Viking SATADIMM: Nand flash SATA SSD in DDR3 DIMM slot?

Storage I/O trends

Today computer and data storage memory vendor Viking announced that SSD vendor Solidfire has deployed their SATADIMM modules in DDR3 DIMM (e.g. Random Access Memory (RAM) main memory) slots of their SF SSD based storage solution.

solidfire ssd storage with satadimm
Solidfire SD solution with SATADIMM via Viking

Nand flash SATA SSD in a DDR3 DIMM slot?

Per Viking, Solidfire uses the SATADIMM as boot devices and cache to complement the normal SSD drives used in their SF SSD storage grid or cluster. For those not familiar, Solidfire SF storage systems or appliances are based on industry standard servers that are populated with SSD devices which in turn are interconnected with other nodes (servers) to create a grid or cluster of SSD performance and space capacity. Thus as nodes are added, more performance, availability and capacity are also increased all of which are accessed via iSCSI. Learn more about Solidfire SD solutions on their website here.

Here is the press release that Viking put out today:

Viking Technology SATADIMM Increases SSD Capacity in SolidFire’s Storage System (Press Release)

Viking Technology’s SATADIMM enables higher total SSD capacity for SolidFire systems, offering cloud infrastructure providers an optimized and more powerful solution

FOOTHILL RANCH, Calif., August 12, 2013 – Viking Technology, an industry leading supplier of Solid State Drives (SSDs), Non-Volatile Dual In-line Memory Module (NVDIMMs), and DRAM, today announced that SolidFire has selected its SATADIMM SSD as both the cache SSD and boot volume SSD for their storage nodes. Viking Technology’s SATADIMM SSD enables SolidFire to offer enhanced products by increasing both the number and the total capacity of SSDs in their solution.

“The Viking SATADIMM gives us an additional SSD within the chassis allowing us to dedicate more drives towards storage capacity, while storing boot and metadata information securely inside the system,” says Adam Carter, Director of Product Management at SolidFire. “Viking’s SATADIMM technology is unique in the market and an important part of our hardware design.”

SATADIMM is an enterprise-class SSD in a Dual In-line Memory Module (DIMM) form factor that resides within any empty DDR3 DIMM socket. The drive enables SSD caching and boot capabilities without using a hard disk drive bay. The integration of Viking Technology’s SATADIMM not only boosts overall system performance but allows SolidFire to minimize potential human errors associated with data center management, such as accidentally removing a boot or cache drive when replacing an adjacent failed drive.

“We are excited to support SolidFire with an optimal solid state solution that delivers increased value to their customers compared to traditional SSDs,” says Adrian Proctor, VP of Marketing, Viking Technology. “SATADIMM is a solid state drive that takes advantage of existing empty DDR3 sockets and provides a valuable increase in both performance and capacity.”

SATADIMM is a 6Gb SATA SSD with capacities up to 512GB. A next generation SAS solution with capacities of 1TB & 2TB will be available early in 2014. For more information, visit our website www.vikingtechnology.com or email us at sales@vikingtechnology.com.

Sales information is available at: www.vikingtechnology.com, via email at sales@vikingtechnology.com or by calling (949) 643-7255.

About Viking Technology Viking Technology is recognized as a leader in NVDIMM technology. Supporting a broad range of memory solutions that bridge DRAM and SSD, Viking delivers solutions to OEMs in the enterprise, high-performance computing, industrial and the telecommunications markets. Viking Technology is a division of Sanmina Corporation (Nasdaq: SANM), a leading Electronics Manufacturing Services (EMS) provider. More information is available at www.vikingtechnology.com.

About SolidFire SolidFire is the market leader in high-performance data storage systems designed for large-scale public and private cloud infrastructure. Leveraging an all-flash scale-out architecture with patented volume-level quality of service (QoS) control, providers can now guarantee storage performance to thousands of applications within a shared infrastructure. In-line data reduction techniques along with system-wide automation are fueling new block-storage services and advancing the way the world uses the cloud.

What’s inside the press release

On the surface this might cause some to jump to the conclusion that the nand flash SSD is being accessed via the fast memory bus normally used for DRAM (e.g. main memory) of a server or storage system controller. For some this might even cause a jump to conclusion that Viking has figured out a way to use nand flash for reads and writes not only via a DDR3 DIMM memory location, as well as doing so with the Serial ATA (SATA) protocol enabling server boot and use by any operating system or hypervisors (e.g. VMware vSphere or ESXi, Microsoft Hyper-V, Xen or KVM among others).

Note for those not familiar or needing a refresh on DRAM, DIMM and related items, here is an excerpt from Chapter 7 (Servers – Physical, Virtual and Software) from my book "The Green and Virtual Data Center" (CRC Press).

7.2.2 Memory

Computers rely on some form of memory ranging from internal registers, local on-board processor Level 1 (L1) and Level 2 (L2) caches, random accessible memory (RAM), non-volatile RAM (NVRAM) or Flash along with external disk storage. Memory, which includes external disk storage, is used for storing operating system software along with associated tools or utilities, application programs and data. Read more of the excerpt here…

Is SATADIMM memory bus nand flash SSD storage?

In short no.

Some vendors or their surrogates might be tempted to spin such a story by masking some details to allow your imagination to run wild a bit. When I saw the press release announcement I reached out to Tinh Ngo (Director Marketing Communications) over at Viking with some questions. I was expecting the usual marketing spin story, dancing around the questions with long answers or simply not responding with anything of substance (or that requires some substance to believe). Again what I found was the opposite and thus want to share with you some of the types of questions and answers.

So what actually is SATADIMM? See for yourself in the following image (click on it to view or Viking site).

Via Viking website, click on image or here to learn more about SATADIMM

Does SATADIMM actually move data via DDR3 and memory bus? No, SATADIMM only draws power from it (yes nand flash does need power when in use contrary to a myth I was told about).

Wait, then how is data moved and how does it get to and through the SATA IO stack (hardware and software)?

Simple, there is a cable connector that attached to the SATADIMM that in turn attached to an internal SATA port. Or using a different connector cable attach the SATADIMM (up to four) to a standard SAS internal port such as on a main board, HBA, RAID or caching adapter.

industry trend

Does that mean that Viking and who ever uses SATADIMM is not actually moving data or implementing SATA via the memory bus and DDR3 DIMM sockets? That would be correct, data movement occurs via cable connection to standard SATA or SAS ports.

Wait, why would I give up a DDR3 DIMM socket in my server that could be used for more DRAM? Great question and one that should be it depends on if you need more DRAM or more nand flash? If you are out of drive slots or PCIe card slots and have enough DRAM for your needs along with available DDR3 slots, you can stuff more nand flash into those locations assuming you have SAS or SATA connectivity.

satadimm
SATADIMM with SATA connector top right via Viking

satadimm sata connector
SATADIMM SATA connector via Viking

satadimm sas connector
SATADIMM SAS (Internal) connector via Viking

Why not just use the onboard USB ports and plug-in some high-capacity USB thumb drives to cut cost? If that is your primary objective it would probably work and I can also think of some other ways to cut cost. However those are also probably not the primary tenants that people looking to deploy something like SATADIMM would be looking for.

What are the storage capacities that can be placed on the SATADIMM? They are available in different sizes up to 400GB for SLC and 480GB for MLC. Viking indicated that there are larger capacities and faster 12Gb SAS interfaces in the works which would be more of a surprise if there were not. Learn more about current product specifications here.

Good questions. Attached are three images that sort of illustrates the connector. As well, why not a USB drive; well, there are customers that put 12 of these in the system (with up to 480GB usable capacity) that equates to roughly an added 5.7TBs inside the box without touching the drive bays (left for mass HDD’s). You will then need to raid/connect) all the SATADIMM via a HBA.

How fast is the SATADIMM and does putting it into a DDR3 slot speed things up or slow them down? Viking has some basic performance information on their site (here). However generally should be the same or similar to reach a SAS or SATA SSD drive, although keep SSD metrics and performance in the proper context. Also keep in mind that the DDR3 DIMM slot is only being used for power and not real data movement.

Is the SATADIMM using 3Gbs or 6Gbs SATA? Good questions, today is 6Gb SATA (remember that SATA can attach to a SAS port however not vise versa). Lets see if Viking responds in the comments with more including RAID support (hardware or software) along with other insight such as UNMAP, TRIM, Advanced Format (AF) 4KByte blocks among other things.

Have I actually tried SATADIMM yet? No, not yet. However would like to give it a test drive and workout if one were to show up on my doorstep along with disclosure and share the results if applicable.

industry trend

Future of nand flash in DRAM DIMM sockets

Keep in mind that someday nand flash will actually seem not only in a Webex or Powerpoint demo preso (e.g. similar to what Diablo Technology is previewing), as well as in real use for example what Micron earlier this year predicted for flash on DDR4 (more DDR3 vs. DDR4 here).

Is SATADIMM the best nand flash SSD approach for every solution or environment? No, however it does give some interesting options for those who are PCIe card, or HDD and SSD drive slot constrained that also have available DDR3 DIMM sockets. As to price, check with Viking, wish I could say tell them Greg from StorageIO sent you for a good value, however not sure what they would say or do.

Related more reading:
How much storage performance do you want vs. need?
Can RAID extend the life of nand flash SSD?
Can we get a side of context with them IOPS and other storage metrics?
SSD & Real Estate: Location, Location, Location
What is the best kind of IO? The one you do not have to do
SSD, flash and DRAM, DejaVu or something new?

Ok, nuff said (for now).

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Cloud, Virtual, Server, Storage I/O and other technology tiering

Storage I/O trends

Tiering technology and the right data center tool for a given task

Depending on who or what is your sphere of influence, or your sources of information and insight are, there will be different views of tiering, particular when it comes to tiered storage and storage tiering for cloud, virtual and traditional environments.

Recently I did piece over at 21st century IT (21cit) titled Tiered Storage Explained that looks at both tiered storage and storage tiering (e.g. movement and migration, automated or manual) that you can read here.

In the data center (or information factory) everything is not the same as different applications have various performance, availability, capacity and economics among other requirements. Consequently there are different levels or categories of service along with associated tiers of technology to support them, more on these in few moments.

Technology tiering is all around you

Tiering is not unique to Information Technology (IT) as it is more common than you may realize, granted, not always called tiering per say. For example there are different tiers of transportation (beside public or private, shared or single use) ranging from planes, trains, bicycles and boats among others.

Dutch BikesDutch TrainAirbus A330Gondola
Tiered transportation (Bikes, Trains, Planes, Gondolas)

Storage I/O trends

Moving beyond IT (we will get back to that shortly), there are other examples of tiered technologies. For example I live in the Stillwater / Minneapolis Minnesota area thus have a need for different types of snow movement and management tools, after all, not all snow situations are the same.

Snow plow
Tiered snow movement technology (Different tools for various tasks)

The other part of the year when the snow is not actually accumulating or the St. Croix river is not frozen which on a good year can be from March to November, its fishing time. That means having different types of fishing rods rigged for various things such as casting, trolling or jigging, not to mention big fish or little fish, something like how a golfer has different clubs. While like a golfer a single fishing rod can do the task, it’s not as practical thus different tools for various tasks.

Kyak FishingWalleye FishBig Fish
Different sizes and types of fish


Speaking of transportation and automobiles, there are also various metrics some of which have a correlation to Data Center energy use and effectiveness, not to mention EPA Energy Star for Data Centers and Data Center Storage.


Storage I/O trends

Technology tiering in and around the data center

IT data center

Now let’s get back to technology tiering the data center (or information factory) including tiered storage and storage tiering (here’s link to the tiered storage explained piece I mentioned earlier). The three primary building blocks for IT services are processing or compute (e.g. servers, workstations), networking or connectivity and storage that include hardware, software, management tools and applications. These resources in turn get accessed by yes you guessed it, different tiers or categories of devices from mobile smart phones, tablets, laptops, workstations or terminals browsers, applets and other presentation services.

IT building blocks, server, storage, networks

Lets focus on storage for a bit (pun intended)

Keep in mind that not everything is the same in the data center from a performance, availability, capacity and economic perspective. This means different threat risks to protect applications and data against, performance or space capacity needs among others.

data protection tiers
Avoid treating all threat risks the same, tiered data protection

Tiered data protection
Part of modernizing data protection is aligning various tools and technologies to meet different requirements including Recovery Time Objectives (RTO) and Recovery Point Objectives (RPO) along with Service Level Agreements (SLAs) and Service Level Objectives (SLO’s).

In addition to protecting data and applications to meet various needs, there are also tiered storage mediums or media (e.g. HDD, SSD, Tape) along with storage systems.

Storage Tiers
Storage I/O trends

Excerpt, Chapter 9: Storage Services and Systems from my book Cloud and Virtual Data Storage Networking book (CRC Press) available via Amazon (also Kindle) and other venues.

9.2 Tiered Storage

Tiered storage is often referred to by the type of disk drives or media, by the price band, by the architecture or by its target use (online for files, emails and databases; near line for reference or backup; offline for archive). The intention of tiered storage is to configure various types of storage systems and media for different levels of performance, availability, capacity and energy or economics (PACE) capabilities to meet a given set of application service requirements. Other storage mediums such as HDD, SSD, magnetic tape and optical storage devices are also used in tiered storage.

Storage tiering can mean different things to different people. For some it is describing storage or storage systems tied to business, application or information services delivery functional need. Others classify storage tiers by price band or how much the solution costs. For others it’s the size or capacity or functionality. Another way to think of tiering is by where it will be used such as on-line, near-line or off-line (primary, secondary or tertiary). Price bands are a way of categorizing disk storage systems based on price to align with various markets and usage scenarios. For example consumer, small office home office (SOHO) and low-end SMB in a price band of under $5,000 USD, mid to high-end SMB in middle price bands from $50,000 to $100,000 range, and small to large enterprise systems ranging from a few hundred thousand dollars to millions of dollars.

Another method of classification is by high performance active or high-capacity inactive or idle. Storage tiering is also used in the context of different mediums such as high performance solid state devices (SSD) or 15,500 revolution per minute (15.5K RPM) SAS of Fibre Channel hard disk drives (HDD), or slower 7.2K and 10K high-capacity SAS and SATA drives or magnetic tape. Yet another category is internal dedicated, external shared, networked and cloud accessible using different protocols and interfaces. Adding to the confusion are marketing approaches that emphasize functionality as defining a tier in trying to standout and differentiate above competition. In other words, if you can’t beat someone in a given category or classification then just create a new one.

Another dimension of tiered storage is tiered access, meaning the type of storage I/O interface and protocol or access method used for storing and retrieving data. For example, high-speed 8Gb Fibre Channel (8GFC) and 10GbE Fibre Channel over Ethernet (FCoE) versus older and slower 4GFC or low-cost 1Gb Ethernet (1GbE) or high performance 10GbE based iSCSI for shared storage access or serial attached SCSI (SAS) for direct attached storage (DAS) or shared storage between a pair of clustered servers. Additional examples of tiered access include file or NAS based access of storage using network file system (NFS) or Windows-based Common Internet File system (CIFS) file sharing among others.

Different categories of storage systems, also called tiered storage systems, combine various tiered storage mediums with tiered access and tiered data protection. For example, tiered data protection includes local and remote mirroring, in different RAID levels, point-in-time (pit) copies or snapshots and other forms of securing and maintaining data integrity to meet various service level, RTO and RPO requirements. Regardless of the approach or taxonomy, ultimately, tiered servers, tiered hypervisors, tiered networks, tiered storage and tiered data protection are about and need to map back to the business and applications functionality.

Storage I/O trends

There is more to storage tiering which includes movement or migration of data (manually or automatically) across various types of storage devices or systems. For example EMC FAST (Fully Automated Storage Tiering), HDS Dynamic Tiering, IBM Easy Tier (and here), and NetApp Virtual Storage Tier (replaces what was known as Automated Storage Tiering) among others.

Likewise there are different types of storage systems or appliances from primary to secondary as well as for backup and archiving.

Then there are also markets or price bands (cost) for various storage systems solutions to meet different needs.

Needless to say there is plenty more to tiered storage and storage tiering for later conversations.

However for now check out the following related links:
Non Disruptive Updates, Needs vs. Wants (Requirements vs. wish lists)
Tiered Hypervisors and Microsoft Hyper-V (Different types or classes of Hypervisors for various needs)
tape summit resources (Using different types or tiers of storage)
EMC VMAX 10K, looks like high-end storage systems are still alive (Tiered storage systems)
Storage comments from the field and customers in the trenches (Various perspectives on tools and technology)
Green IT, Green Gap, Tiered Energy and Green Myths (Energy avoidance vs. energy effectiveness and tiering)
Has SSD put Hard Disk Drives (HDD’s) On Endangered Species List? (Tiered storage systems and devices)
Tiered Storage, Systems and Mediums (Storage Tiering and Tiered Storage)
Cloud, virtualization, Storage I/O trends for 2013 and beyond (Industry Trends and Perspectives)
Amazon cloud storage options enhanced with Glacier (Tiered Cloud Storage)
Garbage data in, garbage information out, big data or big garbage? (How much data are your preserving or hoarding?)Saving Money with Green IT: Time To Invest In Information Factories
I/O Virtualization (IOV) and Tiered Storage Access (Tiered storage access)
EMC VFCache respinning SSD and intelligent caching (Storage and SSD tiering including caching
Green and SASy = Energy and Economic, Effective Storage (Tired storage devices)
EMC Evolves Enterprise Data Protection with Enhancements (Tiered data protection)
Inside the Virtual Data Center (Data Center and Technology Tiering)
Airport Parking, Tiered Storage and Latency (Travel and Technology, Cost and Latency)
Tiered Storage Strategies (Comments on Storage Tiering)
Tiered Storage: Excerpt from Cloud and Virtual Data Storage Networking (CRC Press, see more here)
Using SAS and SATA for tiered storage (SAS and SATA Storage Devices)
The Right Storage Option Is Important for Big Data Success (Big Data and Storage)
VMware vSphere v5 and Storage DRS (VMware vSphere and Storage Tiers)
Tiered Communication and Media Venues (Social and Traditional Media for IT)
Tiered Storage Explained

Ok, nuff said (for now).

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

As the platters spin, HDD’s for cloud, virtual and traditional storage environments

HDDs for cloud, virtual and traditional storage environments

Storage I/O trends

Updated 1/23/2018

As the platters spin is a follow-up to a recent series of posts on Hard Disk Drives (HDD’s) along with some posts about How Many IOPS HDD’s can do.

HDD and storage trends and directions include among others

HDD’s will continue to be declared dead into the next decade, just as they have been for over a decade, meanwhile they are being enhanced, continued to be used in evolving roles.

hdd and ssd

SSD will continue to coexist with HDD, either as separate or converged HHDD’s. Where, where and how they are used will also continue to evolve. High IO (IOPS) or low latency activity will continue to move to some form of nand flash SSD (PCM around the corner), while storage capacity including some of which has been on tape stays on disk. Instead of more HDD capacity in a server, it moves to a SAN or NAS or to a cloud or service provider. This includes for backup/restore, BC, DR, archive and online reference or what some call active archives.

The need for storage spindle speed and more

The need for faster revolutions per minute (RPM’s) performance of drives (e.g. platter spin speed) is being replaced by SSD and more robust smaller form factor (SFF) drives. For example, some of today’s 2.5” SFF 10,000 RPM (e.g. 10K) SAS HDD’s can do as well or better than their larger 3.5” 15K predecessors can for both IOPS and bandwidth. This is also an example where the RPM speed of a drive may not be the only determination for performance as it has been in the past.


Performance comparison of four different drive types, click to view larger image.

The need for storage space capacity and areal density

In terms of storage enhancements, watch for the appearance of Shingled Magnetic Recording (SMR) enabled HDD’s to help further boost the space capacity in the same footprint. Using SMR HDD manufactures can put more bits (e.g. areal density) into the same physical space on a platter.


Traditional vs. SMR to increase storage areal density capacity

The generic idea with SMR is to increase areal density (how many bits can be safely stored per square inch) of data placed on spinning disk platter media. In the above image on the left is a representative example of how traditional magnetic disk media lays down tracks next to each other. With traditional magnetic recording approaches, the tracks are placed as close together as possible for the write heads to safely write data.

With new recording formats such as SMR along with improvements to read/write heads, the tracks can be more closely grouped together in an overlapping way. This overlapping way (used in a generic sense) is like how the shingles on a roof overlap, hence Shingled Magnetic Recording. Other magnetic recording or storage enhancements in the works include Heat Assisted Magnetic Recording (HAMR) and Helium filed drives. Thus, there is still plenty of bits and bytes room for growth in HDD’s well into the next decade to co-exist and complement SSD’s.

DIF and AF (Advanced Format), or software defining the drives

Another evolving storage feature that ties into HDD’s is Data Integrity Feature (DIF) that has a couple of different types. Depending on which type of DIF (0, 1, 2, and 3) is used; there can be added data integrity checks from the application to the storage medium or drive beyond normal functionality. Here is something to keep in mind, as there are different types or levels of DIF, when somebody says they support or need DIF, ask them which type or level as well as why.

Are you familiar with Advanced Format (AF)? If not you should be. Traditionally outside of special formats for some operating systems or controllers, that standard open system data storage block, page or sector has been 512 bytes. This has served well in the past, however; with the advent of TByte and larger sized drives, a new mechanism is needed. The need is to support both larger average data allocation sizes from operating systems and storage systems, as well as to cut the overhead of managing all the small sectors. Operating systems and file systems have added new partitioning features such as GUID Partition Table (GPT) to support 1TB and larger SSD, HDD and storage system LUN’s.

These enhancements are enabling larger devices to be used in place of traditional Master Boot Record (MBR) or other operating system partition and allocation schemes. The next step, however, is to teach operating systems, file systems, and hypervisors along with their associated tools or drives how to work with 4,096 byte or 4 Kbyte sectors. The advantage will be to cut the overhead of tracking all of those smaller sectors or file system extents and clusters. Today many HDD’s support AF however by default may have 512-byte emulation mode enabled due to lack of operating system or other support.

Intelligent Power Management, moving beyond drive spin down

Intelligent Power Management (IPM) is a collection of techniques that can be applied to vary the amount of energy consumed by a drive, controller or processor to do its work. These include in the case of an HDD slowing the spin rate of platters, however, keep in mind that mass in motion tends to stay in motion. This means that HDD’s once up and spinning do not need as much relative power as they function like a flywheel. Where their power draw comes in is during reading and write, in part to the movement of reading/write heads, however also for running the processors and electronics that control the device. Another big power consumer is when drives spin up, thus if they can be kept moving, however at a lower rate, along with disabling energy used by read/write heads and their electronics, you can see a drop in power consumption. Btw, a current generation 3.5” 4TB 6Gbs SATA HDD consumes about 6-7 watts of power while in active use, or less when in idle mode. Likewise a current generation high performance 2.5” 1.2TB HDD consumes about 4.8 watts of energy, a far cry from the 12-16 plus watts of energy some use as HDD fud.

Hybrid Hard Disk Drives (HHDD) and Solid State Hybrid Drives (SSDHD)

Hybrid HDD’s (HHDD’s) also known as Solid State Hybrid Drives (SSHD) have been around for a while and if you have read my earlier posts, you know that I have been a user and fan of them for several years. However one of the drawbacks of the HHDD’s has been lack of write acceleration, (e.g. they only optimize for reads) with some models. Current and emerging HDDD’s are appearing with a mix of nand flash SLC (used in earlier versions), MLC and eMLC along with DRAM while enabling write optimization. There are also more drive options available as HHDD’s from different manufactures both for desktop and enterprise class scenarios.

The challenge with HHDD’s is that many vendors either do not understand how they fit and compliment their tiering or storage management software tools or simply do not see the value proposition. I have had vendors and others tell me that the HHDD’s don’t make sense as they are too simple, how can they be a fit without requiring tiering software, controllers, SSD and HDD’s to be viable?

Storage I/O trends

I also see a trend similar to when the desktop high-capacity SATA drives appeared for enterprise-class storage systems in the early 2000s. Some of the same people did not see where or how a desktop class product or technology could ever be used in an enterprise solution.

Hmm, hey wait a minute, I seem to recall similar thinking when SCSI drives appeared in the early 90s, funny how some things do not change, DejaVu anybody?

Does that mean HHDD’s will be used everywhere?

Not necessarily, however, there will be places where they make sense, others where either an HDD or SSD will be more practical.

Networking with your server and storage

Drive native interfaces near-term will remain as 6Gbs (going to 12Gbs) SAS and SATA with some FC (you might still find a parallel SCSI drive out there). Likewise, with bridges or interface cards, those drives may appear as USB or something else.

What about SCSI over PCIe, will that catch on as a drive interface? Tough to say however I am sure we can find some people who will gladly try to convince you of that. FC based drives operating at 4Gbs FC (4GFC) are still being used for some environments however most activity is shifting over to SAS and SATA. SAS and SATA are switching over from 3Gbs to 6Gbs with 12Gbs SAS on the roadmaps.

So which drive is best for you?

That depends; do you need bandwidth or IOPS, low latency or high capacity, small low profile thin form factor or feature functions? Do you need a hybrid or all SSD or a self-encrypting device (SED) also known as Instant Secure Erase (ISE), these are among your various options.

Disk drives

Why the storage diversity?

Simple, some are legacy soon to be replaced and disposed of while others are newer. I also have a collection so to speak that get used for various testing, research, learning and trying things out. Click here and here to read about some of the ways I use various drives in my VMware environment including creating Raw Device Mapped (RDM) local SAS and SATA devices.

Other capabilities and functionality existing or being added to HDD’s include RAID and data copy assist; securely erase, self-encrypting, vibration dampening among other abilities for supporting dense data environments.

Where To Learn More

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Do not judge a drive only by its interface, space capacity, cost or RPM alone. Look under the cover a bit to see what is inside in terms of functionality, performance, and reliability among other options to fit your needs. After all, in the data center or information factory not everything is the same.

From a marketing and fun to talk about new technology perspective, HDD’s might be dead for some. The reality is that they are very much alive in physical, virtual and cloud environments, granted their role is changing.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Seagate provides proof of life: Enterprise HDD enhancements

Storage I/O trends

Proof of life: Enterprise Hard Disk Drives (HDD’s) are enhanced

Last week while hard disk drive (HDD) competitor Western Digital (WD) was announcing yet another (Velobit) in a string of acquisitions ( e.g. earlier included Stec, Arkeia) and investments (Skyera), Seagate announced new enterprise class HDD’s to their portfolio. Note that it was only two years ago that WD acquired Hitachi Global Storage Technologies (HGST) the disk drive manufacturing business of Hitachi Ltd. (not to be confused with HDS).

Seagate

Similar to WD expanding their presence in the growing nand flash SSD market, Seagate also in May of this year extended their existing enterprise class SSD portfolio. These enhancements included new drives with 12Gbs SAS interface, along with a partnership (and investment) with PCIe flash card startup vendor Virident. Other PCIe flash SSD card vendors (manufacturers and OEMs) include Cisco, Dell, EMC, FusionIO, HP, IBM, LSI, Micron, NetApp and Oracle among others.

These new Seagate enterprise class HDD’s are designed for use in cloud and traditional data center servers and storage systems. A month or two ago Seagate also announced new ultra-thin (5mm) client (aka desktop) class HDD’s along with a 3.5 inch 4TB video optimized HDD. The video optimized HDD’s are intended for Digital Video Recorders (DVR’s), Set Top Boxes (STB’s) or other similar applications.

What was announced?

Specifically what Seagate announced were two enterprise class drives, one for performance (e.g. 1.2TB 10K) and the other for space capacity (e.g. 4TB).

 

Enterprise High Performance 10K.7 (aka formerly known as Savio)

Enterprise Terascale (aka formerly known as constellation)

Class/category

Enterprise / High Performance

Enterprise High Capacity

Form factor

2.5” Small Form Factor (SFF)

3.5”

Interface

6Gbs SAS

6Gbs SATA

Space capacity

1,200GB (1.2TB)

4TB

RPM speed

10,000

5,900

Average seek

2.9 ms

12 ms

DRAM cache

64MB

64MB

Power idle / operating

4.8 watts

5.49 / 6.49 watts

Intelligent Power Management (IPM)

Yes – Seagate PowerChoice

Yes – Seagate PowerChoice

Warranty

Limited 5 years

Limited 3 years

Instant Secure Erase (ISE)

Yes

Optional

Other features

RAID Rebuild assist, Self-Encrypting Device (SED)

Advanced Format (AF) 4K block in addition to standard 512 byte sectors

Use cases

Replace earlier generation 3.5” 15K SAS and Fibre Channel HDD’s for higher performance applications including file systems, databases where SSD are not practical fit.

Backup and data protection, replication, copy operations for erasure coding and data dispersal, active in dormant archives, unstructured NAS, big data, data warehouse, cloud and object storage.

Note the Seagate Terascale has a disk rotation speed of 5,900 (5.9K RPM) which is not a typo given the more traditional 5.4K RPM drives. This slight increase in performance from 5.4K to 5.9K should give when combined with other enhancements (e.g. firmware, electronics) to boost performance for higher capacity workloads.

Let us watch for some performance numbers to be published by Seagate or others. Note that I have not had a chance to try these new drives yet, however look forward to getting my hands on them (among others) sometime in the future for a test drive to add to the growing list found here (hey Seagate and WD, that’s a hint ;) ).

What this all means?

Storage I/O trends

Wait, weren’t HDD’s supposed to be dead or dying?

Some people just like new and emerging things and thus will declare anything existing or that they have lost interest in (or their jobs need it) as old, boring or dead.

For example if you listen to some, they may say nand flash SSD are also dead or dying. For what it is worth, imho nand flash-based SSDs still have a bright future in front of them even with new technologies emerging as they will take time to mature (read more here or listen here).

However, the reality is that for at least the next decade, like them or not, HDD’s will continue to play a role that is also evolving. Thus, these and other improvements with HDD’s will be needed until current nand flash or emerging PCM (Phase Change Memory) among other forms of SSD are capable of picking up all the storage workloads in a cost-effective way.

Btw, yes, I am also a fan and user of nand flash-based SSD’s, in addition to HDD’s and see roles for both as being viable complementing each other for traditional, virtual and cloud environments.

In short, HDD’s will keep spinning (pun intended) for some time granted their roles and usage will also evolve similar to that of tape summit resources.

Storage I/O trends

With this announcement by Seagate along with other enhancements from WD show that the HDD will not only see its 60th birthday, (and here), it will probably also easily see its 70th and not from the comfort of a computer museum. The reason is that there is yet another wave of HDD improvements just around the corner including Shingled Magnetic Recording (SMR) (more info here) along with Heat Assisted Magnetic Recording (HAMR) among others. Watch for more on HAMR and SMR in future posts. With these and other enhancements, we should be able to see a return to the rapid density improvements with HDD’s observed during the mid to late 2000 era when Perpendicular recording became available.

What is up with this ISE stuff is that the same as what Xiotech (e.g. XIO) had?

Is this the same technology that Xiotech (now Xio) referred to the ISE the answer is no. This Seagate ISE is for fast secure erase of data on disk. The benefit of Instant Secure Erase (ISE) is to cut from hours or days the time required to erase a drive for secure disposal to seconds (or less). For those environments that already factor drives erase time as part of those overall costs, this can increase the useful time in service to help improve TCO and ROI.

Wait a minute, aren’t slower RPM’s supposed to be lower performance?

Some of you might be wondering or asking the question of wait, how can a 10,000 revolution per minute (10K RPM) HDD be considered fast vs. a 15K HDD, let alone SSD?

Storage I/O trends

There is a trend occurring with HDD’s that the old rules of IOPS or performance being tied directly to the size and rotational speed (RPM’s) of drives, along with their interfaces. This comes down to being careful to judge a book or in this case a drive by its cover. While RPM’s do have an impact on performance, new generation drives at 10K such as some 2.5” models are delivering performance equal to or better than earlier generation 3.5” 15K device’s.

Likewise, there are similar improvements with 5.4K devices vs. previous generation 7.2K models. As you will see in some of the results found here, not all the old rules of thumbs when it comes to drive performance are still valid. Likewise, keep those metrics that matter in the proper context.


Click on above image to see various performance results

For example as seen in the results (above), the more DRAM or DDR cache on the drives has a positive impact on sequential reads which can be good news if that is what your applications need. Thus, do your homework and avoid judging a device simply by its RPM, interface or form factor.

Other considerations, temperature and vibration

Another consideration is that with increased density of more drives being placed in a given amount of space, some of which may not have the best climate controls, humidity and vibration are concerns. Thus, the importance of drives having vibration dampening or safeguards to keep up performance are important. Likewise, even though drive heads and platters are sealed, there are also considerations that need to be taken care of for humidity in data center or cloud service providers in hot environments near the equator.

If this is not connecting with you, think about how close parts of Southeast Asia and the India subcontinent are to the equator along with the rapid growth and low-cost focus occurring there. Your data center might be temperature and humidity controlled, however others who very focused on cost cutting may not be as concerned with normal facilities best practices.

What type of drives should be used for cloud, virtual and traditional storage?

Good question and one where the answer should be it depends upon what you are trying or need to do (e.g. see previous posts here or here and here (via Seagate)).For example here are some tips for big data storage and storage making decisions in general.

Disclosure

Seagate recently invited me along with several other industry analysts to their cloud storage analyst summit in San Francisco where they covered roundtrip coach airfare, lodging, airport transfers and a nice dinner at the Epic Roast house.

hdd image

I also have received in the past a couple of Momentus XT HHDD (aka SSHD) from Seagate. These are in addition to those that I bought including various Seagate, WD along with HGST, Fujitsu, Toshiba and Samsung (SSD and HDD’s) that I use for various things.

Ok, nuff said (for now).

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Can we get a side of context with them IOPS server storage metrics?

Can we get a side of context with them server storage metrics?

Whats the best server storage I/O network metric or benchmark? It depends as there needs to be some context with them IOPS and other server storage I/O metrics that matter.

There is an old saying that the best I/O (Input/Output) is the one that you do not have to do.

In the meantime, let’s get a side of some context with them IOPS from vendors, marketers and their pundits who are tossing them around for server, storage and IO metrics that matter.

Expanding the conversation, the need for more context

The good news is that people are beginning to discuss storage beyond space capacity and cost per GByte, TByte or PByte for both DRAM or nand flash Solid State Devices (SSD), Hard Disk Drives (HDD) along with Hybrid HDD (HHDD) and Solid State Hybrid Drive (SSHD) based solutions. This applies to traditional enterprise or SMB IT data center with physical, virtual or cloud based infrastructures.

hdd and ssd iops

This is good because it expands the conversation beyond just cost for space capacity into other aspects including performance (IOPS, latency, bandwidth) for various workload scenarios along with availability, energy effective and management.

Adding a side of context

The catch is that IOPS while part of the equation are just one aspect of performance and by themselves without context, may have little meaning if not misleading in some situations.

Granted it can be entertaining, fun to talk about or simply make good press copy for a million IOPS. IOPS vary in size depending on the type of work being done, not to mention reads or writes, random and sequential which also have a bearing on data throughout or bandwidth (Mbytes per second) along with response time. Not to mention block, file, object or blob as well as table.

However, are those million IOP’s applicable to your environment or needs?

Likewise, what do those million or more IOPS represent about type of work being done? For example, are they small 64 byte or large 64 Kbyte sized, random or sequential, cached reads or lazy writes (deferred or buffered) on a SSD or HDD?

How about the response time or latency for achieving them IOPS?

In other words, what is the context of those metrics and why do they matter?

storage i/o iops
Click on image to view more metrics that matter including IOP’s for HDD and SSD’s

Metrics that matter give context for example IO sizes closer to what your real needs are, reads and writes, mixed workloads, random or sequential, sustained or bursty, in other words, real world reflective.

As with any benchmark take them with a grain (or more) of salt, they key is use them as an indicator then align to your needs. The tool or technology should work for you, not the other way around.

Here are some examples of context that can be added to help make IOP’s and other metrics matter:

  • What is the IOP size, are they 512 byte (or smaller) vs. 4K bytes (or larger)?
  • Are they reads, writes, random, sequential or mixed and what percentage?
  • How was the storage configured including RAID, replication, erasure or dispersal codes?
  • Then there is the latency or response time and IO queue depths for the given number of IOPS.
  • Let us not forget if the storage systems (and servers) were busy with other work or not.
  • If there is a cost per IOP, is that list price or discount (hint, if discount start negotiations from there)
  • What was the number of threads or workers, along with how many servers?
  • What tool was used, its configuration, as well as raw or cooked (aka file system) IO?
  • Was the IOP’s number with one worker or multiple workers on a single or multiple servers?
  • Did the IOP’s number come from a single storage system or total of multiple systems?
  • Fast storage needs fast serves and networks, what was their configuration?
  • Was the performance a short burst, or long sustained period?
  • What was the size of the test data used; did it all fit into cache?
  • Were short stroking for IOPS or long stroking for bandwidth techniques used?
  • Data footprint reduction (DFR) techniques (thin provisioned, compression or dedupe) used?
  • Were write data committed synchronously to storage, or deferred (aka lazy writes used)?

The above are just a sampling and not all may be relevant to your particular needs, however they help to put IOP’s into more contexts. Another consideration around IOPS are the configuration of the environment, from an actual running application using some measurement tool, or are they generated from a workload tool such as IOmeter, IOrate, VDbench among others.

Sure, there are more contexts and information that would be interesting as well, however learning to walk before running will help prevent falling down.

Storage I/O trends

Does size or age of vendors make a difference when it comes to context?

Some vendors are doing a good job of going for out of this world record-setting marketing hero numbers.

Meanwhile other vendors are doing a good job of adding context to their IOP or response time or bandwidth among other metrics that matter. There is a mix of startup and established that give context with their IOP’s or other metrics, likewise size or age does not seem to matter for those who lack context.

Some vendors may not offer metrics or information publicly, so fine, go under NDA to learn more and see if the results are applicable to your environments.

Likewise, if they do not want to provide the context, then ask some tough yet fair questions to decide if their solution is applicable for your needs.

Storage I/O trends

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

What this means is let us start putting and asking for metrics that matter such as IOP’s with context.

If you have a great IOP metric, if you want it to matter than include some context such as what size (e.g. 4K, 8K, 16K, 32K, etc.), percentage of reads vs. writes, latency or response time, random or sequential.

IMHO the most interesting or applicable metrics that matter are those relevant to your environment and application. For example if your main application that needs SSD does about 75% reads (random) and 25% writes (sequential) with an average size of 32K, while fun to hear about, how relevant is a million 64 byte read IOPS? Likewise when looking at IOPS, pay attention to the latency, particular if SSD or performance is your main concern.

Get in the habit of asking or telling vendors or their surrogates to provide some context with them metrics if you want them to matter.

So how about some context around them IOP’s (or latency and bandwidth or availability for that matter)?

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Part II: EMC Evolves Enterprise Data Protection with Enhancements

Storage I/O trends

This is the second part of a two-part series on recent EMC backup and data protection announcements. Read part I here.

What about the products, what’s new?

In addition to articulating their strategy for modernizing data protection (covered in part I here), EMC announced enhancements to Avamar, Data Domain, Mozy and Networker.

Data protection storage systems (e.g. Data Domain)

Building off of previously announced Backup Recovery Solutions (BRS) including Data Domain operating system storage software enhancements, EMC is adding more application and software integration along with new platform (systems) support.

Data Domain (e.g. Protection Storage) enhancements include:

  • Application integration with Oracle, SAP HANA for big data backup and archiving
  • New Data Domain protection storage system models
  • Data in place upgrades of storage controllers
  • Extended Retention now available on added models
  • SAP HANA Studio backup integration via NFS
  • Boost for Oracle RMAN, native SAP tools and replication integration
  • Support for backing up and protecting Oracle Exadata
  • SAP (non HANA) support both on SAP and Oracle

Data in place upgrades of controllers for 4200 series models on up (previously available on some larger models). This means that controllers can be upgraded with data remaining in place as opposed to a lengthy data migration.

Extended Retention facility is a zero cost license that enables more disk drive shelves to be attached to supported Data Domain systems. Thus there is a not a license fee, however you do pay for the storage shelves and drives to increase the available storage capacity. Note that this feature increases the storage capacity by adding more disk drives and does not increase the performance of the Data Domain system. Extended Retention has been available in the past however is now supported via more platform models. The extra storage capacity is essentially placed into a different tier that an archive policy can then migrate data into.

Boost for accelerating data movement to and from Data Domain systems is only available using Fibre Channel. When asked about FC over Ethernet (FCoE) or iSCSI EMC indicated its customers are not asking for this ability yet. This has me wondering if it is that the current customer focus is around FC, or if those customers are not yet ready for iSCSI or FCoE, or, if there were iSCSI or FCoE support, more customers would ask for it?

With the new Data Domain protection storage systems EMC is claiming up to:

  • 4x faster performance than earlier models
  • 10x more scalable and 3x more backup/archive streams
  • 38 percent lower cost per GB based on holding price points and applying improvements


EMC Data Domain data protection storage platform family


Data Domain supporting both backup and archive

Expanding Data Domain from backup to archive

EMC continues to evolve the Data Domain platform from just being a backup target platform with dedupe and replication to a multi-function, multi-role solution. In other words, one platform with many uses. This is an example of using one tool or technology for different purposes such as backup and archiving, however with separate polices. Here is a link to a video where I discuss using common tools for backup and archiving, however with separate polices. In the above figure EMC Data Domain is shown as being used for backup along with storage tiering and archiving (file, email, Sharepoint, content management and databases among other workloads).


EMC Data Domain supporting different functions and workloads

Also shown are various tools from other vendors such as Commvault Simpana that can be used as both a backup or archiving tool with Data Domain as a target. Likewise Dell products acquired via the Quest acquisition are shown along with those from IBM (e.g. Tivoli), FileTek among others. Note that if you are a competitor of EMC or simply a fan of other technology you might come to the conclusion that the above may not be different from others. Then again others who are not articulating their version or vision of something like the above figure probably should be also stating the obvious vs. arguing they did it first.

Data source integration (aka data protection software tools)

It seems like just yesterday that EMC acquired Avamar (2006) and NetWorker aka Legato (2003), not to mention Mozy (2007) or Dantz (Retrospect, since divested) in 2004. With the exception of Dantz (Retrospect) which is now back in the hands of its original developers, EMC continues to enhance and evolve Avamar, Mozy and NetWorker including with this announcement.

General Avamar 7 and Networker 8.1 enhancements include:

  • Deeper integration with primary storage and protection storage tiers
  • Optimization for VMware vSphere virtual server environments
  • Improved visibility and control for data protection of enterprise applications

Additional Avamar 7 enhancements include:

  • More Data Domain integration and leveraging as a repository (since Avamar 6)
  • NAS file systems with NDMP accelerator access (EMC Isilon & Celera, NetApp)
  • Data Domain Boost enhancements for faster backup / recovery
  • Application integration with IBM (DB2 and Notes), Microsoft (Exchange, Hyper-V images, Sharepoint, SQL Server), Oracle, SAP, Sybase, VMware images

Note that Avamar dat is still used mainly for ROBO and desktop, laptop type backup scenarios that do not yet support Data Domain. Also see Mozy enhancements below).

Avamar supports VMware vSphere virtual server environments using granular change block tracking (CBT) technology as well as image level backup and recovery with vSphere plugins. This includes an Instant Access recovery when images are stored on Data Domain storage.

Instant Access enables a VM that has been protected using Avamar image level technology on Data Domain to be booted via an NFS VMware Dat. VMware sees the VM and is able to power it on and boot directly from the Data Domain via the NFS Dat. Once the VM is active, it can be Storage vMotion to a production storage VMware Dat while active (e.g. running) for recovery on the fly capabilities.


Instant Access to a VM on Data Domain storage

EMC NetWorker 8.1 enhancements include:

  • Enhanced visibility and control for owners of data
  • Collaborative protection for Oracle environments
  • Synchronize backup and data protection between DBA and Backup admin’s
  • Oracle DBAs use native tools (e.g. RMAN)
  • Backup admin implements organizations SLA’s (e.g. using Networker)
  • Deeper integration with EMC primary storage (e.g. VMAX, VNX, etc)
  • Isilon integration support
  • Snapshot management (VMAX, VNX, RecoverPoint)
  • Automation and wizards for integration, discovery, simplified management
  • Policy-based management, fast recovery from snapshots
  • Integrating snapshots into and as part of data protection strategy. Note that this is more than basic snapshot management as there is also the ability to roll over a snapshot into a Data Domain protection storage tier.
  • Deeper integration with Data Domain protection storage tier
  • Data Domain Boost over Fibre Channel for faster backups and restores
  • Data Domain Virtual Synthetics to cut impact of full backups
  • Integration with Avamar for managing image level backup recovery (Avamar services embedded as part of NetWorker)
  • vSphere Web Client enabling self-service recovery of VMware images
  • Newly created VMs inherit backup polices automatically

Mozy is being positioned for enterprise remote office branch office (ROBO) or distributed private cloud where Avamar, NetWorker or Data Domain solutions are not as applicable. EMC has mentioned that they have over 800 enterprises using Mozy for desktop, laptop, ROBO and mobile data protection. Note that this is a different target market than the Mozy consumer product focused which also addresses smaller SMBs and SOHOs (Small Office Home Offices).

EMC Mozy enhancements to be more enterprise grade:

  • Simplified management services and integration
  • Active Directory (AD) for Microsoft environments
  • New storage pools (multiple types of pools) vs. dedicated storage per client
  • Keyless activation for faster provisioning of backup clients

Note that EMC enhanced earlier this year Data Protection Advisor (DPA) with version 6.0.

What does this all mean?

Storage I/O trends

Data protection and backup discussions often focus around tape summit resources or cloud arguments, although this is changing. What is changing is growing awareness and discussion around how data protection storage mediums, systems and services are used along with the associated software management tools.

Some will say backup is broke often pointing a finger at a media or medium (e.g. tape and disk) about what is wrong. Granted in some environments the target medium (or media) destination is an easy culprit to point a finger to as the problem (e.g. the usual tape sucks or is dead) mantra. However, for many environments while there can be issues, it is more often than not the media, medium, device or target storage system that is broke, instead how it is being used or abused.

This means revisiting how tools are used along with media or storage systems allocated, used and retained with respect to different threat risk scenarios. After all, not everything is the same in the data center or information factory.

Thus modernizing data protection is more than swapping media or mediums including types of storage system from one to another. It is also more than swapping out one backup or data protection tool for another. Modernizing data protection means rethinking what different applications and data need to be protected against various threat risks.

Storage I/O trends

What this has to do with today’s announcement is that EMC is among others in the industry moving towards a holistic data protection modernizing thought model.

In my opinion what you are seeing out of EMC and some others is taking that step back and expanding the data protection conversation to revisit, rethink why, how, where, when and by whom applications and information get protected.

This announcement also ties into finding and removing costs vs. simply cutting cost at the cost of something elsewhere (e.g. service levels, performance, availability). In other words, finding and removing complexities or overhead associated with data protection while making it more effective.

Some closing points, thoughts and more links:

There is no such thing as a data or information recession
People and data are living longer while getting larger
Not everything is the same in the data center or information factory
Rethink data protection including when, why, how, where, with what and by whom
There is little data, big data, very big data and big fast data
Data protection modernization is more than playing buzzword bingo
Avoid using new technology in old ways
Data footprint reduction (DFR) can be help counter changing data life-cycle patterns
EMC continues to leverage Avamar while keeping Networker relevant
Data Domain evolving for both backup and archiving as an example of tool for multiple uses

Ok, nuff said (for now).

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

EMC Evolves Enterprise Data Protection with Enhancements (Part I)

Storage I/O trends

A couple of months ago at EMCworld there were announcements around ViPR, Pivotal along with trust and clouds among other topics. During the recent EMCworld event there were some questions among attendees what about backup and data protection announcements (or lack there of)?

Modernizing Data Protection

Today EMC announced enhancements to its Backup Recovery Solutions (BRS) portfolio (@EMCBackup) that continue to enable information and applications data protection modernizing including Avamar, Data Domain, Mozy and Networker.

Keep in mind you can’t go forward if you can’t go back, which means if you do not have good data protection to go to, you can’t go forward with your information.

EMC Modern Data Protection Announcements

As part of their Backup to the Future event, EMC announced the following:

  • New generation of data protection products and technologies
  • Data Domain systems: enhanced application integration for backup and archive
  • Data protection suite tools Avamar 7 and Networker 8.1
  • Enhanced Cloud backup capabilities for the Mozy service
  • Paradigm shift as part of data protection modernizing including revisiting why, when, where, how, with what and by whom data protection is accomplished.

What did EMC announce for data protection modernization?

While much of the EMC data protection announcement is around product, there is also the aspect of rethinking data protection. This means looking at data protection modernization beyond swapping out media (e.g. tape for disk, disk for cloud) or one backup software tool for another. Instead, revisiting why data protection needs to be accomplished, by whom, how to remove complexity and cost, enable agility and flexibility. This also means enabling data protection to be used or consumed as a service in traditional, virtual and private or hybrid cloud environments.

EMC uses as an example (what they refer to as Accidental Architecture) of how there are different group and areas of focus, along with silos associated with data protection. These groups span virtual, applications, database, server, storage among others.

The results are silos that need to be transformed in part using new technology in new ways, as well as addressing a barrier to IT convergence (people and processes). The theme behind EMC data protection strategy is to enable the needs and requirements of various groups (servers, applications, database, compliance, storage, BC and DR) while removing complexity.

Moving from Silos of data protection to a converged service enabled model

Three data protection and backup focus areas

This sets the stage for the three components for enabling a converged data protection model that can be consumed or used as a service in traditional, virtual and private cloud environments.


EMC three components of modernized data protection (EMC Future Backup)

The three main components (and their associated solutions) of EMC BRS strategy are:

  • Data management services: Policy and storage management, SLA, SLO, monitoring, discovery and analysis. This is where tools such as EMC Data Protection Advisor (aka via WysDM acquisition) fit among others for coordination or orchestration, setting and managing polices along with other activities.
  • Data source integration: Applications, Database, File systems, Operating System, Hypervisors and primary storage systems. This is where data movement tools such as Avamar and Networker among others fit along with interfaces to application tools such as Oracle RMAN.
  • Protection storage: Targets, destination storage system with media or mediums optimized for protecting and preserving data along with enabling data footprint reduction (DFR). DFR includes functionality such as compression and dedupe among others. Example of data protection storage is EMC Data Domain.

Read more about product items announced and what this all means here in the second of this two-part series.

Ok, nuff said (for now).

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

June 2013 Server and StorageIO Update Newsletter

StorageIO News Letter Image
June 2013 News letter

Welcome to the June 2013 edition of the StorageIO Update. In this edition coverage includes data center infrastructure management (DCIM), metrics that matter, industry trends, IBM buying Softlayer for Cloud, IaaS and managed services. Other items include backup and data protection topics for SMBs, as well as big data storage topics. Also the EPA has announced a review session for Energy Star for Data Center storage that you can give your comments. Enjoy this edition of the StorageIO Update newsletter.

Click on the following links to view the June 2013 edition as (HTML sent via Email) version, or PDF versions.

Visit the news letter page to view previous editions of the StorageIO Update.

You can subscribe to the news letter by clicking here.

Enjoy this edition of the StorageIO Update news letter, let me know your comments and feedback.

Ok Nuff said, for now

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

IBM buys Softlayer, for software defined infrastructures and clouds?

Storage I/O trends

IBM today announced that they are acquiring privately held Dallas Texas-based Softlayer and Infrastructure as a Service (IaaS) provider.

IBM is referring to this as Cloud without Compromise (read more about clouds, conversations and confidence here).

It’s about the management, flexibly, scale up, out and down, agility and valueware.

Is this IBM’s new software defined data center (SDDC) or software defined infrastructure (SDI) or software defined management (SDM), software defined cloud (SDC) or software defined storage (SDS) play?

This is more than a software defined marketing or software defined buzzword announcement.
buzzword bingo

If your view of software define ties into the theme of leveraging, unleashing resources, enablement, flexibility, agility of hardware, software or services, then you may see Softlayer as part of a software defined infrastructure.

On the other hand, if your views or opinions of what is or is not software defined align with a specific vendor, product, protocol, model or punditry then you may not agree, particular if it is in opposition to anything IBM.

Cloud building blocks

During today’s announcement briefing call with analysts there was a noticeable absence of software defined buzz talk which given its hype and usage lately, was a refreshing welcome relief. So with that, lets set the software defined conversation aside (for now).

Cloud image

Who is Softlayer, why is IBM interested in them?

Softlayer provide software and services to support both SMB, SME and other environments with bare metal (think traditional hosted servers), along with multi-tenant (shared) cloud virtual public and private cloud service offerings.

Softlayer supports various applications, environments from little data processing to big data analytics to little data processing, from social to mobile to legacy. This includes those app’s or environments that were born in the cloud, or legacy environments looking to leverage cloud in a complimentary way.

Some more information about Softlayer includes:

  • Privately held IaaS firm founded in 2005
  • Estimated revenue run rate of around $400 million with 21,000 customers
  • Mix of SMB, SME and Web-based or born in the cloud customers
  • Over 100,000 devices under management
  • Provides a common modularized management framework set of tools
  • Mix of customers from Web startups to global enterprise
  • Presence in 13 data centers across the US, Asia and Europe
  • Automation, interoperability, large number of API access and supported
  • Flexibility, control and agility for physical (bare metal) and cloud or virtual
  • Public, private and data center to data center
  • Designed for scale, durability and resiliency without complexity
  • Part of OpenStack ecosystem both leveraging and supporting it
  • Ability for customers to use OpenStack, Cloudstack, Citrix, VMware, Microsoft and others
  • Can be white or private labeled for use as a service by VARs

Storage I/O trends

What IBM is planning for Softlayer

Softlayer will report into IBM Global Technology Services (GTS) complimenting existing capabilities which includes ten cloud computing centers on five continents. IBM has created a new Cloud Services Division and expects cloud revenues could be $7 billion annually by the end of 2015. Amazon Web Services (AWS) is estimated to hit about $3.8 Billion by end of 2013. Note that in 2012 AWS target available market was estimated to be about $11 Billion which should become larger moving forward. Rackspace by comparison had recent earning announcements on May 8 2013 of $362 Million with most that being hosting vs. cloud services. That works out to an annualized estimated run rate of $1.448 Billion (or better depending on growth).

I mention AWS and Rackspace to illustrate the growth potential for IBM and Softlayer to discuss the needs of both cloud services customers such as those who use AWS (among other providers), as well as bare metal or hosting or dedicated servers such as with Rackspace among others.

Storage I/O trends

What is not clear at this time is if IBM is combing traditional hosting, managed services, new offerings, products and services in that $7 billion number. In other words if the $7 billion represents what the revenues of the new Cloud Services Division independent of other GTS or legacy offerings as well as excluding hardware, software products from STG (Systems Technology Group) among others, that would be impressive and a challenge to the likes of AWS.

IBM has indicated that it will leverage its existing Systems Technology Group (STG) portfolio of servers and storage extending the capabilities of Softlayer. While currently x86 based, one could expect IBM to leverage and add support for their Power systems line of processors and servers, Puresystems, as well as storage such as XIV or V7000 among others for tier 1 needs.

Some more notes:

  • Ties into IBM Smart Cloud initiatives, model and paradigm
  • This deal is expected to close 3Q 2013, terms or price were not disclosed.
  • Will enable Softlayer to be leveraged on a larger, broader basis by IBM
  • Gives IBM increased access to SMB, SME and web customers than in the past
  • Software and development to stay part of Softlayer
  • Provides IBM an extra jumpstart play for supporting and leveraging OpenStack
  • Compatible and supports Cloustack and Citrix who are also IBM partners
  • Also compatible and supports VMware who is also an IBM partner

Storage I/O trends

Some other thoughts and perspectives

This is a good and big move for IBM to add value and leverage their current portfolios of both services, as well as products and technologies. However it is more than just adding value or finding new routes to markets for those goods and services, it’s also about enablement IBM has long been in the services including managed services, out or in sourcing and hosting business. This can be seen as another incremental evolution of those offerings to both existing IBM enterprise customers, as well to reach new, emerging along with SMB or SME’s that tend to grow up and become larger consumers of information and data infrastructure services.

Further this helps to add some product and meaning around the IBM Smart Cloud initiatives and programs (not that there was not before) giving customers, partners and resellers something tangible to see, feel, look at, touch and gain experience not to mention confidence with clouds.

On the other hand, is IBM signaling that they want more of the growing business that AWS has been realizing, not to mention Microsoft Azure, Rackspace, Centurylink/Savvis, Verizon/Terremark, CSC, HP Cloud, Cloudsigma, Bluehost among many others (if I missed you or your favorite provider, feel free to add it to the comments section). This also gets IBM added Devops exposure something that Softlayer practices, as well as a Openstack play, not to mention cloud, software defined, virtual, big data, little data, analytics and many other buzzword bingo terms.

Congratulations to both IBM and the Softlayer folks, now lets see some execution to watch how this unfolds.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Web chat Thur May 30th: Hot Storage Trends for 2013 (and beyond)

Storage I/O trends

Join me on Thursday May 30, 2013 at Noon ET (9AM PT) for a live web chat at the 21st Century IT (21cit) site (click here to register, sign-up, or view earlier posts). This will be an online web chat format interactive conversation so if you are not able to attend, you can visit at your convenience to view and give your questions along with comments. I have done several of these web chats with 21cit as well as other venues that are a lot of fun and engaging (time flies by fast).

For those not familiar, 21cIT is part of the Desum/UBM family of sites including Internet Evolution, SMB Authority, and Enterprise Efficiency among others that I do article posts, videos and live chats for.


Sponsored by NetApp

I like these types of sites in that while they have a sponsor, the content is generally kept separate between those of editors and contributors like myself and the vendor supplied material. In other words I coordinate with the site editors on what topics I feel like writing (or doing videos) about that align with the given sites focus and themes as opposed to following and advertorial calendar script.

During this industry trends perspective web chat, one of the topics and themes planned for discussion include software defined storage (SDS). View a recent video blog post I did here about SDS. In addition to SDS, Solid State Devices (SSD) including nand flash, cloud, virtualization, object, backup and data protection, performance, management tools among others are topics that will be put out on the virtual discussion table.

Storage I/O trends

Following are some examples of recent and earlier industry trends perspectives posts that I have done over at 21cit:

Video: And Now, Software-Defined Storage!
There are many different views on what is or is not “software-defined” with products, protocols, preferences and even press releases. Check out the video and comments here.

Big Data and the Boston Marathon Investigation
How the human face of big-data will help investigators piece together all the evidence in the Boston bombing tragedy and bring those responsible to justice. Check out the post and comments here.

Don’t Use New Technologies in Old Ways
You can add new technologies to your data center infrastructure, but you won’t get the full benefit unless you update your approach with people, processes, and policies. Check out the post and comments here.

Don’t Let Clouds Scare You, Be Prepared
The idea of moving to cloud computing and cloud services can be scary, but it doesn’t have to be so if you prepare as you would for implementing any other IT tool. Check out the post and comments here.

Storage and IO trends for 2013 (& Beyond)
Efficiency, new media, data protection, and management are some of the keywords for the storage sector in 2013. Check out these and other trends, predictions along with comments here.

SSD and Real Estate: Location, Location, Location
You might be surprised how many similarities between buying real estate and buying SSDs.
Location matters and it’s not if, rather when, where, why and how you will be using SSD including nand flash in the future, read more and view comments here.

Everything Is Not Equal in the Data center, Part 3
Here are steps you can take to give the right type of backup and protection to data and solutions, depending on the risks and scenarios they face. The result? Savings and efficiencies. Read more and view comments here.

Everything Is Not Equal in the Data center, Part 2
Your data center’s operations can be affected at various levels, by multiple factors, in a number of degrees. And, therefore, each scenario requires different responses. Read more and view comments here.

Everything Is Not Equal in the Data center, Part 1
It pays to check your data center Different components need different levels of security, storage, and availability. Read more and view comments here.

Data Protection Modernizing: More Than Buzzword Bingo
IT professionals and solution providers should put technologies such as disk based backup, dedupe, cloud, and data protection management tools as assets and resources to make sure they receive necessary funding and buy in. Read more and view comments here.

Don’t Take Your Server & Storage IO Pathing Software for Granted
Path managers are valuable resources. They will become even more useful as companies continue to carry out cloud and virtualization solutions. Read more and view comments here.

SSD Is in Your Future: Where, When & With What Are the Questions
During EMC World 2012, EMC (as have other vendors) made many announcements around flash solid-state devices (SSDs), underscoring the importance of SSDs to organizations future storage needs. Read more here about why SSD is in your future along with view comments.

Changing Life cycles and Data Footprint Reduction (DFR), Part 2
In the second part of this series, the ABCDs (Archive, Backup modernize, Compression, Dedupe and data management, storage tiering) of data footprint reduction, as well as SLOs, RTOs, and RPOs are discussed. Read more and view comments here.

Changing Life cycles and Data Footprint Reduction (DFR), Part 1
Web 2.0 and related data needs to stay online and readily accessible, creating storage challenges for many organizations that want to cut their data footprint. Read more and view comments here.

No Such Thing as an Information Recession
Data, even older information, must be protected and made accessible cost-effectively. Not to mention that people and data are living longer as well as getting larger. Read more and view comments here.

Storage I/O trends

These real-time, industry trends perspective interactive chats at 21cit are open forum format (however be polite and civil) as well as non vendor sales or marketing pitches. If you have specific questions you ‘d like to ask or points of view to express, click here and post them in the chat room at any time (before, during or after).

Mark your calendar for this event live Thursday, May 30, at noon ET or visit after the fact.

Ok, nuff said (for now)

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

May 2013 Server and StorageIO Update Newsletter

StorageIO News Letter Image
May 2013 News letter

Welcome to the May 2013 edition of the StorageIO Update. This edition has announcement analysis of EMC ViPR, Software Defined Storage (including a video here), server, storage and I/O metrics that matter for example how many IOPS can a HDD do (it depends). SSD including nand flash remains a popular topic, both in terms of industry adoption and customer deployment. Also included are my perspectives on the SSD vendor FusionIO CEO leaving in a flash. Speaking of nand flash, have you thought about how some RAID implementations and configurations can extend the life along with durability of SSD’s? More on this soon, however check out this video to give you some perspectives.

Click on the following links to view the May 2013 edition as (HTML sent via Email) version, or PDF versions.

Visit the news letter page to view previous editions of the StorageIO Update.

You can subscribe to the news letter by clicking here.

Enjoy this edition of the StorageIO Update news letter, let me know your comments and feedback.

Ok Nuff said, for now

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

How many I/O iops can flash SSD or HDD do?

How many i/o iops can flash ssd or hdd do with vmware?

sddc data infrastructure Storage I/O ssd trends

Updated 2/10/2018

A common question I run across is how many I/O iopsS can flash SSD or HDD storage device or system do or give.

The answer is or should be it depends.

This is the first of a two-part series looking at storage performance, and in context specifically around drive or device (e.g. mediums) characteristics across HDD, HHDD and SSD that can be found in cloud, virtual, and legacy environments. In this first part the focus is around putting some context around drive or device performance with the second part looking at some workload characteristics (e.g. benchmarks).

What about cloud, tape summit resources, storage systems or appliance?

Lets leave those for a different discussion at another time.

Getting started

Part of my interest in tools, metrics that matter, measurements, analyst, forecasting ties back to having been a server, storage and IO performance and capacity planning analyst when I worked in IT. Another aspect ties back to also having been a sys admin as well as business applications developer when on the IT customer side of things. This was followed by switching over to the vendor world involved with among other things competitive positioning, customer design configuration, validation, simulation and benchmarking HDD and SSD based solutions (e.g. life before becoming an analyst and advisory consultant).

Btw, if you happen to be interested in learn more about server, storage and IO performance and capacity planning, check out my first book Resilient Storage Networks (Elsevier) that has a bit of information on it. There is also coverage of metrics and planning in my two other books The Green and Virtual Data Center (CRC Press) and Cloud and Virtual Data Storage Networking (CRC Press). I have some copies of Resilient Storage Networks available at a special reader or viewer rate (essentially shipping and handling). If interested drop me a note and can fill you in on the details.

There are many rules of thumb (RUT) when it comes to metrics that matter such as IOPS, some that are older while others may be guess or measured in different ways. However the answer is that it depends on many things ranging from if a standalone hard disk drive (HDD), Hybrid HDD (HHDD), Solid State Device (SSD) or if attached to a storage system, appliance, or RAID adapter card among others.

Taking a step back, the big picture

hdd image
Various HDD, HHDD and SSD’s

Server, storage and I/O performance and benchmark fundamentals

Even if just looking at a HDD, there are many variables ranging from the rotational speed or Revolutions Per Minute (RPM), interface including 1.5Gb, 3.0Gb, 6Gb or 12Gb SAS or SATA or 4Gb Fibre Channel. If simply using a RUT or number based on RPM can cause issues particular with 2.5 vs. 3.5 or enterprise and desktop. For example, some current generation 10K 2.5 HDD can deliver the same or better performance than an older generation 3.5 15K. Other drive factors (see this link for HDD fundamentals) including physical size such as 3.5 inch or 2.5 inch small form factor (SFF), enterprise or desktop or consumer, amount of drive level cache (DRAM). Space capacity of a drive can also have an impact such as if all or just a portion of a large or small capacity devices is used. Not to mention what the drive is attached to ranging from in internal SAS or SATA drive bay, USB port, or a HBA or RAID adapter card or in a storage system.

disk iops
HDD fundamentals

How about benchmark and performance for marketing or comparison tricks including delayed, deferred or asynchronous writes vs. synchronous or actually committed data to devices? Lets not forget about short stroking (only using a portion of a drive for better IOP’s) or even long stroking (to get better bandwidth leveraging spiral transfers) among others.

Almost forgot, there are also thick, standard, thin and ultra thin drives in 2.5 and 3.5 inch form factors. What’s the difference? The number of platters and read write heads. Look at the following image showing various thickness 2.5 inch drives that have various numbers of platters to increase space capacity in a given density. Want to take a wild guess as to which one has the most space capacity in a given footprint? Also want to guess which type I use for removable disk based archives along with for onsite disk based backup targets (compliments my offsite cloud backups)?

types of disks
Thick, thin and ultra thin devices

Beyond physical and configuration items, then there are logical configuration including the type of workload, large or small IOPS, random, sequential, reads, writes or mixed (various random, sequential, read, write, large and small IO). Other considerations include file system or raw device, number of workers or concurrent IO threads, size of the target storage space area to decide impact of any locality of reference or buffering. Some other items include how long the test or workload simulation ran for, was the device new or worn in before use among other items.

Tools and the performance toolbox

Then there are the various tools for generating IO’s or workloads along with recording metrics such as reads, writes, response time and other information. Some examples (mix of free or for fee) include Bonnie, Iometer, Iorate, IOzone, Vdbench, TPC, SPC, Microsoft ESRP, SPEC and netmist, Swifttest, Vmark, DVDstore and PCmark 7 among many others. Some are focused just on the storage system and IO path while others are application specific thus exercising servers, storage and IO paths.

performance tools
Server, storage and IO performance toolbox

Having used Iometer since the late 90s, it has its place and is popular given its ease of use. Iometer is also long in the tooth and has its limits including not much if any new development, never the less, I have it in the toolbox. I also have Futremark PCmark 7 (full version) which turns out has some interesting abilities to do more than exercise an entire Windows PC. For example PCmark can use a secondary drive for doing IO to.

PCmark can be handy for spinning up with VMware (or other tools) lots of virtual Windows systems pointing to a NAS or other shared storage device doing real world type activity. Something that could be handy for testing or stressing virtual desktop infrastructures (VDI) along with other storage systems, servers and solutions. I also have Vdbench among others tools in the toolbox including Iorate which was used to drive the workloads shown below.

What I look for in a tool are how extensible are the scripting capabilities to define various workloads along with capabilities of the test engine. A nice GUI is handy which makes Iometer popular and yes there are script capabilities with Iometer. That is also where Iometer is long in the tooth compared to some of the newer generation of tools that have more emphasis on extensibility vs. ease of use interfaces. This also assumes knowing what workloads to generate vs. simply kicking off some IOPs using default settings to see what happens.

Another handy tool is for recording what’s going on with a running system including IO’s, reads, writes, bandwidth or transfers, random and sequential among other things. This is where when needed I turn to something like HiMon from HyperIO, if you have not tried it, get in touch with Tom West over at HyperIO and tell him StorageIO sent you to get a demo or trial. HiMon is what I used for doing start, stop and boot among other testing being able to see IO’s at the Windows file system level (or below) including very early in the boot or shutdown phase.

Here is a link to some other things I did awhile back with HiMon to profile some Windows and VDI activity test profiling.

What’s the best tool or benchmark or workload generator?

The one that meets your needs, usually your applications or something as close as possible to it.

disk iops
Various 2.5 and 3.5 inch HDD, HHDD, SSD with different performance

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

That depends, however continue reading part II of this series to see some results for various types of drives and workloads.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

EMC ViPR software defined object storage part III

Storage I/O trends

This is part III in a series of posts pertaining to EMC ViPR software defined storage and object storage. You can read part I here and part II here.

EMCworld

More on the object opportunity

Other object access includes OpenStack storage part Swift, AWS S3 HTTP and REST API access. This also includes ViPR supporting EMC Atmos, VNX and Isilon arrays as southbound persistent storage in addition.

object storage
Object (and cloud) storage access example

EMC is claiming that over 250 VNX systems can be abstracted to support scaling with stability (performance, availability, capacity, economics) using ViPR. Third party storage will be supported along with software such as OpenStack Swift, Ceph and others running on commodity hardware. Note that EMC has some history with object storage and access including Centera and Atmos. Visit the micro site I have setup called www.objectstoragecenter.com and watch for more content to be updated and added there.

More on the ViPR control plane and controller

ViPR differs from some others in that it does not sit in the data path all the time (e.g. between application servers and storage systems or cloud services) to cut potential for bottlenecks.

ViPR architecture

Organizations that can use ViPR include enterprise, SMB, CSP or MSP and hosting sites. ViPR can be used in a control mode to leverage underlying storage systems, appliances and services intelligence and functionality. This means ViPR can be used to complement as oppose to treat southbound or target storage systems and services as dumb disks or JBOD.

On the other hand, ViPR will also have a suite of data services such as snapshot, replication, data migration, movement, tiering to add value for when those do not exist. Customers will be free to choose how they want to use and deploy ViPR. For example leveraging underlying storage functionality (e.g. lightweight model), or in a more familiar storage virtualization model heavy lifting model. In the heavy lifting model more work is done by the virtualization or abstraction software to create an added value, however can be a concern for bottlenecks depending how deployed.

Service categories

Software defined, storage hypervisor, virtual storage or storage virtualization?

Most storage virtualization, storage hypervisors and virtual storage solutions that are hardware or software based (e.g. software defined) implemented what is referred to as in band. With in band the storage virtualization software or hardware sits between the applications (northbound) and storage systems or services (southbound).

While this approach can be easier to carry out along with add value add services, it can also introduce scaling bottlenecks depending on implementations. Examples of in band storage virtualization includes Actifio, DataCore, EMC VMAX with third-party storage, HDS with third-party storage, IBM SVC (and their V7000 Storwize storage system based on it) and NetApp Vseries among others. An advantage of in band approaches is that there should not need to be any host or server-side software requirements and SAN transparency.

There is another approach called out-of-band that has been tried. However pure out-of-band requires a management system along with agents, drivers, shims, plugins or other software resident on host application servers.

fast path control path
Example of generic fast path control path model

ViPR takes a different approach, one that was seen a few years ago with EMC Invista called fast path, control path that for the most part stays out of the data path. While this is like out-of-band, there should not be a need for any host server-side (e.g. northbound) software. By being a fast path control path, the virtualization or abstraction and management functions stay out of the way for data being moved or work being done.

Hmm, kind of like how management should be, there to help when needed, out-of-the-way not causing overhead other times ;).

Is EMC the first (even with Invista) to leverage fast path control path?

Actually up until about a year or so ago, or shortly after HP acquired 3PAR they had a solution called Storage Virtualization Services Platform (SVPS) that was OEMd from LSI (e.g. StorAge). Unfortunately, HP decided to retire that as opposed to extend its capabilities for file and object access (northbound) as well as different southbound targets or destination services.

Whats this northbound and southbound stuff?

Simply put, think in terms of a vertical stack with host servers (PMs or VMs) on the top with applications (and hypervisors or other tools such as databases) on top of them (e.g. north).

software defined storage
Northbound servers, southbound storage systems and cloud services

Think of storage systems, appliances, cloud services or other target destinations on the bottom (or south). ViPR sits in between providing storage services and management to the northbound servers leveraging the southbound storage.

What host servers can VIPR support for serving storage?

VIPR is being designed to be server agnostic (e.g. virtual or physical), along with operating system agnostic. In addition VIPR is being positioned as capable of serving northbound (e.g. up to application servers) block, file or object as well as accessing southbound (e.g. targets) block, file and object storage systems, file systems or services.

Note that a difference between earlier similar solutions from EMC have been either block based (e.g. Invista, VPLEX, VMAX with third-party storage), or file based. Also note that this means VIPR is not just for VMware or virtual server environments and that it can exist in legacy, virtual or cloud environments.

ViPR image

Likewise VIPR is intended to be application agnostic supporting little data, big data, very big data ( VBD) along with Hadoop or other specialized processing. Note that while VIPR will support HDFS in addition to NFS and CIFS file based access, Hadoop will not be running on or in the VIPR controllers as that would live or run elsewhere.

How will VIPR be deployed and licensed?

EMC has indicated that the VIPR controller will be delivered as software that installs into a virtual appliance (e.g. VMware) running as a virtual machine (VM) guest. It is not clear when support will exist for other hypervisors (e.g. Microsoft Hyper-V, Citrix/XEN, KVM or if VMware vSphere with vCenter or simply on ESXi free version). As of the announcement pre briefing, EMC had not yet finalized pricing and licensing details. General availability is expected in the second half of calendar 2013.

Keep in mind that the VIPR controller (software) runs as a VM that can be hosted on a clustered hypervisor for HA. In addition, multiple VIPR controllers can exist in a cluster to further enhance HA.

Some questions to be addressed among others include:

  • How and where are IOs intercepted?
  • Who can have access to the APIs, what is the process, is there a developers program, SDK along with resources?
  • What network topologies are supported local and remote?
  • What happens when JBOD is used and no advanced data services exist?
  • What are the characteristics of the object access functionality?
  • What if any specific switches or data path devices and tools are needed?
  • How does a host server know to talk with its target and ViPR controller know when to intercept for handling?
  • Will SNIA CDMI be added and when as part of the object access and data services capabilities?
  • Are programmatic bindings available for the object access along with support for other APIs including IOS?
  • What are the performance characteristics including latency under load as well as during a failure or fault scenario?
  • How will EMC place Vplex and its caching model on a local and wide area basis vs. ViPR or will we see those two create some work together, if so, what will that be?

Bottom line (for now):

Good move for EMC, now let us see how they execute including driving adoption of their open APIs, something they have had success in the past with Centera and other solutions. Likewise, let us see what other storage vendors become supported or add support along with how pricing and licensing are rolled out. EMC will also have to articulate when and where to use ViPR vs. VPLEX along with other storage systems or management tools.

Additional related material:
Are you using or considering implementation of a storage hypervisor?
Cloud and Virtual Data Storage Networking (CRC)
Cloud conversations: Public, Private, Hybrid what about Community Clouds?
Cloud, virtualization, storage and networking in an election year
Does software cut or move place of vendor lock-in?
Don’t Use New Technologies in Old Ways
EMC VPLEX: Virtual Storage Redefined or Respun?
How many degrees separate you and your information?
Industry adoption vs. industry deployment, is there a difference?
Many faces of storage hypervisor, virtual storage or storage virtualization
People, Not Tech, Prevent IT Convergence
Resilient Storage Networks (Elsevier)
Server and Storage Virtualization Life beyond Consolidation
Should Everything Be Virtualized?
The Green and Virtual Data Center (CRC)
Two companies on parallel tracks moving like trains offset by time: EMC and NetApp
Unified storage systems showdown: NetApp FAS vs. EMC VNX
backup, restore, BC, DR and archiving
VMware buys virsto, what about storage hypervisor’s?
Who is responsible for vendor lockin?

Ok, nuff said (for now)

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

EMC ViPR software defined object storage part II

Storage I/O trends

This is part II in a series of posts pertaining to EMC ViPR software defined storage and object storage. You can read part I here and part III here.

EMCworld

Some questions and discussion topics pertaining to ViPR:

Whom is ViPR for?

Organizations that need to scale with stability across EMC, third-party or open storage software stacks and commodity hardware. This applies to large and small enterprise, cloud service providers, managed service providers, virtual and cloud environments/

What this means for EMC hardware/platform/systems?

They can continue to be used as is, or work with ViPR or other deployment modes.

Does this mean EMC storage systems are nearing their end of life?

IMHO for the most part not yet, granted there will be some scenarios where new products will be used vs. others, or existing ones used in new ways for different things.

As has been the case for years if not decades, some products will survive, continue to evolve and find new roles, kind of like different data storage mediums (e.g. ssd, disk, tape, etc).

How does ViPR work?

ViPR functions as a control plane across the data and storage infrastructure supporting both north and southbound. northbound refers to use from or up to application servers (physical machines PM and virtual machines VMs). southbound refers target or destination storage systems. Storage systems can be traditional EMC or third-party (NetApp mentioned as part of first release), appliances, just a bunch of disks (JBOD) or cloud services.

Some general features and functions:

  • Provisioning and allocation (with automation)
  • Data and storage migration or tiering
  • Leverage scripts, templates and workbooks
  • Support service categories and catalogs
  • Discovery, registration of storage systems
  • Create of storage resource pools for host systems
  • Metering, measuring, reporting, charge or show back
  • Alerts, alarms and notification
  • Self-service portal for access and provisioning

ViPR data plane (adding data services and value when needed)

Another part is the data plane for implementing data services and access. For block and file when not needed, ViPR steps out-of-the-way leveraging the underlying storage systems or services.

object storage
Object storage access

When needed, the ViPR data plane can step in to add added services and functionality along with support object based access for little data and big data. For example, Hadoop Distributed File System (HDFS) services can support northbound analytic software applications running on servers accessing storage managed by ViPR.

Continue reading in part III of this series here including how ViPR works, who it is for and more analysis.

Ok, nuff said (for now)

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved