Cloud conversations: Has Nirvanix shutdown caused cloud confidence concerns?

Storage I/O trends

Cloud conversations: Has Nirvanix shutdown caused cloud confidence concerns?

Recently seven plus year old cloud storage startup Nirvanix announced that they were finally shutting down and that customers should move their data.

nirvanix customer message

Nirvanix has also posted an announcement that they have established an agreement with IBM Softlayer (read about that acquisition here) to help customers migrate to those services as well as to those of Amazon Web Services (AWS), (read more about AWS in this primer here), Google and Microsoft Azure.

Cloud customer concerns?

With Nirvanix shutting down there has been plenty of articles, blog posts, twitter tweets and other conversations asking if Clouds are safe.

Btw, here is a link to my ongoing poll where you can cast your vote on what you think about clouds.

IMHO clouds can be safe if used in safe ways which includes knowing and addressing your concerns, not to mention following best practices, some of which pre-date the cloud era, sometimes by a few decades.

Nirvanix Storm Clouds

More on this in a moment, however lets touch base on Nirvanix and why I said they were finally shutting down.

The reason I say finally shutting down is that there were plenty of early warning signs and storm clouds circling Nirvanix for a few years now.

What I mean by this is that in their seven plus years of being in business, there have been more than a few CEO changes, something that is not unheard of.

Likewise there have been some changes to their business model ranging from selling their software as a service to a solution to hosting among others, again, smart startups and establishes organizations will adapt over time.

Nirvanix also invested heavily in marketing, public relations (PR) and analyst relations (AR) to generate buzz along with gaining endorsements as do most startups to get recognition, followings and investors if not real customers on board.

In the case of Nirvanix, the indicator signs mentioned above also included what seemed like a semi-annual if not annual changing of CEOs, marketing and others tying into business model adjustments.

cloud storage

It was only a year or so ago that if you gauged a company health by the PR and AR news or activity and endorsements you would have believed Nirvanix was about to crush Amazon, Rackspace or many others, perhaps some actually did believe that, followed shortly there after by the abrupt departure of their then CEO and marketing team. Thus just as fast as Nirvanix seemed to be the phoenix rising in stardom their aura started to dim again, which could or should have been a warning sign.

This is not to solo out Nirvanix, however given their penchant for marketing and now what appears to some as a sudden collapse or shutdown, they have also become a lightning rod of sort for clouds in general. Given all the hype and fud around clouds when something does happen the distract ors will be quick to jump or pile on to say things like "See, I told you, clouds are bad".

Meanwhile the cloud cheerleaders may go into denial saying there are no problems or issues with clouds, or they may go back into a committee meeting to create a new stack, standard, API set marketing consortium alliance. ;) On the other hand, there are valid concerns with any technology including clouds that in general there are good implementations that can be used the wrong way, or questionable implementations and selections used in what seem like good ways that can go bad.

This is not to say that clouds in general whether as a service, solution or product on a public, private or hybrid bases are any riskier than traditional hardware, software and services. Instead what this should be is a wake up call for people and organizations to review clouds citing their concerns along with revisiting what to do or can be done about them.

Clouds: Being prepared

Ben Woo of Neuralytix posted this question comment to one of the Linked In groups Collateral Considerations If You Were/Are A Nirvanix Customer which I posted some tips and recommendations including:

1) If you have another copy of your data somewhere else (which you should btw), how will your data at Nirvanix be securely erased, and the storage it resides on be safely (and secure) decommissioned?

2) if you do have another copy of your data elsewhere, how current is it, can you bring it up to date from various sources (including update from Nirvanix while they stay online)?

3) Where will you move your data to short or near term, as well as long-term.

4) What changes will you make to your procurement process for cloud services in the future to protect against situations like this happening to you?

5) As part of your plan for putting data into the cloud, refine your strategy for getting it out, moving it to another service or place as well as having an alternate copy somewhere.

Fwiw any data I put into a cloud service there is also another copy somewhere else which even though there is a cost, there is a benefit, The benefit is that ability to decide which to use if needed, as well as having a backup/spare copy.

Storage I/O trends

Cloud Concerns and Confidence

As part of cloud procurement as services or products, the same proper due diligence should occur as if you were buying traditional hardware, software, networking or services. That includes checking out not only the technology, also the companies financial, business records, customer references (both good and not so good or bad ones) to gain confidence. Part of gaining that confidence also involves addressing ahead of time how you will get your data out of or back from that services if needed.

Keep in mind that if your data is very important, are you going to keep it in just one place? For example I have data backed-up as well as archived to cloud providers, however I also have local copies either on-site or off.

Likewise there is data I have local kept at alternate locations including cloud. Sure that is costly, however by not treating all of my data and applications the same, I’m able to balance those costs out, plus use cost advantages of different services as well as on-site to be effective. I may be spending no less on data protection, in fact I’m actually spending a bit more, however I also have more copies and versions of important data and in multiple locations. Data that is not changing often does not get protected as often, however there are multiple copies to meet different needs or threat risks.

Storage I/O trends

Don’t be scared of clouds, be prepared

While some of the other smaller cloud storage vendors will see some new customers, I suspect that near to mid-term, it will be the larger, more established and well funded providers that gain the most from this current situation. Granted some customers are looking for alternatives to the mega cloud providers such as Amazon, Google, HP, IBM, Microsoft and Rackspace among others, however there are a long list of others some of which who are not so well-known that should be such as Centurylink/Savvis, Verizon/Terremark, Sungurd, Dimension Data, Peak, Bluehost, Carbonite, Mozy (owned by EMC), Xerox ACS, Evault (owned by Seagate) not to mention a long list of many others.

Something to be aware of as part of doing your due diligence is determining who or what actually powers a particular cloud service. The larger providers such as Rackspace, Amazon, Microsoft, HP among others have their own infrastructure while some of the smaller service providers may in fact use one of the larger (or even smaller) providers as their real back-end. Hence understanding who is behind a particular cloud service is important to help decide the viability and stability of who it is you are subscribed to or working with.

Something that I have said for the past couple of years and a theme of my book Cloud and Virtual Data Storage Networking (CRC Taylor & Francis) is do not be scared of clouds, however be ready, do your homework.

This also means having cloud concerns is a good thing, again don’t be scared, however find what those concerns are along with if they are major or minor. From that list you can start to decide how or if they can be worked around, as well as be prepared ahead of time should you either need all of your cloud data back quickly, or should that service become un-available.

Also when it comes to clouds, look beyond lowest cost or for free, likewise if something sounds too good to be true, perhaps it is. Instead look for value or how much do you get per what you spend including confidence in the service, service level agreements (SLA), security, and other items.

Keep in mind, only you can prevent data loss either on-site or in the cloud, granted it is a shared responsibility (With a poll).

Additional related cloud conversation items:
Cloud conversations: AWS EBS Optimized Instances
Poll: What Do You Think of IT Clouds?
Cloud conversations: Gaining cloud confidence from insights into AWS outages
Cloud conversations: confidence, certainty and confidentiality
Cloud conversation, Thanks Gartner for saying what has been said
Cloud conversations: AWS EBS, Glacier and S3 overview (Part III)
Cloud conversations: Gaining cloud confidence from insights into AWS outages (Part II)
Don’t Let Clouds Scare You – Be Prepared
Everything Is Not Equal in the Datacenter, Part 3
Amazon cloud storage options enhanced with Glacier
What do VARs and Clouds as well as MSPs have in common?
How many degrees separate you and your information?

Ok, nuff said.

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

EMC New VNX MCx doing more storage I/O work vs. just being more

Storage I/O trends

It’s not how much you have, its how storage I/O work gets done that matters

Following last weeks VMworld event in San Francisco where among other announcements including this one around Virtual SAN (VSAN) along with Software Defined Storage (SDS), EMC today made several announcements.

Today’s EMC announcements include:

  • The new VNX MCx (Multi Core optimized) family of storage systems
  • VSPEX proven infrastructure portfolio enhancements
  • Availability of ViPR Software Defined Storage (SDS) platform (read more from earlier posts here, here and here)
  • Statement of direction preview of Project Nile for elastic cloud storage platform
  • XtremSW server cache software version 2.0 with enhanced management and support for VMware, AIX and Oracle RAC

EMC ViPREMC XtremSW cache software

Summary of the new EMC VNX MCx storage systems include:

  • More processor cores, PCIe Gen 3 (faster bus), front-end and back-end IO ports, DRAM and flash cache (as well as drives)
  • More 6Gb/s SAS back-end ports to use more storage devices (SAS and SATA flash SSD, fast HDD and high-capacity HDD)
  • MCx – Multi-core optimized with software rewritten to make use of threads and resources vs. simply using more sockets and cores at higher clock rates
  • Data Footprint Reduction (DFR) capabilities including block compression and dedupe, file dedupe and thin provisioning
  • Virtual storage pools that include flash SSD, fast HDD and high-capacity HDD
  • Block (iSCSI, FC and FCoE) and NAS file (NFS, pNFS, CIFS) front-end access with object access via Atmos Virtual Edition (VE) and ViPR
  • Entry level pricing starting at below $10,000 USD

EMC VNX MCx systems

What is this MCx stuff, is it just more hardware?

While there is more hardware that can be used in different configurations, the key or core (pun intended) around MCx is that EMC has taken the time and invested in reworking the internal software of the VNX that has its roots going back to the Data General CLARRiON EMC acquired. This is similar to an effort EMC made a few years back when it overhauled what is now known as the VMAX from the Symmetric into the DMX. That effort expanded from a platform or processor port to re-architecting and software optimizing (rewrite portions) to leverage new and emerging hardware capabilities more effectively.

EMC VNX MCx

With MCx EMC is doing something similar in that core portions of the VNX software have been re-architected and written to take advantage of more threads and cores being available to do work more effectively. This is not all that different from what occurs (or should) with upper level applications that eventually get rewritten to leverage underlying new capabilities to do more work faster and leverage technologies in a more cost-effective way. MCx also leverages flash as a primary medium with data than being moved (256MB chunks) down into lower tiers of storage (SSD and HDD drives).

Storage I/O trends

ENC VNX has had in the past FLASH Cache which enables SSD drives to be used as an extension of main cache as well as using drive targets. Thus while MCx can and does leverage more and faster core as would most any software, it is also able to leverage those cores and threads in a more effective way. After all, it’s not just how many processors, sockets, cores, threads, L1/L2 cache, DRAM, flash SSD and other resources, its how effective you use them. Also keep in mind that a bit of flash in the right place used effectively can go a long way vs. having a lot of cache in the wrong place or not used optimally that will end up costing a lot of cash.

Moving forward this means that EMC should be able to further refine and optimize other portions of the VNX software not yet updated to make further benefit of new hardware platforms and capabilities.

Does this mean EMC is catching up with newer vendors?

Similar to more of something is not always better, its how those items are used that matters, just because something is new does not mean its better or faster. That will manifest itself when they are demonstrated and performance results shown. However key is showing the performance across different workloads that have relevance to your needs and that convey metrics that matter with context.

Storage I/O trends

Context matters including type and size of work being done, number of transactions, IOPs, files or videos served, pages processed or items rendered per unit of time, or response time and latency (aka wait or think time), along with others. Thus some newer systems may be faster on paper, powerpoint, WebEx, You tube or via some benchmarks, however what is the context and how do they compare to others on an apples to apples basis.

What are some other enhancements or features?

Leveraging of FAST VP (Fully Automated Storage Tiering for Virtual Pools) with improved MCx software

Increases the effectiveness of available hardware resources (processors, cores, DRAM, flash, drives, ports)

Active active LUNs accessible by both controllers as well as legacy AULA support

Data sheets and other material for the new VNX MCx storage systems can be found here, with software options and bundles here, and general speeds and feeds here.

Learn more here at the EMC VNX MCx storage system landing page and compare VNX systems here.

What does then new VNX MCx family look like?

EMC VNX MCx family image

Is VNX MCx all about supporting VMware?

Interesting that if you read behind the lines, listen closely to the conversations, ask the right questions you will realize that while VMware is an important workload or environment to support, it is not the only one targeted for VNX. Likewise if you listen and look beyond what is normally amplified in various conversations you will find that systems such as VNX are being deployed as back-end storage in cloud (public, private, hybrid) environments for use with technologies such as OpenStack or object based solutions (visit www.objectstoragecenter.com for more on object storage systems and access)..

There is a common myth that the cloud and service providers all use white box commodity hardware including JBOD for their systems which some do, however some are also using systems such as VNX among others. In some of these scenarios the VNX type systems are or will be deployed in large numbers essentially consolidating the functions of what had been done by even larger number of JBOD based systems. This is where some of you will have a DejaVu or back to the future moment from the mid 90s when there was an industry movement to combine all the DAS and JBOD into larger storage systems. Don’t worry if you are not yet reading about this trend in your favorite industry rag or analyst briefing notes, however ask or look around and you might be surprised at what is occurring, granted it might be another year or two before you read about it (just saying ;).

Storage I/O trends

What that means is that VNX MCx is also well positioned for working with ViPR or Atmos Virtual Edition among other cloud and object storage stacks. VNX MCx is also well positioned for its new low-cost of entry for general purpose workloads and applications ranging from file sharing, email, web, database along with demanding high performance, low latency with large amounts of flash SSD. In addition to being used for general purpose storage, VNX MCx will also complement data protection solutions for backup/restore, BC, DR and archiving such as Data Domain, Avamar and Networker among others. Speaking of server virtualization, EMC also has tools for working with Hyper-V, Xen and KVM in addition to VMware.

If there is an all flash VNX MCx doesn’t that compete with XtremIO?

Yes there are all flash VNX MCx just as there have been all flash VNX before, however these will be positioned for different use case scenarios by EMC and their partners to avoid competing head to head with XtremIO. Thus EMC will need to be diligent in being very clear to its own sales and marketing forces as well as those of partners and customers of what to use when, where, why and how.

General thoughts and closing comments

The VNX MCx is a good set of enhancements by EMC and an example of how it’s not as important of how more you have, rather how you can use it to be more effective.

Ok, nuff said (fow now).

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Fall 2013 Dutch cloud, virtual and storage I/O seminars

Storage I/O trends

Fall 2013 Dutch cloud, virtual and storage I/O seminars

It is that time of the year again when StorageIO will be presenting a series of seminar workshops in the Netherlands on cloud, virtual and data storage networking technologies, trends along with best practice techniques.

Brouwer Storage

StorageIO partners with the independent firm Brouwer Storage Consultancy of Holland who organizes these sessions. These sessions will also mark Brouwer Storage Consultancy celebrating ten years in business along with a long partnership with StorageIO.

Server Storage I/O Backup and Data Protection Cloud and Virtual

The fall 2013 Dutch seminars include coverage of storage I/O networking data protection and related trends topics for cloud and virtual environments. Click on the following links or images to view an abstract of the three sessions including what you will learn, who they are for, buzzwords, themes, topics and technologies that will covered.

Modernizing Data Protection
Moving Beyond Backup and Restore

Storage Industry Trends
What’s News, What’s The Buzz and Hype

Storage Decision Making
Acquisition, Deployment, Day to Day Management

Modern Data Protection
Modern Data Protection
Modern Data Protection
September 30 & October 1
October 2 2013
October 3 and 4 2013

All seminar workshop seminars are presented in a vendor technology neutral including (e.g. these are not vendor marketing sales presentations) providing independent perspectives on industry trends, who is doing what, benefits, caveats of various approaches to addressing data infrastructure and storage challenges. View posts about earlier events here and here.

Storage I/O trends

As part of theme of being vendor and technology neutral, the workshop seminars are held off-site at hotel venues in Nijkerk Netherlands so no need to worry about the sales teams coming in to sell you something during the breaks or lunch which are provided. There are also opportunities throughout the workshops for engagement, discussion and interaction with other attendees that includes your peers from various commercial, government and service providers among others.

Learn more and register for these events by visiting the Brouwer Storage Consultancy website page (here) and calling them at +31-33-246-6825 or via email info@brouwerconsultancy.com.

Storage I/O events

View other upcoming and recent StorageIO activities including live in-person, online web and recorded activities on our events page here, as well as check out our commentary and industry trends perspectives in the news here.

Bitter ballen
Ok, nuff said, I’m already hungry for bitter ballen (see above)!

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

VMworld 2013 Vmware, server, storage I/O and networking update (Day 1)

Storage I/O trends

Congratulations to VMware on 10 years of VMworld!

With the largest installment yet of a VMworld in terms of attendance, there were also many announcements today (e.g. Monday) and many more slated for out the week. Here are a synopsis of some of those announcements.

Software Defined Data Center (SDDC) and Software Defined Networks (SDN)

VMware made a series of announcements today that set the stage for many others. Not surprisingly, these involved SDDC, SDN, SDS, vSphere 5.5 and other management tool enhancements, or the other SDM (Software Defined Management).

VMworld image

Here is a synopsis of what was announced by VMware.

VMware NSX (SDN) combines Nicira NVPTM along with vCloud Network and Security
VMware Virtual SAN (VSAN) not to be confused with virtual storage appliances (VSAs)
VMware vCloud Suite 5.5
VMware vSphere 5.5 (includes support for new Intel Xeon and Atom processors)
VMware vSphere App HA
VMware vSphere Flash Read Cache software
VMware vSphere Big Data Extensions
VMware vCloud Automation Center
VMware vCloud

Note that while these were announced today, some will be in public beta soon and general availability over the next few months or quarters (learn more here including pricing and availability). More on these and other enhancements in future posts. However for now check out what Duncan Epping (@DuncanYB) of VMware has to say over at his Yellowbook site here, here and here.

buzzword bingo
Buzzword Bingo

Additional VMworld Software Defined Announcements

Dell did some announcements as well for cloud and virtual environments in support of VMware from networking to servers, hardware and software. With all the recent acquisitions by Dell including Quest where they picked up Foglight management tools, along with vRanger, Bakbone and others, Dell has amassed an interesting portfolio. On the hardware front, check out the VRTX shared server infrastructure, I want one for my VMware environment, now I just need to justify one (to myself). Speaking of Dell, if you are at VMworld on Tuesday August 27 around 1:30PM stop by the Dell booth where I will be presenting including announcing some new things (stay tuned for more on that soon).

HP had some announcements today. HP jumped into the SDDC and SDN with some Software Defined Marketing (SDM) and Software Defined Announcements (SDA) in addition to using the Unified Data Center theme. Today’s announcements by HP were focused more around SDN and VMware NSX along with the HP Virtual Application Networks SDN Controller and VMware networking.

NetApp (Both #1417) announced more integration between their Data ONTAP based solutions and VMware vSphere, Horizon Suite, vCenter, vCloud Automation Center and vCenter Log Insight under the them theme of SDDC and SDS. As part of the enhancement, NetApp announced Virtual Storage Console (VSC 5.0) for end-to-end storage management and software in VMware environments. In addition, integration with VMware vCenter Server 5.5. Not to be left out of the SSD flash dash NetApp also released a new V1.2 of their FlashAccel software for vSphere 5.0 and 5.1.

Storage I/O trends

Cloud, Virtualization and DCIM

Here is one that you probably have not seen or heard much about elsewhere, which is Nlyte announcement of their V1.5 Virtualization Connector for Data Center Infrastructure Management (DCIM). Keep in mind that DCIM is more than facilities, power, and cooling related themes, particular in virtual data centers. Thus, some of the DCIM vendors, as well as others are moving into the converged DCIM space that spans server, storage, networking, hardware, software and facilities topics.

Interested in or want to know more about DCIM, and then check out these items:
Data Center Infrastructure Management (DCIM) and Infrastructure Resource Management (IRM)
Data Center Tools Can Streamline Computing Resources
Considerations for Asset Tracking and DCIM

Data Protection including Backup/Restore, BC, DR and Archiving

Quantum announced that Commvault has added support to use the Lattus object storage based solution as an archive target platform. You can learn more about object storage (access and architectures) here at www.objectstoragecenter.com .

PHD Virtual did a couple of data protection (backup/restore , BC, DR ) related announcements (here and here ). Speaking of backup/restore and data protection, if you are at VMworld on Tuesday August 27th around 1:30PM, stop by the Dell booth where I will be presenting, and stay tuned for more info on some things we are going to announce at that time.

In case you missed it, Imation who bought Nexsan earlier this year last week announced their new unified NST6000 series of storage systems. The NST6000 storage solutions support Fibre Channel (FC) and iSCSI for block along with NFS, CIFS/SMB and FTP for file access from virtual and physical servers.

Emulex announced some new 16Gb Fibre Channel (e.g. 16GFC) aka what Brocade wants you to refer to as Gen 5 converged and multi-port adapters. I wonder how many still remember or would rather forget how many ASIC and adapter gens from various vendors occurred just at 1Gb Fibre Channel?

Storage I/O trends

Caching and flash SSD

Proximal announced V2.0 of AutoCache 2.0 with role based administration, multi-hypervisor support (a growing trend beyond just a VMware focus) and more vCenter/vSphere integration. This is on the heels of last week’s FusionIO powered IBM Flash Cache Storage Accelerator (FCSA ) announcement, along with others such as EMC , Infinio, Intel, NetApp, Pernix, SanDisk (Flashsoft) to name a few.

Mellanox (VMworld booth #2005), you know, the Infinaband folks who also have some Ethernet (which also includes Fibre Channel over Ethernet) technology did a series of announcements today with various PCIe nand flash SSD card vendors. The common theme with the various vendors including Micron (Booth #1635) and LSI is in support of VMware virtual servers using iSER or iSCSI over RDMA (Remote Direct Memory Access). RDMA or server to server direct memory access (what some of you might know as remote memory mapped IO or channel to channel C2C) enables very fast low server to server data movement such as in a VMware cluster. Check out Mellanox and their 40Gb Ethernet along with Infinaband among other solutions if you are into server, storage i/o and general networking, along with their partners. Need or want to learn more about networking with your servers and storage check out Cloud and Virtual Data Storage Networking and Resilient Storage Networking .

Rest assured there are many more announcements and updates to come this week, and in the weeks to follow…

Ok, nuff said (for now).

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Server and Storage IO Memory: DRAM and nand flash

Storage I/O trends

DRAM, DIMM, DDR3, nand flash memory, SSD, stating what’s often assumed

Often what’s assumed is not always the case. For example in along with around server, storage and IO networking circles including virtual as well as cloud environments terms such as nand (Negated AND or NOT And) flash memory aka (Solid State Device or SSD), DRAM (Dynamic Random Access Memory), DDR3 (Double Data Rate 3) not to mention DIMM (Dual Inline Memory Module) get tossed around with the assumption everybody must know what they mean.

On the other hand, I find plenty of people who are not sure what those among other terms or things are, sometimes they are even embarrassed to ask, particular if they are a self-proclaimed expert.

So for those who need a refresh or primer, here you go, an excerpt from Chapter 7 (Servers – Physical, Virtual and Software) from my book "The Green and Virtual Data Center" (CRC Press) available at Amazon.com and other global venues in print and ebook formats.

7.2.2 Memory

Computers rely on some form of memory ranging from internal registers, local on-board processor Level 1 (L1) and Level 2 (L2) caches, random accessible memory (RAM), non-volatile RAM (NVRAM) or nand Flash (SSD) along with external disk storage. Memory, which includes external disk storage, is used for storing operating system software along with associated tools or utilities, application programs and data. Main memory or RAM, also known as dynamic RAM (DRAM) chips, is packaged in different ways with a common form being dual inline memory modules (DIMMs) for notebook or laptop, desktop PC and servers.

RAM main memory on a server is the fastest form of memory, second only to internal processor or chip based registers, L1, L2 or local memory. RAM and processor based memories are volatile and non-persistent in that when power is removed, the contents of memory are lost. As a result, some form of persistent memory is needed to keep programs and data when power is removed. Read only memory (ROM) and NVRAM are both persistent forms of memory in that their contents are not lost when power is removed. The amount of RAM that can be installed into a server will vary with specific architecture implementation and operating software being used. In addition to memory capacity and packaging format, the speed of memory is also important to be able to move data and programs quickly to avoid internal bottlenecks. Memory bandwidth performance increases with the width of the memory bus in bits and frequency in MHz. For example, moving 8 bytes on a 64 bit buss in parallel at the same time at 100MHz provides a theoretical 800MByte/sec speed.

To improve availability and increase the level of persistence, some servers include battery backed up RAM or cache to protect data in the event of a power loss. Another technique to protect memory data on some servers is memory mirroring where twice the amount of memory is installed and divided into two groups. Each group of memory has a copy of data being stored so that in the event of a memory failure beyond those correctable with standard parity and error correction code (ECC) no data is lost. In addition to being fast, RAM based memories are also more expensive and used in smaller quantities compared to external persistent memories such as magnetic hard disk drives, magnetic tape or optical based memory medias.

Memory diagram
Memory and Storage Pyramid

The above shows a tiered memory model that may look familiar as the bottom part is often expanded to show tiered storage. At the top of the memory pyramid is high-speed processor memory followed by RAM, ROM, NVRAM and FLASH along with many forms of external memory commonly called storage. More detail about tiered storage is covered in chapter 8 (Data Storage – Data Storage – Disk, Tape, Optical, and Memory). In addition to being slower and lower cost than RAM based memories, disk storage along with NVRAM and FLASH based memory devices are also persistent.

By being persistent, when power is removed, data is retained on the storage or memory device. Also shown in the above figure is that on a relative basis, less energy is used for power storage or memory at the bottom of the pyramid than for upper levels where performance increases. From a PCFE (Power, Cooling, Floor space, Economic) perspective, balancing memory and storage performance, availability, capacity and energy to a given function, quality of service and service level objective for a given cost needs to be kept in perspective and not considering simply the lowest cost for the most amount of memory or storage. In addition to gauging memory on capacity, other metrics include percent used, operating system page faults and page read/write operations along with memory swap activity as well memory errors.

Base 2 versus base 10 numbering systems can account for some storage capacity that appears to “missing” when real storage is compared to what is expected to be seen. Disk drive manufacturers use base 10 (decimal) to count bytes of data while memory chip, server and operating system vendors typically use base 2 (binary) to count bytes of data. This has led to confusion when comparing a disk drive base 10 GB with a chip memory base 2 GB of memory capacity, such as 1,000,000,000 (10^9) bytes versus 1,073,741,824 (2^30) bytes. Nomenclature based on the International System of Units uses MiB, GiB and TiB to denote million, billion and trillion bytes for base 2 numbering with base 10 using MB, TB and GB . Most vendors do document how many bytes, sometimes in both base 2 and base 10, as well as the number of 512 byte sectors supported on their storage devices and storage systems, though it might be in the small print.

Related more reading:
How much storage performance do you want vs. need?
Can RAID extend the life of nand flash SSD?
Can we get a side of context with them IOPS and other storage metrics?
SSD & Real Estate: Location, Location, Location
What is the best kind of IO? The one you do not have to do
SSD, flash and DRAM, DejaVu or something new?

Ok, nuff said (for now).

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier).

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

As the platters spin, HDD’s for cloud, virtual and traditional storage environments

HDDs for cloud, virtual and traditional storage environments

Storage I/O trends

Updated 1/23/2018

As the platters spin is a follow-up to a recent series of posts on Hard Disk Drives (HDD’s) along with some posts about How Many IOPS HDD’s can do.

HDD and storage trends and directions include among others

HDD’s will continue to be declared dead into the next decade, just as they have been for over a decade, meanwhile they are being enhanced, continued to be used in evolving roles.

hdd and ssd

SSD will continue to coexist with HDD, either as separate or converged HHDD’s. Where, where and how they are used will also continue to evolve. High IO (IOPS) or low latency activity will continue to move to some form of nand flash SSD (PCM around the corner), while storage capacity including some of which has been on tape stays on disk. Instead of more HDD capacity in a server, it moves to a SAN or NAS or to a cloud or service provider. This includes for backup/restore, BC, DR, archive and online reference or what some call active archives.

The need for storage spindle speed and more

The need for faster revolutions per minute (RPM’s) performance of drives (e.g. platter spin speed) is being replaced by SSD and more robust smaller form factor (SFF) drives. For example, some of today’s 2.5” SFF 10,000 RPM (e.g. 10K) SAS HDD’s can do as well or better than their larger 3.5” 15K predecessors can for both IOPS and bandwidth. This is also an example where the RPM speed of a drive may not be the only determination for performance as it has been in the past.


Performance comparison of four different drive types, click to view larger image.

The need for storage space capacity and areal density

In terms of storage enhancements, watch for the appearance of Shingled Magnetic Recording (SMR) enabled HDD’s to help further boost the space capacity in the same footprint. Using SMR HDD manufactures can put more bits (e.g. areal density) into the same physical space on a platter.


Traditional vs. SMR to increase storage areal density capacity

The generic idea with SMR is to increase areal density (how many bits can be safely stored per square inch) of data placed on spinning disk platter media. In the above image on the left is a representative example of how traditional magnetic disk media lays down tracks next to each other. With traditional magnetic recording approaches, the tracks are placed as close together as possible for the write heads to safely write data.

With new recording formats such as SMR along with improvements to read/write heads, the tracks can be more closely grouped together in an overlapping way. This overlapping way (used in a generic sense) is like how the shingles on a roof overlap, hence Shingled Magnetic Recording. Other magnetic recording or storage enhancements in the works include Heat Assisted Magnetic Recording (HAMR) and Helium filed drives. Thus, there is still plenty of bits and bytes room for growth in HDD’s well into the next decade to co-exist and complement SSD’s.

DIF and AF (Advanced Format), or software defining the drives

Another evolving storage feature that ties into HDD’s is Data Integrity Feature (DIF) that has a couple of different types. Depending on which type of DIF (0, 1, 2, and 3) is used; there can be added data integrity checks from the application to the storage medium or drive beyond normal functionality. Here is something to keep in mind, as there are different types or levels of DIF, when somebody says they support or need DIF, ask them which type or level as well as why.

Are you familiar with Advanced Format (AF)? If not you should be. Traditionally outside of special formats for some operating systems or controllers, that standard open system data storage block, page or sector has been 512 bytes. This has served well in the past, however; with the advent of TByte and larger sized drives, a new mechanism is needed. The need is to support both larger average data allocation sizes from operating systems and storage systems, as well as to cut the overhead of managing all the small sectors. Operating systems and file systems have added new partitioning features such as GUID Partition Table (GPT) to support 1TB and larger SSD, HDD and storage system LUN’s.

These enhancements are enabling larger devices to be used in place of traditional Master Boot Record (MBR) or other operating system partition and allocation schemes. The next step, however, is to teach operating systems, file systems, and hypervisors along with their associated tools or drives how to work with 4,096 byte or 4 Kbyte sectors. The advantage will be to cut the overhead of tracking all of those smaller sectors or file system extents and clusters. Today many HDD’s support AF however by default may have 512-byte emulation mode enabled due to lack of operating system or other support.

Intelligent Power Management, moving beyond drive spin down

Intelligent Power Management (IPM) is a collection of techniques that can be applied to vary the amount of energy consumed by a drive, controller or processor to do its work. These include in the case of an HDD slowing the spin rate of platters, however, keep in mind that mass in motion tends to stay in motion. This means that HDD’s once up and spinning do not need as much relative power as they function like a flywheel. Where their power draw comes in is during reading and write, in part to the movement of reading/write heads, however also for running the processors and electronics that control the device. Another big power consumer is when drives spin up, thus if they can be kept moving, however at a lower rate, along with disabling energy used by read/write heads and their electronics, you can see a drop in power consumption. Btw, a current generation 3.5” 4TB 6Gbs SATA HDD consumes about 6-7 watts of power while in active use, or less when in idle mode. Likewise a current generation high performance 2.5” 1.2TB HDD consumes about 4.8 watts of energy, a far cry from the 12-16 plus watts of energy some use as HDD fud.

Hybrid Hard Disk Drives (HHDD) and Solid State Hybrid Drives (SSDHD)

Hybrid HDD’s (HHDD’s) also known as Solid State Hybrid Drives (SSHD) have been around for a while and if you have read my earlier posts, you know that I have been a user and fan of them for several years. However one of the drawbacks of the HHDD’s has been lack of write acceleration, (e.g. they only optimize for reads) with some models. Current and emerging HDDD’s are appearing with a mix of nand flash SLC (used in earlier versions), MLC and eMLC along with DRAM while enabling write optimization. There are also more drive options available as HHDD’s from different manufactures both for desktop and enterprise class scenarios.

The challenge with HHDD’s is that many vendors either do not understand how they fit and compliment their tiering or storage management software tools or simply do not see the value proposition. I have had vendors and others tell me that the HHDD’s don’t make sense as they are too simple, how can they be a fit without requiring tiering software, controllers, SSD and HDD’s to be viable?

Storage I/O trends

I also see a trend similar to when the desktop high-capacity SATA drives appeared for enterprise-class storage systems in the early 2000s. Some of the same people did not see where or how a desktop class product or technology could ever be used in an enterprise solution.

Hmm, hey wait a minute, I seem to recall similar thinking when SCSI drives appeared in the early 90s, funny how some things do not change, DejaVu anybody?

Does that mean HHDD’s will be used everywhere?

Not necessarily, however, there will be places where they make sense, others where either an HDD or SSD will be more practical.

Networking with your server and storage

Drive native interfaces near-term will remain as 6Gbs (going to 12Gbs) SAS and SATA with some FC (you might still find a parallel SCSI drive out there). Likewise, with bridges or interface cards, those drives may appear as USB or something else.

What about SCSI over PCIe, will that catch on as a drive interface? Tough to say however I am sure we can find some people who will gladly try to convince you of that. FC based drives operating at 4Gbs FC (4GFC) are still being used for some environments however most activity is shifting over to SAS and SATA. SAS and SATA are switching over from 3Gbs to 6Gbs with 12Gbs SAS on the roadmaps.

So which drive is best for you?

That depends; do you need bandwidth or IOPS, low latency or high capacity, small low profile thin form factor or feature functions? Do you need a hybrid or all SSD or a self-encrypting device (SED) also known as Instant Secure Erase (ISE), these are among your various options.

Disk drives

Why the storage diversity?

Simple, some are legacy soon to be replaced and disposed of while others are newer. I also have a collection so to speak that get used for various testing, research, learning and trying things out. Click here and here to read about some of the ways I use various drives in my VMware environment including creating Raw Device Mapped (RDM) local SAS and SATA devices.

Other capabilities and functionality existing or being added to HDD’s include RAID and data copy assist; securely erase, self-encrypting, vibration dampening among other abilities for supporting dense data environments.

Where To Learn More

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Do not judge a drive only by its interface, space capacity, cost or RPM alone. Look under the cover a bit to see what is inside in terms of functionality, performance, and reliability among other options to fit your needs. After all, in the data center or information factory not everything is the same.

From a marketing and fun to talk about new technology perspective, HDD’s might be dead for some. The reality is that they are very much alive in physical, virtual and cloud environments, granted their role is changing.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Seagate provides proof of life: Enterprise HDD enhancements

Storage I/O trends

Proof of life: Enterprise Hard Disk Drives (HDD’s) are enhanced

Last week while hard disk drive (HDD) competitor Western Digital (WD) was announcing yet another (Velobit) in a string of acquisitions ( e.g. earlier included Stec, Arkeia) and investments (Skyera), Seagate announced new enterprise class HDD’s to their portfolio. Note that it was only two years ago that WD acquired Hitachi Global Storage Technologies (HGST) the disk drive manufacturing business of Hitachi Ltd. (not to be confused with HDS).

Seagate

Similar to WD expanding their presence in the growing nand flash SSD market, Seagate also in May of this year extended their existing enterprise class SSD portfolio. These enhancements included new drives with 12Gbs SAS interface, along with a partnership (and investment) with PCIe flash card startup vendor Virident. Other PCIe flash SSD card vendors (manufacturers and OEMs) include Cisco, Dell, EMC, FusionIO, HP, IBM, LSI, Micron, NetApp and Oracle among others.

These new Seagate enterprise class HDD’s are designed for use in cloud and traditional data center servers and storage systems. A month or two ago Seagate also announced new ultra-thin (5mm) client (aka desktop) class HDD’s along with a 3.5 inch 4TB video optimized HDD. The video optimized HDD’s are intended for Digital Video Recorders (DVR’s), Set Top Boxes (STB’s) or other similar applications.

What was announced?

Specifically what Seagate announced were two enterprise class drives, one for performance (e.g. 1.2TB 10K) and the other for space capacity (e.g. 4TB).

 

Enterprise High Performance 10K.7 (aka formerly known as Savio)

Enterprise Terascale (aka formerly known as constellation)

Class/category

Enterprise / High Performance

Enterprise High Capacity

Form factor

2.5” Small Form Factor (SFF)

3.5”

Interface

6Gbs SAS

6Gbs SATA

Space capacity

1,200GB (1.2TB)

4TB

RPM speed

10,000

5,900

Average seek

2.9 ms

12 ms

DRAM cache

64MB

64MB

Power idle / operating

4.8 watts

5.49 / 6.49 watts

Intelligent Power Management (IPM)

Yes – Seagate PowerChoice

Yes – Seagate PowerChoice

Warranty

Limited 5 years

Limited 3 years

Instant Secure Erase (ISE)

Yes

Optional

Other features

RAID Rebuild assist, Self-Encrypting Device (SED)

Advanced Format (AF) 4K block in addition to standard 512 byte sectors

Use cases

Replace earlier generation 3.5” 15K SAS and Fibre Channel HDD’s for higher performance applications including file systems, databases where SSD are not practical fit.

Backup and data protection, replication, copy operations for erasure coding and data dispersal, active in dormant archives, unstructured NAS, big data, data warehouse, cloud and object storage.

Note the Seagate Terascale has a disk rotation speed of 5,900 (5.9K RPM) which is not a typo given the more traditional 5.4K RPM drives. This slight increase in performance from 5.4K to 5.9K should give when combined with other enhancements (e.g. firmware, electronics) to boost performance for higher capacity workloads.

Let us watch for some performance numbers to be published by Seagate or others. Note that I have not had a chance to try these new drives yet, however look forward to getting my hands on them (among others) sometime in the future for a test drive to add to the growing list found here (hey Seagate and WD, that’s a hint ;) ).

What this all means?

Storage I/O trends

Wait, weren’t HDD’s supposed to be dead or dying?

Some people just like new and emerging things and thus will declare anything existing or that they have lost interest in (or their jobs need it) as old, boring or dead.

For example if you listen to some, they may say nand flash SSD are also dead or dying. For what it is worth, imho nand flash-based SSDs still have a bright future in front of them even with new technologies emerging as they will take time to mature (read more here or listen here).

However, the reality is that for at least the next decade, like them or not, HDD’s will continue to play a role that is also evolving. Thus, these and other improvements with HDD’s will be needed until current nand flash or emerging PCM (Phase Change Memory) among other forms of SSD are capable of picking up all the storage workloads in a cost-effective way.

Btw, yes, I am also a fan and user of nand flash-based SSD’s, in addition to HDD’s and see roles for both as being viable complementing each other for traditional, virtual and cloud environments.

In short, HDD’s will keep spinning (pun intended) for some time granted their roles and usage will also evolve similar to that of tape summit resources.

Storage I/O trends

With this announcement by Seagate along with other enhancements from WD show that the HDD will not only see its 60th birthday, (and here), it will probably also easily see its 70th and not from the comfort of a computer museum. The reason is that there is yet another wave of HDD improvements just around the corner including Shingled Magnetic Recording (SMR) (more info here) along with Heat Assisted Magnetic Recording (HAMR) among others. Watch for more on HAMR and SMR in future posts. With these and other enhancements, we should be able to see a return to the rapid density improvements with HDD’s observed during the mid to late 2000 era when Perpendicular recording became available.

What is up with this ISE stuff is that the same as what Xiotech (e.g. XIO) had?

Is this the same technology that Xiotech (now Xio) referred to the ISE the answer is no. This Seagate ISE is for fast secure erase of data on disk. The benefit of Instant Secure Erase (ISE) is to cut from hours or days the time required to erase a drive for secure disposal to seconds (or less). For those environments that already factor drives erase time as part of those overall costs, this can increase the useful time in service to help improve TCO and ROI.

Wait a minute, aren’t slower RPM’s supposed to be lower performance?

Some of you might be wondering or asking the question of wait, how can a 10,000 revolution per minute (10K RPM) HDD be considered fast vs. a 15K HDD, let alone SSD?

Storage I/O trends

There is a trend occurring with HDD’s that the old rules of IOPS or performance being tied directly to the size and rotational speed (RPM’s) of drives, along with their interfaces. This comes down to being careful to judge a book or in this case a drive by its cover. While RPM’s do have an impact on performance, new generation drives at 10K such as some 2.5” models are delivering performance equal to or better than earlier generation 3.5” 15K device’s.

Likewise, there are similar improvements with 5.4K devices vs. previous generation 7.2K models. As you will see in some of the results found here, not all the old rules of thumbs when it comes to drive performance are still valid. Likewise, keep those metrics that matter in the proper context.


Click on above image to see various performance results

For example as seen in the results (above), the more DRAM or DDR cache on the drives has a positive impact on sequential reads which can be good news if that is what your applications need. Thus, do your homework and avoid judging a device simply by its RPM, interface or form factor.

Other considerations, temperature and vibration

Another consideration is that with increased density of more drives being placed in a given amount of space, some of which may not have the best climate controls, humidity and vibration are concerns. Thus, the importance of drives having vibration dampening or safeguards to keep up performance are important. Likewise, even though drive heads and platters are sealed, there are also considerations that need to be taken care of for humidity in data center or cloud service providers in hot environments near the equator.

If this is not connecting with you, think about how close parts of Southeast Asia and the India subcontinent are to the equator along with the rapid growth and low-cost focus occurring there. Your data center might be temperature and humidity controlled, however others who very focused on cost cutting may not be as concerned with normal facilities best practices.

What type of drives should be used for cloud, virtual and traditional storage?

Good question and one where the answer should be it depends upon what you are trying or need to do (e.g. see previous posts here or here and here (via Seagate)).For example here are some tips for big data storage and storage making decisions in general.

Disclosure

Seagate recently invited me along with several other industry analysts to their cloud storage analyst summit in San Francisco where they covered roundtrip coach airfare, lodging, airport transfers and a nice dinner at the Epic Roast house.

hdd image

I also have received in the past a couple of Momentus XT HHDD (aka SSHD) from Seagate. These are in addition to those that I bought including various Seagate, WD along with HGST, Fujitsu, Toshiba and Samsung (SSD and HDD’s) that I use for various things.

Ok, nuff said (for now).

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

HDS Mid Summer Storage and Converged Compute Enhancements

Storage I/O trends

Converged Compute, SSD Storage and Clouds

Hitachi Data Systems (HDS) announced today several enhancements to their data storage and unified compute portfolio as part of their Maximize I.T. initiative.

Setting the context

As part of setting the stage for this announcement, HDS has presented the following strategy vision as part their vision for IT transformation and cloud computing.

https://hds.com/solutions/it-strategies/maximize-it.html?WT.ac=us_hp_flash_r11

What was announced

This announcement builds on earlier ones around HDS Unified Storage (HUS) primary storage using nand flash MLC Solid State Devices (SSD) and Hard Disk Drives (HDD’s), along with unified block and file (NAS), as well Unified Compute Platform (UCP) also known as converged compute, networking, storage and software. These enhancements follow recent updates to the HDS Content Platform (HCP) for object, file and content storage.

There are three main focus areas of the announcement:

  • Flash SSD storage enhancements for HUS
  • Unified with enhanced file (aka BlueArc based)
  • Enhanced unified compute (UCP)

HDS Flash SSD acceleration

The question should not be if SSD is in your future, rather when, where, with what and how much will be needed.

As part of this announcement, HDS is releasing an all flash SSD based HUS enterprise storage system. Similar to what other vendors have done, HDS is attaching flash SSD storage to their HUS systems in place of HDD’s. Hitachi has developed their own SSD module announced in 2012 (read more here). The HDS SSD module use Multi Level Cell (MLC) nand flash chips (dies) that now supports 1.6TB of storage space capacity unit. This is different from other vendors who either use nand flash SSD drive form factor devices (e.g. Intel, Micron, Samsung, SANdisk, Seagate, STEC (now WD), WD among others) or, PCIe form factor cards (e.g. FusionIO, Intel, LSI, Micron, Virident among others) or, attach a third-party external SSD device (e.g. IBM/TMS, Violin, Whiptail etc.).

Like some other vendors, HDS has also done more than simply attach a SSD (drive, PCIe card, or external device) to their storage systems calling it an integrated solution. What this means is that HDS has implemented software or firmware changes into their storage systems to manage durability and extend flash duty cycles caused by program erase (P/E) cycle wear. In addition HDS has implemented performance optimization in their storage systems to leverage the faster SSD modules, after all, faster storage media or devices need fast storage systems or controllers.

While the new all flash storage system can be initially bought with just SSD, similar to other hybrid storage solutions, hard disk drives (HDD’s) can also be installed. For enabling full performance at low latency, HDS is addressing both the flash SSD modules as well as the storage systems they attach to including back-end, front-end and caching in-between.

The release enables 500,000 or half a million IOPS (no IOP size, reads or writes, random or sequential. Future firmware (non-disrupted) to enable higher performance that HDS is claiming will be 1,000,000 IOPS at under a millisecond) were indicated.

In addition to future performance improvements, HDS is also indicating increased storage space capacity of its MLC flash SSD modules (1.6TB today). Using 12 modules (1.6TB each), 154TB of flash SSD can be placed in a single rack.

HDS File and Network Attached Storage (NAS)

HUS unified NAS file system and gateway (BlueArc based) enhancements include:

  • New platforms leveraging faster processors (both Intel and Field Programmable Gate Arrays (FPGA’s))
  • Common management and software tools from 3000 to new 4000 series
  • Bandwidth doubled with faster connections and more memory
  • Four 10GbE NAS serving ports (front-end)
  • Four 8Gb Fibre Channel ports (back-end)
  • FPGA leveraged for off-loading some dedupe functions (faster performance)

HDS Unified Complete Platform (UCP)

As part of this announcement, HDS is enhancing the Unified Compute Platform (UCP) offerings. HDS re-entered the compute market in 2012 joining other vendors offering unified compute, storage and networking solutions. The HDS converged data infrastructure competes with AMD (Seamicro) SM15000, Dell vStart and VRTX (for lower end market), EMC and VCE vBlock, NetApp FlexPod along with those from HP (or Moonshot micro servers), IBM Puresystems, Oracle and others.

UCP Pro for VMware vSphere

  • Turnkey converged solution (Compute, Networking, Storage, Software)
  • Includes VMware vSphere pre-installed (OEM from VMware)
  • Flexible compute blade options
  • Three storage system options (HUS, HUS VM and VSP)
  • Cisco and Brocade IP networking
  • UCP Director 3.0 with enhanced automation and orchestration software

UCP Select for Microsoft Private Cloud

  • Supports Hyper-V 3.0 server virtualization
  • Live migration with DR and resynch
  • Microsoft Fast Track certified

UCP Select for Oracle RAC

  • HDS Flash SSD storage
  • SMP x86 compute for performance
  • 2x improvements for IOPS less than 1 millisecond
  • Common management with HiCommand suite
  • Integrated with Oracle RMAN and OVM

UCP Select for SAP HANA

  • Scale out to 8TBs memory (DRAM)
  • Tier 1 storage system certified for SAP HANA DR
  • Leverages SAP HANA SAP storage connector API

What this all means?

Storage I/O trends

With these announcements HDS is extending its storage centric hardware, software and services solution portfolio for block, file and object access across different usage tiers (systems, applications, mediums). HDS is also expanding their converged unified compute platforms to stay competitive with others including Dell, EMC, Fujitsu, HP, IBM, NEC, NetApp and Oracle among others. For environments with HDS storage looking for converged solutions to support VMware, Microsoft Hyper-V, Oracle or SAP HANA these UCP systems are worth checking out as part of evaluating vendor offerings. Likewise for those who have HDS storage exploring SSD offerings, these announcements give opportunities to enable consolidation as do the unified file (NAS) offerings.

Note that now HDS does not have a public formalized message or story around PCIe flash cards, however they have relationships with various vendors as part of their UCP offerings.

Overall a good set of incremental enhancements for HDS to stay competitive and leverage their field proven capabilities including management software tools.

Ok, nuff said

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Web chat Thur May 30th: Hot Storage Trends for 2013 (and beyond)

Storage I/O trends

Join me on Thursday May 30, 2013 at Noon ET (9AM PT) for a live web chat at the 21st Century IT (21cit) site (click here to register, sign-up, or view earlier posts). This will be an online web chat format interactive conversation so if you are not able to attend, you can visit at your convenience to view and give your questions along with comments. I have done several of these web chats with 21cit as well as other venues that are a lot of fun and engaging (time flies by fast).

For those not familiar, 21cIT is part of the Desum/UBM family of sites including Internet Evolution, SMB Authority, and Enterprise Efficiency among others that I do article posts, videos and live chats for.


Sponsored by NetApp

I like these types of sites in that while they have a sponsor, the content is generally kept separate between those of editors and contributors like myself and the vendor supplied material. In other words I coordinate with the site editors on what topics I feel like writing (or doing videos) about that align with the given sites focus and themes as opposed to following and advertorial calendar script.

During this industry trends perspective web chat, one of the topics and themes planned for discussion include software defined storage (SDS). View a recent video blog post I did here about SDS. In addition to SDS, Solid State Devices (SSD) including nand flash, cloud, virtualization, object, backup and data protection, performance, management tools among others are topics that will be put out on the virtual discussion table.

Storage I/O trends

Following are some examples of recent and earlier industry trends perspectives posts that I have done over at 21cit:

Video: And Now, Software-Defined Storage!
There are many different views on what is or is not “software-defined” with products, protocols, preferences and even press releases. Check out the video and comments here.

Big Data and the Boston Marathon Investigation
How the human face of big-data will help investigators piece together all the evidence in the Boston bombing tragedy and bring those responsible to justice. Check out the post and comments here.

Don’t Use New Technologies in Old Ways
You can add new technologies to your data center infrastructure, but you won’t get the full benefit unless you update your approach with people, processes, and policies. Check out the post and comments here.

Don’t Let Clouds Scare You, Be Prepared
The idea of moving to cloud computing and cloud services can be scary, but it doesn’t have to be so if you prepare as you would for implementing any other IT tool. Check out the post and comments here.

Storage and IO trends for 2013 (& Beyond)
Efficiency, new media, data protection, and management are some of the keywords for the storage sector in 2013. Check out these and other trends, predictions along with comments here.

SSD and Real Estate: Location, Location, Location
You might be surprised how many similarities between buying real estate and buying SSDs.
Location matters and it’s not if, rather when, where, why and how you will be using SSD including nand flash in the future, read more and view comments here.

Everything Is Not Equal in the Data center, Part 3
Here are steps you can take to give the right type of backup and protection to data and solutions, depending on the risks and scenarios they face. The result? Savings and efficiencies. Read more and view comments here.

Everything Is Not Equal in the Data center, Part 2
Your data center’s operations can be affected at various levels, by multiple factors, in a number of degrees. And, therefore, each scenario requires different responses. Read more and view comments here.

Everything Is Not Equal in the Data center, Part 1
It pays to check your data center Different components need different levels of security, storage, and availability. Read more and view comments here.

Data Protection Modernizing: More Than Buzzword Bingo
IT professionals and solution providers should put technologies such as disk based backup, dedupe, cloud, and data protection management tools as assets and resources to make sure they receive necessary funding and buy in. Read more and view comments here.

Don’t Take Your Server & Storage IO Pathing Software for Granted
Path managers are valuable resources. They will become even more useful as companies continue to carry out cloud and virtualization solutions. Read more and view comments here.

SSD Is in Your Future: Where, When & With What Are the Questions
During EMC World 2012, EMC (as have other vendors) made many announcements around flash solid-state devices (SSDs), underscoring the importance of SSDs to organizations future storage needs. Read more here about why SSD is in your future along with view comments.

Changing Life cycles and Data Footprint Reduction (DFR), Part 2
In the second part of this series, the ABCDs (Archive, Backup modernize, Compression, Dedupe and data management, storage tiering) of data footprint reduction, as well as SLOs, RTOs, and RPOs are discussed. Read more and view comments here.

Changing Life cycles and Data Footprint Reduction (DFR), Part 1
Web 2.0 and related data needs to stay online and readily accessible, creating storage challenges for many organizations that want to cut their data footprint. Read more and view comments here.

No Such Thing as an Information Recession
Data, even older information, must be protected and made accessible cost-effectively. Not to mention that people and data are living longer as well as getting larger. Read more and view comments here.

Storage I/O trends

These real-time, industry trends perspective interactive chats at 21cit are open forum format (however be polite and civil) as well as non vendor sales or marketing pitches. If you have specific questions you ‘d like to ask or points of view to express, click here and post them in the chat room at any time (before, during or after).

Mark your calendar for this event live Thursday, May 30, at noon ET or visit after the fact.

Ok, nuff said (for now)

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

May 2013 Server and StorageIO Update Newsletter

StorageIO News Letter Image
May 2013 News letter

Welcome to the May 2013 edition of the StorageIO Update. This edition has announcement analysis of EMC ViPR, Software Defined Storage (including a video here), server, storage and I/O metrics that matter for example how many IOPS can a HDD do (it depends). SSD including nand flash remains a popular topic, both in terms of industry adoption and customer deployment. Also included are my perspectives on the SSD vendor FusionIO CEO leaving in a flash. Speaking of nand flash, have you thought about how some RAID implementations and configurations can extend the life along with durability of SSD’s? More on this soon, however check out this video to give you some perspectives.

Click on the following links to view the May 2013 edition as (HTML sent via Email) version, or PDF versions.

Visit the news letter page to view previous editions of the StorageIO Update.

You can subscribe to the news letter by clicking here.

Enjoy this edition of the StorageIO Update news letter, let me know your comments and feedback.

Ok Nuff said, for now

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

How many I/O iops can flash SSD or HDD do?

How many i/o iops can flash ssd or hdd do with vmware?

sddc data infrastructure Storage I/O ssd trends

Updated 2/10/2018

A common question I run across is how many I/O iopsS can flash SSD or HDD storage device or system do or give.

The answer is or should be it depends.

This is the first of a two-part series looking at storage performance, and in context specifically around drive or device (e.g. mediums) characteristics across HDD, HHDD and SSD that can be found in cloud, virtual, and legacy environments. In this first part the focus is around putting some context around drive or device performance with the second part looking at some workload characteristics (e.g. benchmarks).

What about cloud, tape summit resources, storage systems or appliance?

Lets leave those for a different discussion at another time.

Getting started

Part of my interest in tools, metrics that matter, measurements, analyst, forecasting ties back to having been a server, storage and IO performance and capacity planning analyst when I worked in IT. Another aspect ties back to also having been a sys admin as well as business applications developer when on the IT customer side of things. This was followed by switching over to the vendor world involved with among other things competitive positioning, customer design configuration, validation, simulation and benchmarking HDD and SSD based solutions (e.g. life before becoming an analyst and advisory consultant).

Btw, if you happen to be interested in learn more about server, storage and IO performance and capacity planning, check out my first book Resilient Storage Networks (Elsevier) that has a bit of information on it. There is also coverage of metrics and planning in my two other books The Green and Virtual Data Center (CRC Press) and Cloud and Virtual Data Storage Networking (CRC Press). I have some copies of Resilient Storage Networks available at a special reader or viewer rate (essentially shipping and handling). If interested drop me a note and can fill you in on the details.

There are many rules of thumb (RUT) when it comes to metrics that matter such as IOPS, some that are older while others may be guess or measured in different ways. However the answer is that it depends on many things ranging from if a standalone hard disk drive (HDD), Hybrid HDD (HHDD), Solid State Device (SSD) or if attached to a storage system, appliance, or RAID adapter card among others.

Taking a step back, the big picture

hdd image
Various HDD, HHDD and SSD’s

Server, storage and I/O performance and benchmark fundamentals

Even if just looking at a HDD, there are many variables ranging from the rotational speed or Revolutions Per Minute (RPM), interface including 1.5Gb, 3.0Gb, 6Gb or 12Gb SAS or SATA or 4Gb Fibre Channel. If simply using a RUT or number based on RPM can cause issues particular with 2.5 vs. 3.5 or enterprise and desktop. For example, some current generation 10K 2.5 HDD can deliver the same or better performance than an older generation 3.5 15K. Other drive factors (see this link for HDD fundamentals) including physical size such as 3.5 inch or 2.5 inch small form factor (SFF), enterprise or desktop or consumer, amount of drive level cache (DRAM). Space capacity of a drive can also have an impact such as if all or just a portion of a large or small capacity devices is used. Not to mention what the drive is attached to ranging from in internal SAS or SATA drive bay, USB port, or a HBA or RAID adapter card or in a storage system.

disk iops
HDD fundamentals

How about benchmark and performance for marketing or comparison tricks including delayed, deferred or asynchronous writes vs. synchronous or actually committed data to devices? Lets not forget about short stroking (only using a portion of a drive for better IOP’s) or even long stroking (to get better bandwidth leveraging spiral transfers) among others.

Almost forgot, there are also thick, standard, thin and ultra thin drives in 2.5 and 3.5 inch form factors. What’s the difference? The number of platters and read write heads. Look at the following image showing various thickness 2.5 inch drives that have various numbers of platters to increase space capacity in a given density. Want to take a wild guess as to which one has the most space capacity in a given footprint? Also want to guess which type I use for removable disk based archives along with for onsite disk based backup targets (compliments my offsite cloud backups)?

types of disks
Thick, thin and ultra thin devices

Beyond physical and configuration items, then there are logical configuration including the type of workload, large or small IOPS, random, sequential, reads, writes or mixed (various random, sequential, read, write, large and small IO). Other considerations include file system or raw device, number of workers or concurrent IO threads, size of the target storage space area to decide impact of any locality of reference or buffering. Some other items include how long the test or workload simulation ran for, was the device new or worn in before use among other items.

Tools and the performance toolbox

Then there are the various tools for generating IO’s or workloads along with recording metrics such as reads, writes, response time and other information. Some examples (mix of free or for fee) include Bonnie, Iometer, Iorate, IOzone, Vdbench, TPC, SPC, Microsoft ESRP, SPEC and netmist, Swifttest, Vmark, DVDstore and PCmark 7 among many others. Some are focused just on the storage system and IO path while others are application specific thus exercising servers, storage and IO paths.

performance tools
Server, storage and IO performance toolbox

Having used Iometer since the late 90s, it has its place and is popular given its ease of use. Iometer is also long in the tooth and has its limits including not much if any new development, never the less, I have it in the toolbox. I also have Futremark PCmark 7 (full version) which turns out has some interesting abilities to do more than exercise an entire Windows PC. For example PCmark can use a secondary drive for doing IO to.

PCmark can be handy for spinning up with VMware (or other tools) lots of virtual Windows systems pointing to a NAS or other shared storage device doing real world type activity. Something that could be handy for testing or stressing virtual desktop infrastructures (VDI) along with other storage systems, servers and solutions. I also have Vdbench among others tools in the toolbox including Iorate which was used to drive the workloads shown below.

What I look for in a tool are how extensible are the scripting capabilities to define various workloads along with capabilities of the test engine. A nice GUI is handy which makes Iometer popular and yes there are script capabilities with Iometer. That is also where Iometer is long in the tooth compared to some of the newer generation of tools that have more emphasis on extensibility vs. ease of use interfaces. This also assumes knowing what workloads to generate vs. simply kicking off some IOPs using default settings to see what happens.

Another handy tool is for recording what’s going on with a running system including IO’s, reads, writes, bandwidth or transfers, random and sequential among other things. This is where when needed I turn to something like HiMon from HyperIO, if you have not tried it, get in touch with Tom West over at HyperIO and tell him StorageIO sent you to get a demo or trial. HiMon is what I used for doing start, stop and boot among other testing being able to see IO’s at the Windows file system level (or below) including very early in the boot or shutdown phase.

Here is a link to some other things I did awhile back with HiMon to profile some Windows and VDI activity test profiling.

What’s the best tool or benchmark or workload generator?

The one that meets your needs, usually your applications or something as close as possible to it.

disk iops
Various 2.5 and 3.5 inch HDD, HHDD, SSD with different performance

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

That depends, however continue reading part II of this series to see some results for various types of drives and workloads.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

EMC ViPR software defined object storage part III

Storage I/O trends

This is part III in a series of posts pertaining to EMC ViPR software defined storage and object storage. You can read part I here and part II here.

EMCworld

More on the object opportunity

Other object access includes OpenStack storage part Swift, AWS S3 HTTP and REST API access. This also includes ViPR supporting EMC Atmos, VNX and Isilon arrays as southbound persistent storage in addition.

object storage
Object (and cloud) storage access example

EMC is claiming that over 250 VNX systems can be abstracted to support scaling with stability (performance, availability, capacity, economics) using ViPR. Third party storage will be supported along with software such as OpenStack Swift, Ceph and others running on commodity hardware. Note that EMC has some history with object storage and access including Centera and Atmos. Visit the micro site I have setup called www.objectstoragecenter.com and watch for more content to be updated and added there.

More on the ViPR control plane and controller

ViPR differs from some others in that it does not sit in the data path all the time (e.g. between application servers and storage systems or cloud services) to cut potential for bottlenecks.

ViPR architecture

Organizations that can use ViPR include enterprise, SMB, CSP or MSP and hosting sites. ViPR can be used in a control mode to leverage underlying storage systems, appliances and services intelligence and functionality. This means ViPR can be used to complement as oppose to treat southbound or target storage systems and services as dumb disks or JBOD.

On the other hand, ViPR will also have a suite of data services such as snapshot, replication, data migration, movement, tiering to add value for when those do not exist. Customers will be free to choose how they want to use and deploy ViPR. For example leveraging underlying storage functionality (e.g. lightweight model), or in a more familiar storage virtualization model heavy lifting model. In the heavy lifting model more work is done by the virtualization or abstraction software to create an added value, however can be a concern for bottlenecks depending how deployed.

Service categories

Software defined, storage hypervisor, virtual storage or storage virtualization?

Most storage virtualization, storage hypervisors and virtual storage solutions that are hardware or software based (e.g. software defined) implemented what is referred to as in band. With in band the storage virtualization software or hardware sits between the applications (northbound) and storage systems or services (southbound).

While this approach can be easier to carry out along with add value add services, it can also introduce scaling bottlenecks depending on implementations. Examples of in band storage virtualization includes Actifio, DataCore, EMC VMAX with third-party storage, HDS with third-party storage, IBM SVC (and their V7000 Storwize storage system based on it) and NetApp Vseries among others. An advantage of in band approaches is that there should not need to be any host or server-side software requirements and SAN transparency.

There is another approach called out-of-band that has been tried. However pure out-of-band requires a management system along with agents, drivers, shims, plugins or other software resident on host application servers.

fast path control path
Example of generic fast path control path model

ViPR takes a different approach, one that was seen a few years ago with EMC Invista called fast path, control path that for the most part stays out of the data path. While this is like out-of-band, there should not be a need for any host server-side (e.g. northbound) software. By being a fast path control path, the virtualization or abstraction and management functions stay out of the way for data being moved or work being done.

Hmm, kind of like how management should be, there to help when needed, out-of-the-way not causing overhead other times ;).

Is EMC the first (even with Invista) to leverage fast path control path?

Actually up until about a year or so ago, or shortly after HP acquired 3PAR they had a solution called Storage Virtualization Services Platform (SVPS) that was OEMd from LSI (e.g. StorAge). Unfortunately, HP decided to retire that as opposed to extend its capabilities for file and object access (northbound) as well as different southbound targets or destination services.

Whats this northbound and southbound stuff?

Simply put, think in terms of a vertical stack with host servers (PMs or VMs) on the top with applications (and hypervisors or other tools such as databases) on top of them (e.g. north).

software defined storage
Northbound servers, southbound storage systems and cloud services

Think of storage systems, appliances, cloud services or other target destinations on the bottom (or south). ViPR sits in between providing storage services and management to the northbound servers leveraging the southbound storage.

What host servers can VIPR support for serving storage?

VIPR is being designed to be server agnostic (e.g. virtual or physical), along with operating system agnostic. In addition VIPR is being positioned as capable of serving northbound (e.g. up to application servers) block, file or object as well as accessing southbound (e.g. targets) block, file and object storage systems, file systems or services.

Note that a difference between earlier similar solutions from EMC have been either block based (e.g. Invista, VPLEX, VMAX with third-party storage), or file based. Also note that this means VIPR is not just for VMware or virtual server environments and that it can exist in legacy, virtual or cloud environments.

ViPR image

Likewise VIPR is intended to be application agnostic supporting little data, big data, very big data ( VBD) along with Hadoop or other specialized processing. Note that while VIPR will support HDFS in addition to NFS and CIFS file based access, Hadoop will not be running on or in the VIPR controllers as that would live or run elsewhere.

How will VIPR be deployed and licensed?

EMC has indicated that the VIPR controller will be delivered as software that installs into a virtual appliance (e.g. VMware) running as a virtual machine (VM) guest. It is not clear when support will exist for other hypervisors (e.g. Microsoft Hyper-V, Citrix/XEN, KVM or if VMware vSphere with vCenter or simply on ESXi free version). As of the announcement pre briefing, EMC had not yet finalized pricing and licensing details. General availability is expected in the second half of calendar 2013.

Keep in mind that the VIPR controller (software) runs as a VM that can be hosted on a clustered hypervisor for HA. In addition, multiple VIPR controllers can exist in a cluster to further enhance HA.

Some questions to be addressed among others include:

  • How and where are IOs intercepted?
  • Who can have access to the APIs, what is the process, is there a developers program, SDK along with resources?
  • What network topologies are supported local and remote?
  • What happens when JBOD is used and no advanced data services exist?
  • What are the characteristics of the object access functionality?
  • What if any specific switches or data path devices and tools are needed?
  • How does a host server know to talk with its target and ViPR controller know when to intercept for handling?
  • Will SNIA CDMI be added and when as part of the object access and data services capabilities?
  • Are programmatic bindings available for the object access along with support for other APIs including IOS?
  • What are the performance characteristics including latency under load as well as during a failure or fault scenario?
  • How will EMC place Vplex and its caching model on a local and wide area basis vs. ViPR or will we see those two create some work together, if so, what will that be?

Bottom line (for now):

Good move for EMC, now let us see how they execute including driving adoption of their open APIs, something they have had success in the past with Centera and other solutions. Likewise, let us see what other storage vendors become supported or add support along with how pricing and licensing are rolled out. EMC will also have to articulate when and where to use ViPR vs. VPLEX along with other storage systems or management tools.

Additional related material:
Are you using or considering implementation of a storage hypervisor?
Cloud and Virtual Data Storage Networking (CRC)
Cloud conversations: Public, Private, Hybrid what about Community Clouds?
Cloud, virtualization, storage and networking in an election year
Does software cut or move place of vendor lock-in?
Don’t Use New Technologies in Old Ways
EMC VPLEX: Virtual Storage Redefined or Respun?
How many degrees separate you and your information?
Industry adoption vs. industry deployment, is there a difference?
Many faces of storage hypervisor, virtual storage or storage virtualization
People, Not Tech, Prevent IT Convergence
Resilient Storage Networks (Elsevier)
Server and Storage Virtualization Life beyond Consolidation
Should Everything Be Virtualized?
The Green and Virtual Data Center (CRC)
Two companies on parallel tracks moving like trains offset by time: EMC and NetApp
Unified storage systems showdown: NetApp FAS vs. EMC VNX
backup, restore, BC, DR and archiving
VMware buys virsto, what about storage hypervisor’s?
Who is responsible for vendor lockin?

Ok, nuff said (for now)

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

EMC ViPR software defined object storage part II

Storage I/O trends

This is part II in a series of posts pertaining to EMC ViPR software defined storage and object storage. You can read part I here and part III here.

EMCworld

Some questions and discussion topics pertaining to ViPR:

Whom is ViPR for?

Organizations that need to scale with stability across EMC, third-party or open storage software stacks and commodity hardware. This applies to large and small enterprise, cloud service providers, managed service providers, virtual and cloud environments/

What this means for EMC hardware/platform/systems?

They can continue to be used as is, or work with ViPR or other deployment modes.

Does this mean EMC storage systems are nearing their end of life?

IMHO for the most part not yet, granted there will be some scenarios where new products will be used vs. others, or existing ones used in new ways for different things.

As has been the case for years if not decades, some products will survive, continue to evolve and find new roles, kind of like different data storage mediums (e.g. ssd, disk, tape, etc).

How does ViPR work?

ViPR functions as a control plane across the data and storage infrastructure supporting both north and southbound. northbound refers to use from or up to application servers (physical machines PM and virtual machines VMs). southbound refers target or destination storage systems. Storage systems can be traditional EMC or third-party (NetApp mentioned as part of first release), appliances, just a bunch of disks (JBOD) or cloud services.

Some general features and functions:

  • Provisioning and allocation (with automation)
  • Data and storage migration or tiering
  • Leverage scripts, templates and workbooks
  • Support service categories and catalogs
  • Discovery, registration of storage systems
  • Create of storage resource pools for host systems
  • Metering, measuring, reporting, charge or show back
  • Alerts, alarms and notification
  • Self-service portal for access and provisioning

ViPR data plane (adding data services and value when needed)

Another part is the data plane for implementing data services and access. For block and file when not needed, ViPR steps out-of-the-way leveraging the underlying storage systems or services.

object storage
Object storage access

When needed, the ViPR data plane can step in to add added services and functionality along with support object based access for little data and big data. For example, Hadoop Distributed File System (HDFS) services can support northbound analytic software applications running on servers accessing storage managed by ViPR.

Continue reading in part III of this series here including how ViPR works, who it is for and more analysis.

Ok, nuff said (for now)

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

EMC ViPR virtual physical object and software defined storage (SDS)

Storage I/O trends

Introducing EMC ViPR

This is the first in a three part series, read part II here, and part III here.

During the recent EMCworld event in Las Vegas among other things, EMC announced ViPR (read announcement here) . Note that this ViPR is not the same EMC Viper project from a few years ago that was focused on data footprint reduction (DFR) including dedupe. ViPR has been in the works for a couple of years taking a step back rethinking how storage is can be used going forward.

EMCworld

ViPR is not a technology creation developed in a vacuum instead includes customer feedback, wants and needs. Its core themes are extensible, open and scalable.

EMCworld

On the other hand, ViPR addresses plenty of buzzword bingo themes including:

  • Agility, flexibility, multi-tenancy, orchestration
  • Virtual appliance and control plane
  • Data services and storage management
  • IT as a Service (ITaaS) and Infrastructure as a Service (IaaS)
  • Scaling with stability without compromise
  • Software defined storage
  • Public, private, hybrid cloud
  • Big data and little data
  • Block, file and object storage
  • Control plane and data plane
  • Storage hypervisor, virtualization and virtual storage
  • Heterogeneous (third-party) storage support
  • Open API and automation
  • Self-service portals, service catalogs

Buzzword bingo

Note that this is essentially announcing the ViPR product and program initiative with general availability slated for second half of 2013.

What is ViPR addressing?

IT and data infrastructure (server, storage, IO and networking hardware, software) challenges for traditional, virtual and cloud environments.

  • Data growth, after all, there is no such thing as an information recession with more data being generated, moved, processed, stored and retained for longer periods of time. Then again, people and data are both getting larger and living longer, for both little data and big data along with very big data.
  • Overhead and complexities associated with managing and using an expanding, homogenous (same vendor, perhaps different products) or heterogeneous (different vendors and products) data infrastructure across cloud, virtual and physical, legacy and emerging. This includes add, changes or moves, updates and upgrades, retirement and replacement along with disposition, not to mention protecting data in an expanding footprint.
  • road to cloud

  • Operations and service management, fault and alarm notification, resolution and remediation, rapid provisioning, removing complexity and cost of doing things vs. simply cutting cost and compromising service.

EMC ViPR

What is this software defined storage stuff?

There is the buzzword aspect, and then there is the solution and business opportunity.

First the buzzword aspect and bandwagon:

  • Software defined marketing (SDM) Leveraging software defined buzzwords.
  • Software defined data centers (SDDC) Leveraging software to derive more value from hardware while enabling agility, flexibility, and scalability and removing complexity. Think the Cloud and Virtual Data Center models including those from VMware among others.
  • Software defined networking (SDN) Rather than explain, simply look at Nicira that VMware bought in 2012.
  • Software defined storage (SDS) Storage software that is independent of any specific hardware, which might be a bit broad, however it is also narrower than saying anything involving software.
  • Software defined BS (SDBS) Something that usually happens as a result when marketers and others jump on a bandwagon, in this case software defined marketing.

Note that not everything involved with software defined is BS, only some of the marketing spins and overuse. The downside to the software defined marketing and SDBS is the usual reaction of skepticism, cynicism and dismissal, so let us leave the software defined discussion here for now.

software defined storage

An example of software defined storage can be storage virtualization, virtual storage and storage hypervisors that are hardware independent. Note that when I say hardware independent, that also means being able to support different vendors systems. Now if you want to have some fun with the software defined storage diehards or purist, tell them that all hardware needs software and all software needs hardware, even if virtual. Further hardware is defined by its software, however lets leave sleeping dogs lay where they rest (at least for now ;)).

Storage hypervisors were a 2012 popular buzzword bingo topic with plenty of industry adoption and some customer deployment. While 2012 saw plenty of SDM buzz including SDC, SDN 2013 is already seeing an increase including software defined servers, and software defined storage.

Regardless of what you view of software defined storage, storage hypervisor, storage virtualization and virtual storage is, the primary focus and goal should be addressing business and application needs. Unfortunately, some of the discussions or debates about what is or is not software defined and related themes lose focus of what should be the core goal of enabling business and applications.

Continue reading in part II of this series here including how ViPR works, who it is for and more analysis.

Ok, nuff said (for now)

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved