloud agility for CSPs (Via Cbronline)
    • Toshiba Solid-State Drive Family Features PCIe Technology (Via Eweek)
    • SanDisk aims CloudSpeed Ultra SSD at cloud providers (Via ITwire)
    • Everspin & Aupera reveal MRAM Module M.2 Form Factor (Via BusinessWire)
    • PMC-Sierra Scales Storage with PCIe, NVMe (Via EEtimes)
    • Seagate Grows Its Nytro Enterprise Flash Storage Line (Via InfoStor)
    • New SAS Solid State Drive From Seagate Micron Alliance (Via Seagate)
    • Samsung ups the SSD ante with faster, higher capacity drives (Via ITworld)

    View other recent news and industry trends here

    StorageIO Commentary in the news

    StorageIO news (image licensed for use from Shutterstock by StorageIO)
    Recent Server StorageIO commentary and industry trends perspectives about news, activities tips, and announcements.

    • Processor: Comments on Spot The Newest & Best Server Trends
    • Processor: Comments on A Snapshot Strategy For Backups & Data Recovery
    • EnterpriseStorageForum: Comments on Defining the Future of DR Storage
    • EnterpriseStorageForum: Comments on Top Ten Tips for DR as a Service
    • EnterpriseStorageForum: Comments on NVMe: Golden Ticket for Faster Storage

    View more Server, Storage and I/O hardware as well as software trends comments here

    Vendors you may not have heard of

    Various vendors (and service providers) you may not know or heard about recently.

    • Scala – Scale out storage management software tools
    • Reduxio – Enterprise hybrid storage with data services
    • Jam TreeSize Pro – Data discovery and storage resource analysis and reporting

    Check out more vendors you may know, have heard of, or that are perhaps new on the Server StorageIO Industry Links page here (over 1,000 entries and growing).

    StorageIO Tips and Articles

    Recent Server StorageIO articles appearing in different venues include:

    • IronMountain:  Information Lifecycle Management: Which Data Types Have Value?
      It’s important to keep in mind that on a fundamental level, there are three types of data: information that has value, information that does not have value and information that has unknown value. Data value can be measured along performance, availability, capacity and economic attributes, which define how the data gets managed across different tiers of storage. In general data can have value, unknown value or no value. Read more here.
    • EnterpriseStorageForum:  Is Future Storage Converging Around Hyper-Converged?
      Depending on who you talk or listen to, hyper-converged storage is either the future of storage, or it is a hype niche market that is not for everybody, particular not larger environments. How converged is the hyper-converged market? There are many environments that can leverage CI along with HCI, CiB or other bundles solutions. Granted, not all of those environments will converge around the same CI, CiB and HCI or pod solution bundles as everything is not the same in most IT environments and data centers. Not all markets, environments or solutions are the same. Read more here.

    Check out these resources and links technology, techniques, trends as well as tools. View more tips and articles here

    StorageIO Videos and Podcasts

    StorageIO podcasts are also available via and at StorageIO.tv

    StorageIO Webinars and Industry Events

    Server Storage I/O Workshop Seminars
    Nijkerk Netherlands October 13-16 2015

    VMworld August 30-September 3 2015

    See additional webinars and other activities on the Server StorageIO Events page here.

    From StorageIO Labs

    Research, Reviews and Reports

    Enmotus FuzeDrive (Server based Micro-Tiering)
    Enmotus FuzeDrive
    • Micro-teiring of reads and writes
    • FuzeDrive for transparent tiering
    • Dynamic tiering with selectable options
    • Monitoring and diagnostics tools
    • Transparent to operating systems
    • Hardware transparent (HDD and SSD)
    • Server I/O interface agnostic
    • Optional RAM cache and file pinning
    • Maximize NVM flash SSD investment
    • Compliment other SDS solutions
    • Use for servers or workstations

    Enmotus FuzeDrive provides micro-tiering boosting performance (reads and writes) of storage attached to physical bare metal servers, virtual and cloud instances including Windows and Linux operating systems across various applications. In the simple example above five separate SQL Server databases (260GB each) were placed on a single 6TB HDD. A TPCC workload was run concurrently against all databases with various numbers of users. One workload used a single 6TB HDD (blue) while the other used a FuzeDrive (green) comprised of a 6TB HDD and a 400GB SSD showing basic micro-tiering improvements.

    View other StorageIO lab review reports here

    Server StorageIO Recommended Reading List

    The following are various recommended reading including books, blogs and videos. If you have not done so recently, also check out the Intel Recommended Reading List (here) where you will also find a couple of my books.

    Get Whats Yours via Amazon.com
    While not a technology book, you do not have to be at or near retirement age to be planning for retirement. Some of you may already be at or near retirement age, for others, its time to start planning or refining your plans. A friend recommended this book and I’m recommending it to others. Its pretty straight forward and you might be surprised how much money people may be leaving on the table! Check it out here at Amazon.com.

    Server StorageIO Industry Resources and Links

    Check out these useful links and pages:

    storageio.com/links
    objectstoragecenter.com
    storageioblog.com/data-protection-diaries-main/
    storageperformance.us
    thenvmeplace
    thessdplace.com
    storageio.com/raid
    storageio.com/ssd

    Ok, nuff said

    Cheers
    Gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    Non Volatile Memory (NVM), NVMe, Flash Memory Summit and SSD updates

    Storage I/O trends

    Non Volatile Memory (NVM), NVMe, Flash Memory Summit and SSD updates

    I attended the Flash Memory Summit in Santa Clara CA last week and not surprisingly there were many announcements about Non-Volatile Memory (NVM) along with related enabling technologies. Some of these announcements were component based intended for original equipment manufactures (OEMs) ranging from startup to established, systems integrators (SI), value added resellers (VAR’s) while others were more customer solution focused. From a customer solution focus, some of the technologies were consumer oriented while others for business and some for cloud scale service providers.

    Recent NVM, NVMe and Flash SSD news

    A sampling of some recent NVM, NVMe and Flash related news includes among others:

    • PMC Announces Flashtec NVMe SSD NVMe2106, NVMe2032 Controllers (Via TomsITpro)
    • New SATA SSD powers elastic cloud agility for CSPs (Via Cbronline)
    • Toshiba Solid-State Drive Family Features PCIe Technology (Via Eweek)
    • SanDisk aims CloudSpeed Ultra SSD at cloud providers (Via ITwire)
    • Everspin & Aupera show all-MRAM Storage Module in M.2 Form Factor (Via BusinessWire)
    • Intel and Micron unveil new 3D XPoint Non Volatile Memory (NVM) for servers and storage (part I, part II and part III)
    • PMC-Sierra Scales Storage with PCIe, NVMe (Via EEtimes)
    • Seagate Grows Its Nytro Enterprise Flash Storage Line (Via InfoStor)
    • New SAS Solid State Drive First Product From Seagate Micron Alliance (Via Seagate)
    • Wow, Samsung’s New 16 Terabyte SSD Is the World’s Largest Hard Drive (Via Gizmodo)
    • Samsung ups the SSD ante with faster, higher capacity drives (Via ITworld)

    NVMe primer

    Via Intel History of Memory
    Via Intel: Click above image to view history of memory via Intel site

    NVM includes technologies such as NAND flash commonly used in Solid State Devices (SSD’s) storage today, as well as in USB thumb drive, mobile and hand-held devices among many other uses. NVM spans servers, storage, I/O devices along with mobile and handheld among many other technologies. In addition to NAND flash, other forms of NVM include Non Volatile Random Access Memory (NVRAM), Read Only Memory (ROM) along with some emerging new technologies including the recently announced Intel and Micron 3D XPoint among others.

    Server Storage I/O access and NVM
    Server Storage I/O memory (and storage) hierarchy

    Keep in mind that memory is storage and storage is persistent memory as well as that there are different classes, categories and tiers of memory and storage as shown above to meet various performance, availability, capacity and economic requirements. Besides NVM ranging from flash to NVRAM to emerging 3D XPoint among others, another popular topic that is gaining momentum is NVM Express (NVMe). NVMe (more material here at www.thenvmeplace.com) is a new server storage I/O access method and protocol for fast access to NVM based products. NVMe is an alternative to existing block based server storage I/O access protocols such as AHCI/SATA and SCSI/SAS devices commonly used for access Hard Disk Drives (HDD) along with SSD among other things.

    Server Storage I/O NVMe PCIe SAS SATA AHCI
    Comparing AHCI/SATA, SCSI/SAS and NVMe all of which can coexist to address different needs.

    Leveraging the common PCIe hardware interface, NVMe based devices (that have an NVMe controller) can be accessed via various operating systems (and hypervisors such as VMware ESXi) with both in the box drivers or optional third-party device drivers. Devices that support NVMe can be 2.5" drive format packaged that use a converged 8637/8639 connector (e.g. PCIe x4) coexisting with SAS and SATA devices as well as being add in card (AIC) PCIe cards supporting x4, x8 and other implementations. Initially NVMe is being positioned as a back-end to servers (or storage systems) interface for accessing fast flash and other NVM based devices.

    NVMe as back-end storage
    NVMe as a "back-end" I/O interface in a server or storage system accessing NVM storage/media devices

    NVMe as front-end server storage I/O interface
    NVMe as a “front-end” interface for servers (or storage systems/appliances) to use NVMe based storage systems

    NVMe has also been shown to work over low latency, high-speed RDMA based network interfaces including RoCE (RDMA over Converged Ethernet) and InfiniBand (read more here, here and here involving Mangstor, Mellanox and PMC among others). What this means is that like SCSI based SAS which can be both a back-end drive (HDD, SSD, etc) access protocol and interface, NVMe can in addition to being used for back-end can also be used as a front-end of server to storage interface like how Fibre Channel SCSI_Protocol (aka FCP), SCSI based iSCSI, SCSI RDMA Protocol via InfiniBand (among others) are used.

    Shared external PCIe using NVMe
    NVMe and shared PCIe

    NVMe features

    Main features of NVMe include among others:

    • Lower latency due to improve drivers and increased queues (and queue sizes)
    • Lower CPU used to handler larger number of I/Os (more CPU available for useful work)
    • Higher I/O activity rates (IOPs) to boost productivity unlock value of fast flash and NVM
    • Bandwidth improvements leveraging various fast PCIe interface and available lanes
    • Dual-pathing of devices like what is available with dual-path SAS devices
    • Unlock the value of more cores per processor socket and software threads (productivity)
    • Various packaging options, deployment scenarios and configuration options
    • Appears as a standard storage device on most operating systems
    • Plug-play with in-box drivers on many popular operating systems and hypervisors

    Watch for more about NVMe as it continues to gain in both industry adoption and deployment as well as customer adoption and deployment.

    Where to read, watch and learn more

    • NVMe: The Golden Ticket for Faster Flash Storage? (Via EnterpriseStorageForum)
    • What should I consider when using SSD cloud? (Via SearchCloudStorage)
    • MSP CMG, September 2014 Presentation (Flash back to reality – Myths and Realities Flash and SSD Industry trends perspectives plus benchmarking tips) – PDF
    • Selecting Storage: Start With Requirements (Via NetworkComputing)
    • Spot The Newest & Best Server Trends (Via Processor)
    • Intel and Micron unveil new 3D XPoint Non Volatile Memory (NVM) for servers and storage (part I, part II and part III)
    • Market ripe for embedded flash storage as prices drop (Via Powermore (Dell))
    • Continue reading more about NVM, NVMe, NAND flash, SSD Server and storage I/O related topics at www.thessdplace.com as well as about I/O performance, monitoring and benchmarking tools at www.storageperformance.us.

    Storage I/O trends

    What this all means and wrap up

    The question is not if NVM is in your future, it is! Instead the questions are what type of NVM including NAND flash among other mediums will be deployed where, using what type of packaging or solutions (drives, cards, systems, appliances, cloud) for what role (as storage, primary memory, persistent cache) along with how much among others. For some environments the solution is already, or will be All NVM Arrays (ANA) or All Flash Arrays (AFA) or All SSD Arrays (ASA) while for others the home run will be hybrid based solutions that work for you, fitting in and adapting to your environment as it changes.

    Also keep in mind that a little bit of fast memory including NVM based flash among others in the right place can have a big benefit. My experiences using NVMe to use flash enabled NVMe devices on Windows and Linux systems is that you can see lower response times at higher-IOP’s however also with lower CPU consumption particular when compared to 6Gbps SATA. Likewise bandwidth can easily be pushed to the limits of the NVMe device as well as PCIe interface being used such as x4 or x8 depending on implementation. That is also a warning and something to watch out for comparing apples to oranges in that while NVMe uses PCIe, understand when looking at different results if those are for x4 or x8 or faster PCIe as their mere presence of using PCIe does not mean you are running at full potential.

    Keep an eye on NVMe as a new high-speed, low-latency server storage I/O access protocol for unlocking the full performance capabilities of fast NVM based storage as well as leveraging the multiple cores in today’s fast processors. Does this mean AHCI/SATA or SCSI/SAS are now dead? Some will claim that, however at least near-term for next few years (if not longer), those interfaces will continue to be used where they make sense, as well as where they can save dollars specifically for cost sensitive, high-capacity environments that do not need the full performance of NVMe just yet.

    As for the Flash Memory Summit event in Santa Clara, that was a good day with time well spent in briefings, meetings, demo’s and add hoc discussions on the expo floor.

    Ok, nuff said

    Cheers
    Gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    Supermicro CSE-M14TQC Use your media bay to add 12 Gbps SAS SSD drives to your server

    Storage I/O trends

    Supermicro CSE-M14TQC Use your media bay to add 12 Gbps SAS SSD drives to your server

    Do you have a computer server, workstation or mini-tower PC that needs to have more 2.5" form factor hard disk drive (HDD), solid state device (SSD) or hybrid flash drives added yet no expansion space?

    Do you also want or need the HDD or SSD drive expansion slots to be hot swappable, 6 Gbps SATA3 along with up to 12 Gbps SAS devices?

    Do you have an available 5.25" media bay slot (e.g. where you can add an optional CD or DVD drive) or can you remove your existing CD or DVD drive using USB for software loading?

    Do you need to carry out the above without swapping out your existing server or workstation on a reasonable budget, say around $100 USD plus tax, handling, shipping (your prices may vary)?

    If you need implement the above, then here is a possible solution, or in my case, an real solution.

    Via StorageIOblog Supermicro 4 x 2.5 12Gbps SAS enclosure CSE-M14TQC
    Supermicro CSE-M14TQC with hot swap canister before installing in one of my servers

    In the past I have used a solution from Startech that supports up to 4 x 2.5" 6 Gbps SAS and SATA drives in a 5.25" media bay form factor installing these in my various HP, Dell and Lenovo servers to increase internal storage bays (slots).

    Via Amazon.com StarTech SAS and SATA expansion
    Via Amazon.com StarTech 4 x 2.5" SAS and SATA internal enclosure

    I still use the StarTech device shown (read earlier reviews and experiences here, here and here) above in some of my servers which continue to be great for 6Gbps SAS and SATA 2.5" HDDs and SSDs. However for 12 Gbps SAS devices, I have used other approaches including external 12 Gbps SAS enclosures.

    Recently while talking with the folks over at Servers Direct, I mentioned how I was using StarTech 4 x 2.5" 6Gbps SAS/SATA media bay enclosure as a means of boosting the number of internal drives that could be put into some smaller servers. The Servers Direct folks told me about the Supermicro CSE-M14TQC which after doing some research, I decided to buy one to complement the StarTech 6Gbps enclosures, as well as external 12 Gbps SAS enclosures or other internal options.

    What is the Supermicro CSE-M14TQC?

    The CSE-M14TQC is a 5.25" form factor enclosure that enables four (4) 2.5" hot swappable (if your adapter and OS supports hot swap) 12 Gbps SAS or 6 Gbps SATA devices (HDD and SSD) to fit into the media bay slot normally used by CD/DVD devices in servers or workstations. There is a single Molex male power connector on the rear of the enclosure that can be used to attach to your servers available power using applicable connector adapters. In addition there are four seperate drive connectors (e.g. SATA type connectors) that support up to 12 Gbps SAS per drive which you can attach to your servers motherboard (note SAS devices need a SAS controller), HBA or RAID adapters internal ports.

    Cooling is provided via a rear mounted 12,500 RPM 16 cubic feet per minute fan, each of the four drives are hot swappable (requires operating system or hypervisor support) contained in a small canister (provided with the enclosure). Drives easily mount to the canister via screws that are also supplied as part of the enclosure kit. There is also a drive activity and failure notification LED for the devices. If you do not have any available SAS or SATA ports on your servers motherboard, you can use an available PCIe slot and add a HBA or RAID card for attaching the CSE-M14TQC to the drives. For example, a 12 Gbps SAS (6 Gbps SATA) Avago/LSI RAID card, or a 6 Gbps SAS/SATA RAID card.

    Via Supermicro CSE-M14TQC rear details (4 x SATA and 1 Molex power connector)

    Via StorageIOblog Supermicro 4 x 2.5 rear view CSE-M14TQC 12Gbps SAS enclosure
    CSE-M14TQCrear view before installation

    Via StorageIOblog Supermicro CSE-M14TQC 12Gbps SAS enclosure cabling
    CSE-M14TQC ready for installation with 4 x SATA (12 Gbps SAS) drive connectors and Molex power connector

    Tip: In the case of the Lenovo TS140 that I initially installed the CSE-M14TQC into, there is not a lot of space for installing the drive connectors or Molex power connector to the enclosure. Instead, attach the cables to the CSE-M14TQC as shown above before installing the enclosure into the media bay slot. Simply attach the connectors as shown and feed them through the media bay opening as you install the CSE-M14TQC enclosure. Then attach the drive connectors to your HBA, RAID card or server motherboard and the power connector to your power source inside the server.

    Note and disclaimer, pay attention to your server manufactures power loading and specification along with how much power will be used by the HDD or SSD’s to be installed to avoid electrical power or fire issues due to overloading!

    Via StorageIOblog Supermicro CSE-M14TQC enclosure Lenovo TS140
    CSE-M14TQC installed into Lenovo TS140 empty media bay

    Via StorageIOblog Supermicro CSE-M14TQC drive enclosure Lenovo TS140

    CSE-M14TQC installed with front face plated installed on Lenovo TS140

    Where to read, watch and learn more

    Storage I/O trends

    What this all means and wrap up

    If you have a server that simply needs some extra storage capacity by adding some 2.5" HDDs, or boosting performance with fast SSDs yet do not have any more internal drive slots or expansion bays, leverage your media bay. This applies to smaller environments where you might have one or two servers, as well as for environments where you want or need to create a scale out software defined storage or hyper-converged platform using your own hardware. Another option is that if you have a lab or test environment for VMware vSphere ESXi Windows, Linux, Openstack or other things, this can be a cost-effective approach to adding both storage space capacity as well as performance and leveraging newer 12Gbps SAS technologies.

    For example, create a VMware VSAN cluster using smaller servers such as Lenovo TS140 or equivalent where you can install a couple of 6TB or 8TB higher capacity 3.5" drive in the internal drive bays, then adding a couple of 12 Gbps SAS SSDs along with a couple of 2.5" 2TB (or larger) HDDs along with a RAID card, and high-speed networking card. If VMware VSAN is not your thing, how about setting up a Windows Server 2012 R2 failover cluster including Scale Out File Server (SOFS) with Hyper-V, or perhaps OpenStack or one of many other virtual storage appliances (VSA) or software defined storage, networking or other solutions. Perhaps you need to deploy more storage for a big data Hadoop based analytics system, or cloud or object storage solution? On the other hand, if you simply need to add some storage to your storage or media or gaming server or general purpose server, the CSE-M14TQC can be an option along with other external solutions.

    Ok, nuff said

    Cheers
    Gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved