Can we get a side of context with them IOPS server storage metrics?

Can we get a side of context with them server storage metrics?

Whats the best server storage I/O network metric or benchmark? It depends as there needs to be some context with them IOPS and other server storage I/O metrics that matter.

There is an old saying that the best I/O (Input/Output) is the one that you do not have to do.

In the meantime, let’s get a side of some context with them IOPS from vendors, marketers and their pundits who are tossing them around for server, storage and IO metrics that matter.

Expanding the conversation, the need for more context

The good news is that people are beginning to discuss storage beyond space capacity and cost per GByte, TByte or PByte for both DRAM or nand flash Solid State Devices (SSD), Hard Disk Drives (HDD) along with Hybrid HDD (HHDD) and Solid State Hybrid Drive (SSHD) based solutions. This applies to traditional enterprise or SMB IT data center with physical, virtual or cloud based infrastructures.

hdd and ssd iops

This is good because it expands the conversation beyond just cost for space capacity into other aspects including performance (IOPS, latency, bandwidth) for various workload scenarios along with availability, energy effective and management.

Adding a side of context

The catch is that IOPS while part of the equation are just one aspect of performance and by themselves without context, may have little meaning if not misleading in some situations.

Granted it can be entertaining, fun to talk about or simply make good press copy for a million IOPS. IOPS vary in size depending on the type of work being done, not to mention reads or writes, random and sequential which also have a bearing on data throughout or bandwidth (Mbytes per second) along with response time. Not to mention block, file, object or blob as well as table.

However, are those million IOP’s applicable to your environment or needs?

Likewise, what do those million or more IOPS represent about type of work being done? For example, are they small 64 byte or large 64 Kbyte sized, random or sequential, cached reads or lazy writes (deferred or buffered) on a SSD or HDD?

How about the response time or latency for achieving them IOPS?

In other words, what is the context of those metrics and why do they matter?

storage i/o iops
Click on image to view more metrics that matter including IOP’s for HDD and SSD’s

Metrics that matter give context for example IO sizes closer to what your real needs are, reads and writes, mixed workloads, random or sequential, sustained or bursty, in other words, real world reflective.

As with any benchmark take them with a grain (or more) of salt, they key is use them as an indicator then align to your needs. The tool or technology should work for you, not the other way around.

Here are some examples of context that can be added to help make IOP’s and other metrics matter:

  • What is the IOP size, are they 512 byte (or smaller) vs. 4K bytes (or larger)?
  • Are they reads, writes, random, sequential or mixed and what percentage?
  • How was the storage configured including RAID, replication, erasure or dispersal codes?
  • Then there is the latency or response time and IO queue depths for the given number of IOPS.
  • Let us not forget if the storage systems (and servers) were busy with other work or not.
  • If there is a cost per IOP, is that list price or discount (hint, if discount start negotiations from there)
  • What was the number of threads or workers, along with how many servers?
  • What tool was used, its configuration, as well as raw or cooked (aka file system) IO?
  • Was the IOP’s number with one worker or multiple workers on a single or multiple servers?
  • Did the IOP’s number come from a single storage system or total of multiple systems?
  • Fast storage needs fast serves and networks, what was their configuration?
  • Was the performance a short burst, or long sustained period?
  • What was the size of the test data used; did it all fit into cache?
  • Were short stroking for IOPS or long stroking for bandwidth techniques used?
  • Data footprint reduction (DFR) techniques (thin provisioned, compression or dedupe) used?
  • Were write data committed synchronously to storage, or deferred (aka lazy writes used)?

The above are just a sampling and not all may be relevant to your particular needs, however they help to put IOP’s into more contexts. Another consideration around IOPS are the configuration of the environment, from an actual running application using some measurement tool, or are they generated from a workload tool such as IOmeter, IOrate, VDbench among others.

Sure, there are more contexts and information that would be interesting as well, however learning to walk before running will help prevent falling down.

Storage I/O trends

Does size or age of vendors make a difference when it comes to context?

Some vendors are doing a good job of going for out of this world record-setting marketing hero numbers.

Meanwhile other vendors are doing a good job of adding context to their IOP or response time or bandwidth among other metrics that matter. There is a mix of startup and established that give context with their IOP’s or other metrics, likewise size or age does not seem to matter for those who lack context.

Some vendors may not offer metrics or information publicly, so fine, go under NDA to learn more and see if the results are applicable to your environments.

Likewise, if they do not want to provide the context, then ask some tough yet fair questions to decide if their solution is applicable for your needs.

Storage I/O trends

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

What this means is let us start putting and asking for metrics that matter such as IOP’s with context.

If you have a great IOP metric, if you want it to matter than include some context such as what size (e.g. 4K, 8K, 16K, 32K, etc.), percentage of reads vs. writes, latency or response time, random or sequential.

IMHO the most interesting or applicable metrics that matter are those relevant to your environment and application. For example if your main application that needs SSD does about 75% reads (random) and 25% writes (sequential) with an average size of 32K, while fun to hear about, how relevant is a million 64 byte read IOPS? Likewise when looking at IOPS, pay attention to the latency, particular if SSD or performance is your main concern.

Get in the habit of asking or telling vendors or their surrogates to provide some context with them metrics if you want them to matter.

So how about some context around them IOP’s (or latency and bandwidth or availability for that matter)?

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Web chat Thur May 30th: Hot Storage Trends for 2013 (and beyond)

Storage I/O trends

Join me on Thursday May 30, 2013 at Noon ET (9AM PT) for a live web chat at the 21st Century IT (21cit) site (click here to register, sign-up, or view earlier posts). This will be an online web chat format interactive conversation so if you are not able to attend, you can visit at your convenience to view and give your questions along with comments. I have done several of these web chats with 21cit as well as other venues that are a lot of fun and engaging (time flies by fast).

For those not familiar, 21cIT is part of the Desum/UBM family of sites including Internet Evolution, SMB Authority, and Enterprise Efficiency among others that I do article posts, videos and live chats for.


Sponsored by NetApp

I like these types of sites in that while they have a sponsor, the content is generally kept separate between those of editors and contributors like myself and the vendor supplied material. In other words I coordinate with the site editors on what topics I feel like writing (or doing videos) about that align with the given sites focus and themes as opposed to following and advertorial calendar script.

During this industry trends perspective web chat, one of the topics and themes planned for discussion include software defined storage (SDS). View a recent video blog post I did here about SDS. In addition to SDS, Solid State Devices (SSD) including nand flash, cloud, virtualization, object, backup and data protection, performance, management tools among others are topics that will be put out on the virtual discussion table.

Storage I/O trends

Following are some examples of recent and earlier industry trends perspectives posts that I have done over at 21cit:

Video: And Now, Software-Defined Storage!
There are many different views on what is or is not “software-defined” with products, protocols, preferences and even press releases. Check out the video and comments here.

Big Data and the Boston Marathon Investigation
How the human face of big-data will help investigators piece together all the evidence in the Boston bombing tragedy and bring those responsible to justice. Check out the post and comments here.

Don’t Use New Technologies in Old Ways
You can add new technologies to your data center infrastructure, but you won’t get the full benefit unless you update your approach with people, processes, and policies. Check out the post and comments here.

Don’t Let Clouds Scare You, Be Prepared
The idea of moving to cloud computing and cloud services can be scary, but it doesn’t have to be so if you prepare as you would for implementing any other IT tool. Check out the post and comments here.

Storage and IO trends for 2013 (& Beyond)
Efficiency, new media, data protection, and management are some of the keywords for the storage sector in 2013. Check out these and other trends, predictions along with comments here.

SSD and Real Estate: Location, Location, Location
You might be surprised how many similarities between buying real estate and buying SSDs.
Location matters and it’s not if, rather when, where, why and how you will be using SSD including nand flash in the future, read more and view comments here.

Everything Is Not Equal in the Data center, Part 3
Here are steps you can take to give the right type of backup and protection to data and solutions, depending on the risks and scenarios they face. The result? Savings and efficiencies. Read more and view comments here.

Everything Is Not Equal in the Data center, Part 2
Your data center’s operations can be affected at various levels, by multiple factors, in a number of degrees. And, therefore, each scenario requires different responses. Read more and view comments here.

Everything Is Not Equal in the Data center, Part 1
It pays to check your data center Different components need different levels of security, storage, and availability. Read more and view comments here.

Data Protection Modernizing: More Than Buzzword Bingo
IT professionals and solution providers should put technologies such as disk based backup, dedupe, cloud, and data protection management tools as assets and resources to make sure they receive necessary funding and buy in. Read more and view comments here.

Don’t Take Your Server & Storage IO Pathing Software for Granted
Path managers are valuable resources. They will become even more useful as companies continue to carry out cloud and virtualization solutions. Read more and view comments here.

SSD Is in Your Future: Where, When & With What Are the Questions
During EMC World 2012, EMC (as have other vendors) made many announcements around flash solid-state devices (SSDs), underscoring the importance of SSDs to organizations future storage needs. Read more here about why SSD is in your future along with view comments.

Changing Life cycles and Data Footprint Reduction (DFR), Part 2
In the second part of this series, the ABCDs (Archive, Backup modernize, Compression, Dedupe and data management, storage tiering) of data footprint reduction, as well as SLOs, RTOs, and RPOs are discussed. Read more and view comments here.

Changing Life cycles and Data Footprint Reduction (DFR), Part 1
Web 2.0 and related data needs to stay online and readily accessible, creating storage challenges for many organizations that want to cut their data footprint. Read more and view comments here.

No Such Thing as an Information Recession
Data, even older information, must be protected and made accessible cost-effectively. Not to mention that people and data are living longer as well as getting larger. Read more and view comments here.

Storage I/O trends

These real-time, industry trends perspective interactive chats at 21cit are open forum format (however be polite and civil) as well as non vendor sales or marketing pitches. If you have specific questions you ‘d like to ask or points of view to express, click here and post them in the chat room at any time (before, during or after).

Mark your calendar for this event live Thursday, May 30, at noon ET or visit after the fact.

Ok, nuff said (for now)

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Part II: How many IOPS can a HDD HHDD SSD do with VMware?

How many IOPS can a HDD HHDD SSD do with VMware?

server storage data infrastructure i/o iop hdd ssd trends

Updated 2/10/2018

This is the second post of a two-part series looking at storage performance, specifically in the context of drive or device (e.g. mediums) characteristics of How many IOPS can a HDD HHDD SSD do with VMware. In the first post the focus was around putting some context around drive or device performance with the second part looking at some workload characteristics (e.g. benchmarks).

A common question is how many IOPS (IO Operations Per Second) can a storage device or system do?

The answer is or should be it depends.

Here are some examples to give you some more insight.

For example, the following shows how IOPS vary by changing the percent of reads, writes, random and sequential for a 4K (4,096 bytes or 4 KBytes) IO size with each test step (4 minutes each).

IO Size for test
Workload Pattern of test
Avg. Resp (R+W) ms
Avg. IOP Sec (R+W)
Bandwidth KB Sec (R+W)
4KB
100% Seq 100% Read
0.0
29,736
118,944
4KB
60% Seq 100% Read
4.2
236
947
4KB
30% Seq 100% Read
7.1
140
563
4KB
0% Seq 100% Read
10.0
100
400
4KB
100% Seq 60% Read
3.4
293
1,174
4KB
60% Seq 60% Read
7.2
138
554
4KB
30% Seq 60% Read
9.1
109
439
4KB
0% Seq 60% Read
10.9
91
366
4KB
100% Seq 30% Read
5.9
168
675
4KB
60% Seq 30% Read
9.1
109
439
4KB
30% Seq 30% Read
10.7
93
373
4KB
0% Seq 30% Read
11.5
86
346
4KB
100% Seq 0% Read
8.4
118
474
4KB
60% Seq 0% Read
13.0
76
307
4KB
30% Seq 0% Read
11.6
86
344
4KB
0% Seq 0% Read
12.1
82
330

Dell/Western Digital (WD) 1TB 7200 RPM SATA HDD (Raw IO) thread count 1 4K IO size

In the above example the drive is a 1TB 7200 RPM 3.5 inch Dell (Western Digital) 3Gb SATA device doing raw (non file system) IO. Note the high IOP rate with 100 percent sequential reads and a small IO size which might be a result of locality of reference due to drive level cache or buffering.

Some drives have larger buffers than others from a couple to 16MB (or more) of DRAM that can be used for read ahead caching. Note that this level of cache is independent of a storage system, RAID adapter or controller or other forms and levels of buffering.

Does this mean you can expect or plan on getting those levels of performance?

I would not make that assumption, and thus this serves as an example of using metrics like these in the proper context.

Building off of the previous example, the following is using the same drive however with a 16K IO size.

IO Size for test
Workload Pattern of test
Avg. Resp (R+W) ms
Avg. IOP Sec (R+W)
Bandwidth KB Sec (R+W)
16KB
100% Seq 100% Read
0.1
7,658
122,537
16KB
60% Seq 100% Read
4.7
210
3,370
16KB
30% Seq 100% Read
7.7
130
2,080
16KB
0% Seq 100% Read
10.1
98
1,580
16KB
100% Seq 60% Read
3.5
282
4,522
16KB
60% Seq 60% Read
7.7
130
2,090
16KB
30% Seq 60% Read
9.3
107
1,715
16KB
0% Seq 60% Read
11.1
90
1,443
16KB
100% Seq 30% Read
6.0
165
2,644
16KB
60% Seq 30% Read
9.2
109
1,745
16KB
30% Seq 30% Read
11.0
90
1,450
16KB
0% Seq 30% Read
11.7
85
1,364
16KB
100% Seq 0% Read
8.5
117
1,874
16KB
60% Seq 0% Read
10.9
92
1,472
16KB
30% Seq 0% Read
11.8
84
1,353
16KB
0% Seq 0% Read
12.2
81
1,310

Dell/Western Digital (WD) 1TB 7200 RPM SATA HDD (Raw IO) thread count 1 16K IO size

The previous two examples are excerpts of a series of workload simulation tests (ok, you can call them benchmarks) that I have done to collect information, as well as try some different things out.

The following is an example of the summary for each test output that includes the IO size, workload pattern (reads, writes, random, sequential), duration for each workload step, totals for reads and writes, along with averages including IOP’s, bandwidth and latency or response time.

disk iops

Want to see more numbers, speeds and feeds, check out the following table which will be updated with extra results as they become available.

Device
Vendor
Make

Model

Form Factor
Capacity
Interface
RPM Speed
Raw
Test Result
HDD
HGST
Desktop
HK250-160
2.5
160GB
SATA
5.4K
HDD
Seagate
Mobile
ST2000LM003
2.5
2TB
SATA
5.4K
HDD
Fujitsu
Desktop
MHWZ160BH
2.5
160GB
SATA
7.2K
HDD
Seagate
Momentus
ST9160823AS
2.5
160GB
SATA
7.2K
HDD
Seagate
MomentusXT
ST95005620AS
2.5
500GB
SATA
7.2K(1)
HDD
Seagate
Barracuda
ST3500320AS
3.5
500GB
SATA
7.2K
HDD
WD/Dell
Enterprise
WD1003FBYX
3.5
1TB
SATA
7.2K
HDD
Seagate
Barracuda
ST3000DM01
3.5
3TB
SATA
7.2K
HDD
Seagate
Desktop
ST4000DM000
3.5
4TB
SATA
HDD
HDD
Seagate
Capacity
ST6000NM00
3.5
6TB
SATA
HDD
HDD
Seagate
Capacity
ST6000NM00
3.5
6TB
12GSAS
HDD
HDD
Seagate
Savio 10K.3
ST9300603SS
2.5
300GB
SAS
10K
HDD
Seagate
Cheetah
ST3146855SS
3.5
146GB
SAS
15K
HDD
Seagate
Savio 15K.2
ST9146852SS
2.5
146GB
SAS
15K
HDD
Seagate
Ent. 15K
ST600MP0003
2.5
600GB
SAS
15K
SSHD
Seagate
Ent. Turbo
ST600MX0004
2.5
600GB
SAS
SSHD
SSD
Samsung
840 PRo
MZ-7PD256
2.5
256GB
SATA
SSD
HDD
Seagate
600 SSD
ST480HM000
2.5
480GB
SATA
SSD
SSD
Seagate
1200 SSD
ST400FM0073
2.5
400GB
12GSAS
SSD

Performance characteristics 1 worker (thread count) for RAW IO (non-file system)

Note: (1) Seagate Momentus XT is a Hybrid Hard Disk Drive (HHDD) based on a 7.2K 2.5 HDD with SLC nand flash integrated for read buffer in addition to normal DRAM buffer. This model is a XT I (4GB SLC nand flash), may add an XT II (8GB SLC nand flash) at some future time.

As a starting point, these results are raw IO with file system based information to be added soon along with more devices. These results are for tests with one worker or thread count, other results will be added with such as 16 workers or thread counts to show how those differ.

The above results include all reads, all writes, mix of reads and writes, along with all random, sequential and mixed for each IO size. IO sizes include 4K, 8K, 16K, 32K, 64K, 128K, 256K, 512K, 1024K and 2048K. As with any workload simulation, benchmark or comparison test, take these results with a grain of salt as your mileage can and will vary. For example you will see some what I consider very high IO rates with sequential reads even without file system buffering. These results might be due to locality of reference of IO’s being resolved out of the drives DRAM cache (read ahead) which vary in size for different devices. Use the vendor model numbers in the table above to check the manufactures specs on drive DRAM and other attributes.

If you are used to seeing 4K or 8K and wonder why anybody would be interested in some of the larger sizes take a look at big fast data or cloud and object storage. For some of those applications 2048K may not seem all that big. Likewise if you are used to the larger sizes, there are still applications doing smaller sizes. Sorry for those who like 512 byte or smaller IO’s as they are not included. Note that for all of these unless indicated a 512 byte standard sector or drive format is used as opposed to emerging Advanced Format (AF) 4KB sector or block size. Watch for some more drive and device types to be added to the above, along with results for more workers or thread counts, along with file system and other scenarios.

Using VMware as part of a Server, Storage and IO (aka StorageIO) test platform

vmware vexpert

The above performance results were generated on Ubuntu 12.04 (since upgraded to 14.04 which was hosted on a VMware vSphere 5.1 (upgraded to 5.5U2) purchased version (you can get the ESXi free version here) with vCenter enabled system. I also have VMware workstation installed on some of my Windows-based laptops for doing preliminary testing of scripts and other activity prior to running them on the larger server-based VMware environment. Other VMware tools include vCenter Converter, vSphere Client and CLI. Note that other guest virtual machines (VMs) were idle during the tests (e.g. other guest VMs were quiet). You may experience different results if you ran Ubuntu native on a physical machine or with different adapters, processors and device configurations among many other variables (that was a disclaimer btw ;) ).

Storage I/O trends

All of the devices (HDD, HHDD, SSD’s including those not shown or published yet) were Raw Device Mapped (RDM) to the Ubuntu VM bypassing VMware file system.

Example of creating an RDM for local SAS or SATA direct attached device.

vmkfstools -z /vmfs/devices/disks/naa.600605b0005f125018e923064cc17e7c /vmfs/volumes/dat1/RDM_ST1500Z110S6M5.vmdk

The above uses the drives address (find by doing a ls -l /dev/disks via VMware shell command line) to then create a vmdk container stored in a dat. Note that the RDM being created does not actually store data in the .vmdk, it’s there for VMware management operations.

If you are not familiar with how to create a RDM of a local SAS or SATA device, check out this post to learn how.This is important to note in that while VMware was used as a platform to support the guest operating systems (e.g. Ubuntu or Windows), the real devices are not being mapped through or via VMware virtual drives.

vmware iops

The above shows examples of RDM SAS and SATA devices along with other VMware devices and dats. In the next figure is an example of a workload being run in the test environment.

vmware iops

One of the advantages of using VMware (or other hypervisor) with RDM’s is that I can quickly define via software commands where a device gets attached to different operating systems (e.g. the other aspect of software defined storage). This means that after a test run, I can quickly simply shutdown Ubuntu, remove the RDM device from that guests settings, move the device just tested to a Windows guest if needed and restart those VMs. All of that from where ever I happen to be working from without physically changing things or dealing with multi-boot or cabling issues.

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

So how many IOPs can a device do?

That depends, however have a look at the above information and results.

Check back from time to time here to see what is new or has been added including more drives, devices and other related themes.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

How many I/O iops can flash SSD or HDD do?

How many i/o iops can flash ssd or hdd do with vmware?

sddc data infrastructure Storage I/O ssd trends

Updated 2/10/2018

A common question I run across is how many I/O iopsS can flash SSD or HDD storage device or system do or give.

The answer is or should be it depends.

This is the first of a two-part series looking at storage performance, and in context specifically around drive or device (e.g. mediums) characteristics across HDD, HHDD and SSD that can be found in cloud, virtual, and legacy environments. In this first part the focus is around putting some context around drive or device performance with the second part looking at some workload characteristics (e.g. benchmarks).

What about cloud, tape summit resources, storage systems or appliance?

Lets leave those for a different discussion at another time.

Getting started

Part of my interest in tools, metrics that matter, measurements, analyst, forecasting ties back to having been a server, storage and IO performance and capacity planning analyst when I worked in IT. Another aspect ties back to also having been a sys admin as well as business applications developer when on the IT customer side of things. This was followed by switching over to the vendor world involved with among other things competitive positioning, customer design configuration, validation, simulation and benchmarking HDD and SSD based solutions (e.g. life before becoming an analyst and advisory consultant).

Btw, if you happen to be interested in learn more about server, storage and IO performance and capacity planning, check out my first book Resilient Storage Networks (Elsevier) that has a bit of information on it. There is also coverage of metrics and planning in my two other books The Green and Virtual Data Center (CRC Press) and Cloud and Virtual Data Storage Networking (CRC Press). I have some copies of Resilient Storage Networks available at a special reader or viewer rate (essentially shipping and handling). If interested drop me a note and can fill you in on the details.

There are many rules of thumb (RUT) when it comes to metrics that matter such as IOPS, some that are older while others may be guess or measured in different ways. However the answer is that it depends on many things ranging from if a standalone hard disk drive (HDD), Hybrid HDD (HHDD), Solid State Device (SSD) or if attached to a storage system, appliance, or RAID adapter card among others.

Taking a step back, the big picture

hdd image
Various HDD, HHDD and SSD’s

Server, storage and I/O performance and benchmark fundamentals

Even if just looking at a HDD, there are many variables ranging from the rotational speed or Revolutions Per Minute (RPM), interface including 1.5Gb, 3.0Gb, 6Gb or 12Gb SAS or SATA or 4Gb Fibre Channel. If simply using a RUT or number based on RPM can cause issues particular with 2.5 vs. 3.5 or enterprise and desktop. For example, some current generation 10K 2.5 HDD can deliver the same or better performance than an older generation 3.5 15K. Other drive factors (see this link for HDD fundamentals) including physical size such as 3.5 inch or 2.5 inch small form factor (SFF), enterprise or desktop or consumer, amount of drive level cache (DRAM). Space capacity of a drive can also have an impact such as if all or just a portion of a large or small capacity devices is used. Not to mention what the drive is attached to ranging from in internal SAS or SATA drive bay, USB port, or a HBA or RAID adapter card or in a storage system.

disk iops
HDD fundamentals

How about benchmark and performance for marketing or comparison tricks including delayed, deferred or asynchronous writes vs. synchronous or actually committed data to devices? Lets not forget about short stroking (only using a portion of a drive for better IOP’s) or even long stroking (to get better bandwidth leveraging spiral transfers) among others.

Almost forgot, there are also thick, standard, thin and ultra thin drives in 2.5 and 3.5 inch form factors. What’s the difference? The number of platters and read write heads. Look at the following image showing various thickness 2.5 inch drives that have various numbers of platters to increase space capacity in a given density. Want to take a wild guess as to which one has the most space capacity in a given footprint? Also want to guess which type I use for removable disk based archives along with for onsite disk based backup targets (compliments my offsite cloud backups)?

types of disks
Thick, thin and ultra thin devices

Beyond physical and configuration items, then there are logical configuration including the type of workload, large or small IOPS, random, sequential, reads, writes or mixed (various random, sequential, read, write, large and small IO). Other considerations include file system or raw device, number of workers or concurrent IO threads, size of the target storage space area to decide impact of any locality of reference or buffering. Some other items include how long the test or workload simulation ran for, was the device new or worn in before use among other items.

Tools and the performance toolbox

Then there are the various tools for generating IO’s or workloads along with recording metrics such as reads, writes, response time and other information. Some examples (mix of free or for fee) include Bonnie, Iometer, Iorate, IOzone, Vdbench, TPC, SPC, Microsoft ESRP, SPEC and netmist, Swifttest, Vmark, DVDstore and PCmark 7 among many others. Some are focused just on the storage system and IO path while others are application specific thus exercising servers, storage and IO paths.

performance tools
Server, storage and IO performance toolbox

Having used Iometer since the late 90s, it has its place and is popular given its ease of use. Iometer is also long in the tooth and has its limits including not much if any new development, never the less, I have it in the toolbox. I also have Futremark PCmark 7 (full version) which turns out has some interesting abilities to do more than exercise an entire Windows PC. For example PCmark can use a secondary drive for doing IO to.

PCmark can be handy for spinning up with VMware (or other tools) lots of virtual Windows systems pointing to a NAS or other shared storage device doing real world type activity. Something that could be handy for testing or stressing virtual desktop infrastructures (VDI) along with other storage systems, servers and solutions. I also have Vdbench among others tools in the toolbox including Iorate which was used to drive the workloads shown below.

What I look for in a tool are how extensible are the scripting capabilities to define various workloads along with capabilities of the test engine. A nice GUI is handy which makes Iometer popular and yes there are script capabilities with Iometer. That is also where Iometer is long in the tooth compared to some of the newer generation of tools that have more emphasis on extensibility vs. ease of use interfaces. This also assumes knowing what workloads to generate vs. simply kicking off some IOPs using default settings to see what happens.

Another handy tool is for recording what’s going on with a running system including IO’s, reads, writes, bandwidth or transfers, random and sequential among other things. This is where when needed I turn to something like HiMon from HyperIO, if you have not tried it, get in touch with Tom West over at HyperIO and tell him StorageIO sent you to get a demo or trial. HiMon is what I used for doing start, stop and boot among other testing being able to see IO’s at the Windows file system level (or below) including very early in the boot or shutdown phase.

Here is a link to some other things I did awhile back with HiMon to profile some Windows and VDI activity test profiling.

What’s the best tool or benchmark or workload generator?

The one that meets your needs, usually your applications or something as close as possible to it.

disk iops
Various 2.5 and 3.5 inch HDD, HHDD, SSD with different performance

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

That depends, however continue reading part II of this series to see some results for various types of drives and workloads.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

EMC ViPR software defined object storage part III

Storage I/O trends

This is part III in a series of posts pertaining to EMC ViPR software defined storage and object storage. You can read part I here and part II here.

EMCworld

More on the object opportunity

Other object access includes OpenStack storage part Swift, AWS S3 HTTP and REST API access. This also includes ViPR supporting EMC Atmos, VNX and Isilon arrays as southbound persistent storage in addition.

object storage
Object (and cloud) storage access example

EMC is claiming that over 250 VNX systems can be abstracted to support scaling with stability (performance, availability, capacity, economics) using ViPR. Third party storage will be supported along with software such as OpenStack Swift, Ceph and others running on commodity hardware. Note that EMC has some history with object storage and access including Centera and Atmos. Visit the micro site I have setup called www.objectstoragecenter.com and watch for more content to be updated and added there.

More on the ViPR control plane and controller

ViPR differs from some others in that it does not sit in the data path all the time (e.g. between application servers and storage systems or cloud services) to cut potential for bottlenecks.

ViPR architecture

Organizations that can use ViPR include enterprise, SMB, CSP or MSP and hosting sites. ViPR can be used in a control mode to leverage underlying storage systems, appliances and services intelligence and functionality. This means ViPR can be used to complement as oppose to treat southbound or target storage systems and services as dumb disks or JBOD.

On the other hand, ViPR will also have a suite of data services such as snapshot, replication, data migration, movement, tiering to add value for when those do not exist. Customers will be free to choose how they want to use and deploy ViPR. For example leveraging underlying storage functionality (e.g. lightweight model), or in a more familiar storage virtualization model heavy lifting model. In the heavy lifting model more work is done by the virtualization or abstraction software to create an added value, however can be a concern for bottlenecks depending how deployed.

Service categories

Software defined, storage hypervisor, virtual storage or storage virtualization?

Most storage virtualization, storage hypervisors and virtual storage solutions that are hardware or software based (e.g. software defined) implemented what is referred to as in band. With in band the storage virtualization software or hardware sits between the applications (northbound) and storage systems or services (southbound).

While this approach can be easier to carry out along with add value add services, it can also introduce scaling bottlenecks depending on implementations. Examples of in band storage virtualization includes Actifio, DataCore, EMC VMAX with third-party storage, HDS with third-party storage, IBM SVC (and their V7000 Storwize storage system based on it) and NetApp Vseries among others. An advantage of in band approaches is that there should not need to be any host or server-side software requirements and SAN transparency.

There is another approach called out-of-band that has been tried. However pure out-of-band requires a management system along with agents, drivers, shims, plugins or other software resident on host application servers.

fast path control path
Example of generic fast path control path model

ViPR takes a different approach, one that was seen a few years ago with EMC Invista called fast path, control path that for the most part stays out of the data path. While this is like out-of-band, there should not be a need for any host server-side (e.g. northbound) software. By being a fast path control path, the virtualization or abstraction and management functions stay out of the way for data being moved or work being done.

Hmm, kind of like how management should be, there to help when needed, out-of-the-way not causing overhead other times ;).

Is EMC the first (even with Invista) to leverage fast path control path?

Actually up until about a year or so ago, or shortly after HP acquired 3PAR they had a solution called Storage Virtualization Services Platform (SVPS) that was OEMd from LSI (e.g. StorAge). Unfortunately, HP decided to retire that as opposed to extend its capabilities for file and object access (northbound) as well as different southbound targets or destination services.

Whats this northbound and southbound stuff?

Simply put, think in terms of a vertical stack with host servers (PMs or VMs) on the top with applications (and hypervisors or other tools such as databases) on top of them (e.g. north).

software defined storage
Northbound servers, southbound storage systems and cloud services

Think of storage systems, appliances, cloud services or other target destinations on the bottom (or south). ViPR sits in between providing storage services and management to the northbound servers leveraging the southbound storage.

What host servers can VIPR support for serving storage?

VIPR is being designed to be server agnostic (e.g. virtual or physical), along with operating system agnostic. In addition VIPR is being positioned as capable of serving northbound (e.g. up to application servers) block, file or object as well as accessing southbound (e.g. targets) block, file and object storage systems, file systems or services.

Note that a difference between earlier similar solutions from EMC have been either block based (e.g. Invista, VPLEX, VMAX with third-party storage), or file based. Also note that this means VIPR is not just for VMware or virtual server environments and that it can exist in legacy, virtual or cloud environments.

ViPR image

Likewise VIPR is intended to be application agnostic supporting little data, big data, very big data ( VBD) along with Hadoop or other specialized processing. Note that while VIPR will support HDFS in addition to NFS and CIFS file based access, Hadoop will not be running on or in the VIPR controllers as that would live or run elsewhere.

How will VIPR be deployed and licensed?

EMC has indicated that the VIPR controller will be delivered as software that installs into a virtual appliance (e.g. VMware) running as a virtual machine (VM) guest. It is not clear when support will exist for other hypervisors (e.g. Microsoft Hyper-V, Citrix/XEN, KVM or if VMware vSphere with vCenter or simply on ESXi free version). As of the announcement pre briefing, EMC had not yet finalized pricing and licensing details. General availability is expected in the second half of calendar 2013.

Keep in mind that the VIPR controller (software) runs as a VM that can be hosted on a clustered hypervisor for HA. In addition, multiple VIPR controllers can exist in a cluster to further enhance HA.

Some questions to be addressed among others include:

  • How and where are IOs intercepted?
  • Who can have access to the APIs, what is the process, is there a developers program, SDK along with resources?
  • What network topologies are supported local and remote?
  • What happens when JBOD is used and no advanced data services exist?
  • What are the characteristics of the object access functionality?
  • What if any specific switches or data path devices and tools are needed?
  • How does a host server know to talk with its target and ViPR controller know when to intercept for handling?
  • Will SNIA CDMI be added and when as part of the object access and data services capabilities?
  • Are programmatic bindings available for the object access along with support for other APIs including IOS?
  • What are the performance characteristics including latency under load as well as during a failure or fault scenario?
  • How will EMC place Vplex and its caching model on a local and wide area basis vs. ViPR or will we see those two create some work together, if so, what will that be?

Bottom line (for now):

Good move for EMC, now let us see how they execute including driving adoption of their open APIs, something they have had success in the past with Centera and other solutions. Likewise, let us see what other storage vendors become supported or add support along with how pricing and licensing are rolled out. EMC will also have to articulate when and where to use ViPR vs. VPLEX along with other storage systems or management tools.

Additional related material:
Are you using or considering implementation of a storage hypervisor?
Cloud and Virtual Data Storage Networking (CRC)
Cloud conversations: Public, Private, Hybrid what about Community Clouds?
Cloud, virtualization, storage and networking in an election year
Does software cut or move place of vendor lock-in?
Don’t Use New Technologies in Old Ways
EMC VPLEX: Virtual Storage Redefined or Respun?
How many degrees separate you and your information?
Industry adoption vs. industry deployment, is there a difference?
Many faces of storage hypervisor, virtual storage or storage virtualization
People, Not Tech, Prevent IT Convergence
Resilient Storage Networks (Elsevier)
Server and Storage Virtualization Life beyond Consolidation
Should Everything Be Virtualized?
The Green and Virtual Data Center (CRC)
Two companies on parallel tracks moving like trains offset by time: EMC and NetApp
Unified storage systems showdown: NetApp FAS vs. EMC VNX
backup, restore, BC, DR and archiving
VMware buys virsto, what about storage hypervisor’s?
Who is responsible for vendor lockin?

Ok, nuff said (for now)

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

EMC ViPR virtual physical object and software defined storage (SDS)

Storage I/O trends

Introducing EMC ViPR

This is the first in a three part series, read part II here, and part III here.

During the recent EMCworld event in Las Vegas among other things, EMC announced ViPR (read announcement here) . Note that this ViPR is not the same EMC Viper project from a few years ago that was focused on data footprint reduction (DFR) including dedupe. ViPR has been in the works for a couple of years taking a step back rethinking how storage is can be used going forward.

EMCworld

ViPR is not a technology creation developed in a vacuum instead includes customer feedback, wants and needs. Its core themes are extensible, open and scalable.

EMCworld

On the other hand, ViPR addresses plenty of buzzword bingo themes including:

  • Agility, flexibility, multi-tenancy, orchestration
  • Virtual appliance and control plane
  • Data services and storage management
  • IT as a Service (ITaaS) and Infrastructure as a Service (IaaS)
  • Scaling with stability without compromise
  • Software defined storage
  • Public, private, hybrid cloud
  • Big data and little data
  • Block, file and object storage
  • Control plane and data plane
  • Storage hypervisor, virtualization and virtual storage
  • Heterogeneous (third-party) storage support
  • Open API and automation
  • Self-service portals, service catalogs

Buzzword bingo

Note that this is essentially announcing the ViPR product and program initiative with general availability slated for second half of 2013.

What is ViPR addressing?

IT and data infrastructure (server, storage, IO and networking hardware, software) challenges for traditional, virtual and cloud environments.

  • Data growth, after all, there is no such thing as an information recession with more data being generated, moved, processed, stored and retained for longer periods of time. Then again, people and data are both getting larger and living longer, for both little data and big data along with very big data.
  • Overhead and complexities associated with managing and using an expanding, homogenous (same vendor, perhaps different products) or heterogeneous (different vendors and products) data infrastructure across cloud, virtual and physical, legacy and emerging. This includes add, changes or moves, updates and upgrades, retirement and replacement along with disposition, not to mention protecting data in an expanding footprint.
  • road to cloud

  • Operations and service management, fault and alarm notification, resolution and remediation, rapid provisioning, removing complexity and cost of doing things vs. simply cutting cost and compromising service.

EMC ViPR

What is this software defined storage stuff?

There is the buzzword aspect, and then there is the solution and business opportunity.

First the buzzword aspect and bandwagon:

  • Software defined marketing (SDM) Leveraging software defined buzzwords.
  • Software defined data centers (SDDC) Leveraging software to derive more value from hardware while enabling agility, flexibility, and scalability and removing complexity. Think the Cloud and Virtual Data Center models including those from VMware among others.
  • Software defined networking (SDN) Rather than explain, simply look at Nicira that VMware bought in 2012.
  • Software defined storage (SDS) Storage software that is independent of any specific hardware, which might be a bit broad, however it is also narrower than saying anything involving software.
  • Software defined BS (SDBS) Something that usually happens as a result when marketers and others jump on a bandwagon, in this case software defined marketing.

Note that not everything involved with software defined is BS, only some of the marketing spins and overuse. The downside to the software defined marketing and SDBS is the usual reaction of skepticism, cynicism and dismissal, so let us leave the software defined discussion here for now.

software defined storage

An example of software defined storage can be storage virtualization, virtual storage and storage hypervisors that are hardware independent. Note that when I say hardware independent, that also means being able to support different vendors systems. Now if you want to have some fun with the software defined storage diehards or purist, tell them that all hardware needs software and all software needs hardware, even if virtual. Further hardware is defined by its software, however lets leave sleeping dogs lay where they rest (at least for now ;)).

Storage hypervisors were a 2012 popular buzzword bingo topic with plenty of industry adoption and some customer deployment. While 2012 saw plenty of SDM buzz including SDC, SDN 2013 is already seeing an increase including software defined servers, and software defined storage.

Regardless of what you view of software defined storage, storage hypervisor, storage virtualization and virtual storage is, the primary focus and goal should be addressing business and application needs. Unfortunately, some of the discussions or debates about what is or is not software defined and related themes lose focus of what should be the core goal of enabling business and applications.

Continue reading in part II of this series here including how ViPR works, who it is for and more analysis.

Ok, nuff said (for now)

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Spring SNW 2013, Storage Networking World Recap

Storage I/O trends

A couple of weeks ago I attended the spring 2013 Storage Networking World (SNW) in Orlando Florida. Talking with SNIA Chairman Wayne Adams and SNIA Director Leo Legar this was the 28th edition of the US SNW (two shows a year), plus the international ones. While I have not been to all 28 of the US SNWs, I have been to a couple of dozen SNWs in the US, Europe and Brazil going back to around 2001 as an attendee, main stage as well as breakout, and tutorial presenter (see here and here).

SNW image

For the spring 2013 SNW I was there for a mix of meetings, analyst briefings, attending the expo, doing some podcasts (see below), meeting with IT professionals (e.g. customers), VARs, vendors along with presenting three sessions (you can download them and others backup, restore, BC, DR and archiving).

Some of the buzz and themes heard included big data was a little topic at the event, while cloud was in the conversations, dedupe and data footprint reduction (DFR) do matter for some people and applications. However also a common theme with customers including Media and Entertainment (M&E) is that not everything can be duped thus other DFR approaches are needed.

There was some hype in and around hybrid storage along with storage hypervisors, which was also an entertaining panel discussion with HDS (Claus Mikkelsen aka @YoClaus), Datacore, IBM and Virstro.

The theme of that discussion seemed for the most part to gravitate towards realities of storage virtualization and less about the hypervisor hype. Some software defined marketing hype I heard is that it is impossible to spend more than a million dollars on a server today. I guess with the applicable caveats, qualifiers and context that could be true, however I also know some vendors and customers that would say otherwise.

Lunch
Lunchtime at SNW Spring 2013

Not surprisingly, there was an increase in vendors wanting to jump on the software defined and object storage bandwagons; however, customers tended to be curious at best, confused or concerned otherwise. Speaking of object storage, check out this podcast discussion with Cleversafe customer Justin Stottlemyer of Shutterfly and his 80PB environment.

In addition to Cleversafe, heard from Astute (if you need fast iSCSI storage check them out), Avere has a new NAS for dummies book out, Exablox a storage system startup with emphasis on scalability, ease of use and NAS access and hybrid storage Tegile. Also, check out SwifTest for generating application workloads and measurement that had their customer Go Daddy presenting at the event. A couple of others to keep an eye on include Raxco with their thin provision storage reclamation tool, and Infinio with their NAS acceleration for VMware software tools among others.

backup, restore, BC, DR and archiving

Here are the three presentations that I did while at the event:

Analyst Perspective: Increase Your Return on Innovation (The New ROI) With Data Management and Dedupe
There is no such thing as an information recession with more data to move, process and store, however there are economic challenges. Likewise, people and data are living longer and getting larger which requires leveraging data footprint reduction (DFR) techniques on a broader focus. It is time to move upstream finding and fixing things at the source to reduce the downstream impact of expanding data footprints, enabling more to be done with what you have.

Analyst Perspective: Metrics that Matter – Meritage of Data Management and Data Protection
Not everything in the data center or information factory is the same. This session recaps and builds off the morning increase your ROI with data footprint and data management session while setting the stage for the rethinking data protection (backup, BC and DR). Are you maximizing the return on innovation in how using new tools and technology in new ways, vs. using new tools in old ways? Also discussed performance capacity planning, forecasting analysis in cloud, virtual and physical environments. Without metrics that matter, you are flying blind, or perhaps missing opportunities to further drive your return on innovation and return on investment.

Analyst Perspective: Time to Rethink Data Protection Including BC and DR
When it comes to today’s data centers and information factories including physical, virtual and cloud, everything is not the same, so why treat business continuance (BC), disaster recovery (DR) and data protection in general the same? Simply using new tools, technologies and techniques in the same old ways is no longer a viable option. Since there is no such thing as a data or information recession, yet there are economic and budget challenges, along with new or changing threat risks, now is the time to review data protection including BC and DR including using new technologies in new ways.

You can view the complete SNW USA spring 2013 agenda here.

audio
Podcasts are also available on

Here are links to some podcasts from spring 2013 SNW:
Stottlemyer of Shutterfly and object storage discussion
Dave Demming talking tech education from SNW Spring 2013
Farley Flies into SNW Spring 2013
Talking with Tony DiCenzo at SNW Spring 2013
SNIA Spring 2013 update with Wayne Adams
SNIA’s new SPDEcon conference

Also, check out these podcasts from fall 2012 US and Europe SNWs:
Ben Woo on Big Data Buzzword Bingo and Business Benefits
Networking with Bruce Ravid and Bruce Rave
Industry trends and perspectives: Ray Lucchesi on Storage and SNW
Learning with Leo Leger of SNIA
Meeting up with Marty Foltyn of SNIA
Catching up with Quantum CTE David Chapa (Now with Evault)
Chatting with Karl Chen at SNW 2012
SNW 2012 Wayne’s World
SNW Podcast on Cloud Computing
HDS Claus Mikkelsen talking storage from SNW Fall 2012

Storage I/O trends

What this all means?

While busy, I liked this edition of SNW USA in that it had a great agenda with diversity and balance of speaker sessions (some tutorials, some vendors, some IT customers, and some analysts) vs. too many of one specific area.

In addition to the agenda and session length, the venue was good, big enough, however not spread out so much to cause loss of the buzz and energy of the event.

This SNW had some similar buzz or energy as early versions granted without the hype and fanfare of a startup industry or focus area (that would be some of the other events today)

Should SNW go to a once a year event?

While it would be nice to have a twice a year venue for convenience, practicality and budgets say once would be enough given all the other conferences and venues on the agenda (or that could be).

The next SNW USA will be October 15 to 17 2013 in Long Beach California, and Europe in Frankfurt Germany October 29-30 2013.

Thanks again to all the attendees, participants, vendor exhibitors, event organizers and SNIA, SNW/Computerworld staffs for another great event.

Ok, nuff said

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Conversation with Justin Stottlemyer of Shutterfly and object storage discussion

Now also available via

This is a new episode in the continuing StorageIO industry trends and perspectives pod cast series (you can view more episodes or shows along with other audio and video content here) as well as listening via iTunes or via your preferred means using this RSS feed (https://storageio.com/StorageIO_Podcast.xml)

StorageIO industry trends cloud, virtualization and big data

In this episode from SNW Spring 2013 in Orlando Florida, Bruce Ravid (@BruceRave) and me visit with Justin Stottlemyer (@JHStott) who is a Fellow and Storage Architect at Shutterfly.

Shutterfly image via shutterfly.com

Our conversation centers on how Justin and Shutterfly maximize their return on innovation (the new ROI) by using object storage along with other technology and techniques to create a resilient, scalable flexible data infrastructure.

Justin was at SNW presenting on overcoming object integration at Shutterfly where their data infrastructure consists of 80PB of storage to house over 30PB of user content data that continues to grow.

Example of how we have used Shutterfly to create photo books from vacations

For those not familiar, Shutterfly providers customers with free unlimited storage of their photos which can then be printed in coffee table type books such as the one shown in the above figure. My wife has used Shutterfly a few times to create photo books such as the one shown above in the image.

As you will hear Justin explain in the pod cast, photos get uploaded and ingested into their environment and then available for printing.

In addition to talking about object storage, private clouds, business continuance (BC) and disaster recovery, other topics include performance and capacity planning, maximizing return on innovation in addition to return on investment among other items.
Varies and managed by user interface

Listen in to hear how Justin and Shutterfly are currently managing 80PB of storage with over 30PB of user data that continues to grow.

Click here (right-click to download MP3 file) or on the microphone image to listen to the conversation with Justin and myself.

StorageIO podcast

Also available via

Watch (and listen) for more StorageIO industry trends and perspectives audio blog posts pod casts and other upcoming events. Also be sure to heck out other related pod casts, videos, posts, tips and industry commentary at StorageIO.com and StorageIOblog.com.

Enjoy this episode from SNW Spring 2013 with Justin Stottlemyer of Shutterfly.

Speaking of cloud and object storage, check out www.objectstoragecenter.com to view more related material.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

March 2013 Server and StorageIO Update Newsletter

StorageIO News Letter Image
March 2013 News letter

Welcome to the March 2013 edition of the StorageIO Update news letter including a new format and added content.

You can get access to this news letter via various social media venues (some are shown below) in addition to StorageIO web sites and subscriptions.

Click on the following links to view the March 2013 edition as (HTML sent via Email) version, or PDF versions.

Visit the news letter page to view previous editions of the StorageIO Update.

You can subscribe to the news letter by clicking here.

Enjoy this edition of the StorageIO Update news letter, let me know your comments and feedback.

Nuff said for now

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Cloud conversations: AWS EBS, Glacier and S3 overview (Part II S3)

Storage I/O industry trends image

Amazon Web Services (AWS) recently added EBS Optimized support for enhanced bandwidth EC2 instances (read more here). This industry trends and perspective cloud conversation is the second (looking at S3 object storage) in a three-part series companion to the AWS EBS optimized post found here. Part I is here (closer look at EBS) and part III is here (tying it all together).

AWS image via Amazon.com

For those not familiar, Simple Storage Services (S3), Glacier and Elastic Block Storage (EBS) are part of the AWS cloud storage portfolio of services. With S3, you specify a region where a bucket is created that will contain objects that can be written, read, listed and deleted. You can create multiple buckets in a region with unlimited number of objects ranging from 1 byte to 5 Tbytes in size per bucket. Each object has a unique, user or developer assigned access key. In addition to indicating which AWS region, S3 buckets and objects are provisioned using different levels of availability, durability, SLA’s and costs (view S3 SLA’s here).

AWS S3 example image

Cost will vary depending on the AWS region being used, along if Standard or Reduced Redundancy Storage (RSS) selected. Standard S3 storage is designed with 99.999999999% durability (how many copies exists) and 99.99% availability (how often can it be accessed) on an annual basis capable of two data centers becoming un-available.

As its name implies, for a lower fee and level of durability, S3 RRS has an annual durability of 99.999% and availability of 99.99% capable of a single data center loss. In the following figure durability is how many copies of data exist spread across different servers and storage systems in various data centers and availability zones.

cloud storage and object storage across availability zone image

What would you put in RRS vs. Standard S3 storage?

Items that need some level of persistence that can be refreshed, recreated or restored from some other place or pool of storage such as thumbnails or static content or read caches. Other items would be those that you could tolerant some downtime while waiting for data to be restored, recovered or rebuilt from elsewhere in exchange for a lower cost.

Different AWS regions can be chosen for regulatory compliance requirements, performance, SLA’s, cost and redundancy with authentication mechanisms including encryption (SSL and HTTPS) to make sure data is kept secure. Various rights and access can be assigned to objects including making them public or private. In addition to logical data protection (security, identity and access management (IAM), encryption, access control) policies also apply to determine level of durability and availability or accessibility of buckets and objects. Other attributes of buckets and objects include life-cycle management polices and logging of activity to the items. Also part of the objects are meta data containing information about the data being stored shown in a generic example below.

Cloud storage and object storage spread across availability zones figure

Access to objects is via standard REST and SOAP interfaces with an Application Programming Interface (API). For example default access is via HTTP along with a Bit Torrent interface with optional support via various gateways, appliances and software tools.

Cloud storage and object storage IO figure
Example cloud and object storage access

The above figure via Cloud and Virtual Data Storage Networking (CRC Press) shows a generic example applicable to AWS services including S3 being accessed in different ways. For example I access my S3 buckets and objects via Jungle Disk (one of the tools I use for data protection) that can also access my Rackspace Cloudfiles data. In the following figure there are examples of some of my S3 buckets and objects used by different applications and tools that I have in various AWS regions.

Image of AWS S3 usage
AWS S3 buckets and objects in different regions

Note that I sometimes use other AWS regions outside the US for testing purposes, for compliance purpose my production, business or personal data is only in the US regions.

The following figure is a generic example of how cloud and object storage are accessed using different tools, hardware, software and API’s along with gateways. AWS is an example of what is shown in the following figure as a Cloud Service and S3, EBS or Glacier as cloud storage. Common example API commands are also shown which will vary by different vendors, products or solution definitions or implementations. While Amazon S3 API which is REST HTTP based has become an industry de facto standard, there are other API’s including CDMI (Cloud Data Management Interface) developed by SNIA which has gained ISO accreditation.

Cloud storage and object storage I/O figure
Cloud and object storage access example via Cloud and Virtual Data Storage Networking

In addition to using Jungle Disk which manages my AWS keys and objects that it creates, I can also access my S3 objects via the AWS management console and web tools, also via third-party tools including Cyberduck.

Cyberduck tool.

Additional reading and related items:

Welcome to the Cloud Bulk Object Storage Resources Center

Updated 8/31/19

Cloud Bulk Big Data Software Defined Object Storage Resources

server storage I/O trends Object Storage resources

Welcome to the Cloud, Big Data, Software Defined, Bulk and Object Storage Resources Center Page objectstoragecenter.com.

This object storage resources, along with software defined, cloud, bulk, and scale-out storage page is part of the server StorageIOblog microsite collection of resources. Software-defined, Bulk, Cloud and Object Storage exist to support expanding and diverse application data demands.

Other related resources include:

  • Software Defined, Cloud, Bulk and Object Storage Fundamentals
  • Software Defined Data Infrastructure Essentials book (CRC Press)
  • Cloud, Software Defined, Scale-Out, Object Storage News Trends
  •  Object storage SDDC SDDI
    Via Software Defined Data Infrastructure Essentials (CRC Press 2017)

    Bulk, Cloud, Object Storage Solutions and Services

    There are various types of cloud, bulk, and object storage including public services such as Amazon Web Services (AWS) Simple Storage Service (S3), Backblaze, Google, Microsoft Azure, IBM Softlayer, Rackspace among many others. There are also solutions for hybrid and private deployment from Cisco, Cloudian, CTERA, Cray, DDN, Dell EMC, Elastifile, Fujitsu, Vantera/HDS, HPE, Hedvig, Huawei, IBM, NetApp, Noobaa, OpenIO, OpenStack, Quantum, Rackspace, Rozo, Scality, Spectra, Storpool, StorageCraft, Suse, Swift, Virtuozzo, WekaIO, WD, among many others.

    Bulk Cloud Object storage SDDC SDDI
    Via Software Defined Data Infrastructure Essentials (CRC Press 2017)

    Cloud products and services among others, along with associated data infrastructures including object storage, file systems, repositories and access methods are at the center of bulk, big data, big bandwidth and little data initiatives on a public, private, hybrid and community basis. After all, not everything is the same in cloud, virtual and traditional data centers or information factories from active data to in-active deep digital archiving.

    Object Context Matters

    Before discussing Object Storage lets take a step back and look at some context that can clarify some confusion around the term object. The word object has many different meanings and context, both inside of the IT world as well as outside. Context matters with the term object such as a verb being a thing that can be seen or touched as well as a person or thing of action or feeling directed towards.

    Besides a person, place or physical thing, an object can be a software-defined data structure that describes something. For example, a database record describing somebody’s contact or banking information, or a file descriptor with name, index ID, date and time stamps, permissions and access control lists along with other attributes or metadata. Another example is an object or blob stored in a cloud or object storage system repository, as well as an item in a hypervisor, operating system, container image or other application.

    Besides being a verb, an object can also be a noun such as disapproval or disagreement with something or someone. From an IT context perspective, an object can also refer to a programming method (e.g. object-oriented programming [oop], or Java [among other environments] objects and classes) and systems development in addition to describing entities with data structures.

    In other words, a data structure describes an object that can be a simple variable, constant, complex descriptor of something being processed by a program, as well as a function or unit of work. There are also objects unique or with context to specific environments besides Java or databases, operating systems, hypervisors, file systems, cloud and other things.

    The Need For Bulk, Cloud and Object Storage

    There is no such thing as an information recession with more data being generated, moved, processed, stored, preserved and served, granted there are economic realities. Likewise as a society our dependence on information being available for work or entertainment, from medical healthcare to social media and all points in between continues to increase (check out the Human Face of Big Data).

    In addition, people and data are living longer, as well as getting larger (hence little data, big data and very big data). Cloud products and services along with associated object storage, file systems, repositories and access methods are at the center of big data, big bandwidth and little data initiatives on a public, private, hybrid and community basis. After all, not everything is the same in cloud, virtual and traditional data centers or information factories from active data to in-active deep digital archiving.

    Click here to view (and hear) more content including cloud and object storage fundamentals

    Click here to view software defined, bulk, cloud and object storage trend news

    cloud object storage

    Where to learn more

    The following resources provide additional information about big data, bulk, software defined, cloud and object storage.



    Via InfoStor: Object Storage Is In Your Future
    Via FujiFilm IT Summit: Software Defined Data Infrastructures (SDDI) and Hybrid Clouds
    Via MultiChannel: After ditching cloud business, Verizon inks Virtual Network Services deal with Amazon
    Via MultiChannel: Verizon Digital Media Services now offers integrated Microsoft Azure Storage
    Via StorageIOblog: AWS EFS Elastic File System (Cloud NAS) First Preview Look
    Via InfoStor: Cloud Storage Concerns, Considerations and Trends
    Via InfoStor: Object Storage Is In Your Future
    Via Server StorageIO: April 2015 Newsletter Focus on Cloud and Object storage
    Via StorageIOblog: AWS S3 Cross Region Replication storage enhancements
    Cloud conversations: AWS EBS, Glacier and S3 overview
    AWS (Amazon) storage gateway, first, second and third impressions
    Cloud and Virtual Data Storage Networking (CRC Book)

    View more news, trends and related cloud object storage activity here.

    Videos and podcasts at storageio.tv also available via Applie iTunes.

    Human Face of Big Data
    Human Face of Big Data (Book review)

    Seven Databases in Seven weeks Seven Databases in Seven Weeks (Book review)

    Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

    Software Defined Data Infrastructure Essentials Book SDDC

    What This All Means

    Object and cloud storage are in your future, the questions are when, where, with what and how among others.

    Watch for more content and links to be added here soon to this object storage center page including posts, presentations, pod casts, polls, perspectives along with services and product solutions profiles.

    Ok, nuff said, for now.

    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

    February 2013 Server and StorageIO Update Newsletter

    StorageIO News Letter Image
    February 2013 News letter

    Welcome to the February 2013 edition of the StorageIO Update news letter including a new format and added content.

    You can get access to this news letter via various social media venues (some are shown below) in addition to StorageIO web sites and subscriptions.

    Click on the following links to view the February 2013 edition as (HTML sent via Email) version, or PDF versions.

    Visit the news letter page to view previous editions of the StorageIO Update.

    You can subscribe to the news letter by clicking here.

    Enjoy this edition of the StorageIO Update news letter, let me know your comments and feedback.

    Nuff said for now

    Cheers
    Gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    Summary, EMC VMAX 10K, high-end storage systems stayin alive

    StorageIO industry trends cloud, virtualization and big data

    This is a follow-up companion post to the larger industry trends and perspectives series from earlier today (Part I, Part II and Part III) pertaining to today’s VMAX 10K enhancement and other announcements by EMC, and the industry myth of if large storage arrays or systems are dead.

    The enhanced VMAX 10K scales from a couple of dozen up to 1,560 HDDs (or mix of HDD and SSDs). There can be a mix of 2.5 inch and 3.5 inch devices in different drive enclosures (DAE). There can be 25 SAS based 2.5 inch drives (HDD or SSD) in the 2U enclosure (see figure with cover panels removed), or 15 3.5 inch drives (HDD or SSD) in a 3U enclosure. As mentioned, there can be all 2.5 inch (including for vault drives) for up to 1,200 devices, all 3.5 inch drives for up to 960 devices, or a mix of 2.5 inch (2U DAE) and 3.5 inch (3U DAE) for a total of 1,560 drives.

    Image of EMC 2U and 3U DAE for VMAX 10K via EMC
    Image courtesy EMC

    Note carefully in the figure (courtesy of EMC) that the 2U 2.5 inch DAE and 3U 3.5 inch DAE along with the VMAX 10K are actually mounted in a 3rd cabinet or rack that is part of today’s announcement.

    Also note that the DAE’s are still EMC; however as part of today’s announcement, certain third-party cabinets or enclosures such as might be found in a collocation (colo) or other data center environment can be used instead of EMC cabinets.  The VMAX 10K can however like the VMAX 20K and 40K support external storage virtualized similar to what has been available from HDS (VSP/USP) and HP branded Hitachi equivalent storage, or using NetApp V-Series or IBM V7000 in a similar way.

    As mentioned in one of the other posts, there are various software functionality bundles available. Note that SRDF is a separate license from the bundles to give customers options including RecoverPoint.

    Check out the three post industry trends and perspectives posts here, here and here.

    Ok, nuff said.

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    Ceph Day Amsterdam 2012 (Object and cloud storage)

    StorageIO industry trends cloud, virtualization and big data

    Recently while I was in Europe presenting some sessions at conferences and doing some seminars, I was invited by Ed Saipetch (@edsai) of Inktank.com to attend the first Ceph Day in Amsterdam.

    Ceph day image

    As luck or fate would turn out, I was in Nijkerk which is about an hour train ride from Amsterdam central station plus a free day in my schedule. After a morning train ride and nice walk from Amsterdam Central I arrived at the Tobacco Theatre (a former tobacco trading venue) where Ceph Day was underway, and in time for lunch of Krokettens sandwich.

    Attendees at Ceph Day

    Lets take a quick step back and address for those not familiar what is Ceph (Cephalanthera) and why it was worth spending a day to attend this event. Ceph is an open source distributed object scale out (e.g. cluster or grid) software platform running on industry standard hardware.

    Dell server supporting ceph demoSketch of ceph demo configuration

    Ceph is used for deploying object storage, cloud storage and managed services, general purpose storage for research, commercial, scientific, high performance computing (HPC) or high productivity computing (commercial) along with backup or data protection and archiving destinations. Other software similar in functionality or capabilities to Ceph include OpenStack Swift, Basho Riak CS, Cleversafe, Scality and Caringo among others. There are also the tin wrapped software (e.g. appliances or pre-packaged) solutions such as Dell DX (Caringo), DataDirect Networks (DDN) WOS, EMC ATMOS and Centera, Amplidata and HDS HCP among others. From a service standpoint, these solutions can be used to build services similar Amazon S3 and Glacier, Rackspace Cloud files and Cloud Block, DreamHost DreamObject and HP Cloud storage among others.

    Ceph cloud and object storage architecture image

    At the heart of Ceph is RADOS a distributed object store that consists of peer nodes functioning as object storage devices (OSD). Data can be accessed via REST (Amazon S3 like) APIs, Libraries, CEPHFS and gateway with information being spread across nodes and OSDs using a CRUSH based algorithm (note Sage Weil is one of the authors of CRUSH: Controlled, Scalable, Decentralized Placement of Replicated Data). Ceph is scalable in terms of performance, availability and capacity by adding extra nodes with hard disk drives (HDD) or solid state devices (SSDs). One of the presentations pertained to DreamHost that was an early adopter of Ceph to make their DreamObjects (cloud storage) offering.

    Ceph cloud and object storage deployment image

    In addition to storage nodes, there are also an odd number of monitor nodes to coordinate and manage the Ceph cluster along with optional gateways for file access. In the above figure (via DreamHost), load balancers sit in front of gateways that interact with the storage nodes. The storage node in this example is a physical server with 12 x 3TB HDDs each configured as a OSD.

    Ceph dreamhost dreamobject cloud and object storage configuration image

    In the DreamHost example above, there are 90 storage nodes plus 3 management nodes, the total raw storage capacity (no RAID) is about 3PB (12 x 3TB = 36TB x 90 = 3.24PB). Instead of using RAID or mirroring, each objects data is replicated or copied to three (e.g. N=3) different OSDs (on separate nodes), where N is adjustable for a given level of data protection, for a usable storage capacity of about 1PB.

    Note that for more usable capacity and lower availability, N could be set lower, or a larger value of N would give more durability or data protection at higher storage capacity overhead cost. In addition to using JBOD configurations with replication, Ceph can also be configured with a combination of RAID and replication providing more flexibility for larger environments to balance performance, availability, capacity and economics.

    Ceph dreamhost and dreamobject cloud and object storage deployment image

    One of the benefits of Ceph is the flexibility to configure it how you want or need for different applications. This can be in a cost-effective hardware light configuration using JBOD or internal HDDs in small form factor generally available servers, or high density servers and storage enclosures with optional RAID adapters along with SSD. This flexibility is different from some cloud and object storage systems or software tools which take a stance of not using or avoiding RAID vs. providing options and flexibility to configure and use the technology how you see fit.

    Here are some links to presentations from Ceph Day:
    Introduction and Welcome by Wido den Hollander
    Ceph: A Unified Distributed Storage System by Sage Weil
    Ceph in the Cloud by Wido den Hollander
    DreamObjects: Cloud Object Storage with Ceph by Ross Turk
    Cluster Design and Deployment by Greg Farnum
    Notes on Librados by Sage Weil

    Presentations during ceph day

    While at Ceph day, I was able to spend a few minutes with Sage Weil Ceph creator and founder of inktank.com to record a pod cast (listen here) about what Ceph is, where and when to use it, along with other related topics. Also while at the event I had a chance to sit down with Curtis (aka Mr. Backup) Preston where we did a simulcast video and pod cast. The simulcast involved Curtis recording this video with me as a guest discussing Ceph, cloud and object storage, backup, data protection and related themes while I recorded this pod cast.

    One of the interesting things I heard, or actually did not hear while at the Ceph Day event that I tend to hear at related conferences such as SNW is a focus on where and how to use, configure and deploy Ceph along with various configuration options, replication or copy modes as opposed to going off on erasure codes or other tangents. In other words, instead of focusing on the data protection protocol and algorithms, or what is wrong with the competition or other architectures, the Ceph Day focused was removing cloud and object storage objections and enablement.

    Where do you get Ceph? You can get it here, as well as via 42on.com and inktank.com.

    Thanks again to Sage Weil for taking time out of his busy schedule to record a pod cast talking about Ceph, as well 42on.com and inktank for hosting, and the invitation to attend the first Ceph Day in Amsterdam.

    View of downtown Amsterdam on way to train station to return to Nijkerk
    Returning to Amsterdam central station after Ceph Day

    Ok, nuff said.

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved