Part V – NVMe overview primer (Where to learn more, what this all means)

This is the fifth in a five-part mini-series providing a NVMe primer overview.

View Part I, Part II, Part III, Part IV, Part V as well as companion posts and more NVMe primer material at www.thenvmeplace.com.

There are many different facets of NVMe including protocol that can be deployed on PCIe (AiC, U.2/8639 drives, M.2) for local direct attached, dedicated or shared for front-end or back-end of storage systems. NVMe direct attach is also found in servers and laptops using M.2 NGFF mini cards (e.g. “gum sticks”). In addition to direct attached, dedicated and shared, NVMe is also deployed on fabrics including over Fibre Channel (FC-NVMe) as well as NVMe over Fabrics (NVMeoF) leveraging RDMA based networks (e.g. iWARP, RoCE among others).

The storage I/O capabilities of flash can now be fed across PCIe faster to enable modern multi-core processors to complete more useful work in less time, resulting in greater application productivity. NVMe has been designed from the ground up with more and deeper queues, supporting a larger number of commands in those queues. This in turn enables the SSD to better optimize command execution for much higher concurrent IOPS. NVMe will coexist along with SAS, SATA and other server storage I/O technologies for some time to come. But NVMe will be at the top-tier of storage as it takes full advantage of the inherent speed and low latency of flash while complementing the potential of multi-core processors that can support the latest applications.

With NVMe, the capabilities of underlying NVM and storage memories are further realized Devices used include a PCIe x4 NVMe AiC SSD, 12 GbpsSAS SSD and 6 GbpsSATA SSD. These and other improvements with NVMe enable concurrency while reducing latency to remove server storage I/O traffic congestion. The result is that application demanding more concurrent I/O activity along with lower latency will gravitate towards NVMe for access fast storage.

Like the robust PCIe physical server storage I/O interface it leverages, NVMe provides both flexibility and compatibility. It removes complexity, overhead and latency while allowing far more concurrent I/O work to be accomplished. Those on the cutting edge will embrace NVMe rapidly. Others may prefer a phased approach.

Some environments will initially focus on NVMe for local server storage I/O performance and capacity available today. Other environments will phase in emerging external NVMe flash-based shared storage systems over time.

Planning is an essential ingredient for any enterprise. Because NVMe spans servers, storage, I/O hardware and software, those intending to adopt NVMe need to take into account all ramifications. Decisions made today will have a big impact on future data and information infrastructures.

Key questions should be, how much speed do your applications need now, and how do growth plans affect those requirements? How and where can you maximize your financial return on investment (ROI) when deploying NVMe and how will that success be measured?

Several vendors are working on, or have already introduced NVMe related technologies or initiatives. Keep an eye on among others including AWS, Broadcom (Avago, Brocade), Cisco (Servers), Dell EMC, Excelero, HPE, Intel (Servers, Drives and Cards), Lenovo, Micron, Microsoft (Azure, Drivers, Operating Systems, Storage Spaces), Mellanox, NetApp, OCZ, Oracle, PMC, Samsung, Seagate, Supermicro, VMware, Western Digital (acquisition of SANdisk and HGST) among others.

Where To Learn More

View additional NVMe, SSD, NVM, SCM, Data Infrastructure and related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

NVMe is in your future if not already, so If NVMe is the answer, what are the questions?

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Where, How to use NVMe overview primer

server storage I/O trends
Updated 1/12/2018

This is the fourth in a five-part miniseries providing a primer and overview of NVMe. View companion posts and more material at www.thenvmeplace.com.

Where and how to use NVMe

As mentioned and shown in the second post of this series, initially, NVMe is being deployed inside servers as “ back-end,” fast, low latency storage using PCIe Add-In-Cards (AIC) and flash drives. Similar to SAS NVM SSDs and HDDs that support dual-paths, NVMe has a primary path and an alternate path. If one path fails, traffic keeps flowing without causing slowdowns. This feature is an advantage to those already familiar with the dual-path capabilities of SAS, enabling them to design and configure resilient solutions.

NVMe devices including NVM flash AIC flash will also find their way into storage systems and appliances as back-end storage, co-existing with SAS or SATA devices. Another emerging deployment configuration scenario is shared NVMe direct attached storage (DAS) with multiple server access via PCIe external storage with dual paths for resiliency.

Even though NVMe is a new protocol, it leverages existing skill sets. Anyone familiar with SAS/SCSI and AHCI/SATA storage devices will need little or no training to carry out and manage NVMe. Since NVMe-enabled storage appears to a host server or storage appliance as an LUN or volume, existing Windows, Linux and other OS or hypervisors tools can be used. On Windows, such as,  other than going to the device manager to see what the device is and what controller it is attached to, it is no different from installing and using any other storage device. The experience on Linux is similar, particularly when using in-the-box drivers that ship with the OS. One minor Linux difference of note is that instead of seeing a /dev/sda device as an example, you might see a device name like /dev/nvme0n1 or /dev/nvme0n1p1 (with a partition).

Keep in mind that NVMe like SAS can be used as a “back-end” access from servers (or storage systems) to a storage device or system. For example JBOD SSD drives (e.g. 8639), PCIe AiC or M.2 devices. NVMe can also like SAS be used as a “front-end” on storage systems or appliances in place of, or in addition to other access such as GbE based iSCSI, Fibre Channel, FCoE, InfiniBand, NAS or Object.

What this means is that NVMe can be implemented in a storage system or appliance on both the “front-end” e.g. server or host side as well as on the “back-end” e.g. device or drive side that is like SAS. Another similarity to SAS is that NVMe dual-pathing of devices, permitting system architects to design resiliency into their solutions. When the primary path fails, access to the storage device can be maintained with failover so that fast I/O operations can continue when using SAS and NVMe.

NVM connectivity options including NVMe
Various NVM NAND flash SSD devices and their connectivity including NVMe, M2, SATA and 12 Gbps SAS are shown in figure 6.

Various NVM SSD interfaces including NVMe and M2
Figure 6 Various NVM flash SSDs (Via StorageIO Labs)

Left in figure 6 is an NAND flash NVMe PCIe AiC, top center is a USB thumb drive that has been opened up showing an NAND die (chip), middle center is a mSATA card, bottom center is an M.2 card, next on the right is a 2.5” 6 Gbps SATA device, and far fright is a 12 Gbps SAS device. Note that an M.2 card can be either an SATA or NVMe device depending on its internal controller that determines which host or server protocol device driver to use.

The role of PCIe has evolved over the years as has its performance and packaging form factors. Also, to add in card (AiC) slots, PCIe form factors also include M.2 small form factor that replaces legacy mini-PCIe cards. Another form factor is M.2 (aka Next Generation Form Factor or NGFF) that like other devices, can be an NVMe, or SATA device.

NGFF also known as 8639 or possibly 8637 (figure 7) can be used to support SATA as well as NVMe depending on the card device installed and host server driver support. There are various M.2 NGFF form factors including 2230, 2242, 2260 and 2280. There are also M.2 to regular physical SATA converter or adapter cards that are available enabling M.2 devices to attach to legacy SAS/SATA RAID adapters or HBAs.

NVMe 8637 and 8639 interface backplane slotsNVMe 8637 and 8639 interface
Figure 7 PCIe NVMe 8639 Drive (Via StorageIO Labs)

On the left of figure 7 is a view towards the backplane of a storage enclosure in a server that supports SAS, SATA, and NVMe (e.g. 8639). On the right of figure 7 is the connector end of an 8639 NVM SSD showing addition pin connectors compared to an SAS or SATA device. Those extra pins give PCIe x4 connectivity to the NVMe devices. The 8639 drive connectors enable a device such as an NVM, or NAND flash SSD to share a common physical storage enclosure with SAS and SATA devices, including optional dual-pathing.

Where To Learn More

View additional NVMe, SSD, NVM, SCM, Data Infrastructure and related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Be careful judging a device or component by its physical packaging or interface connection about what it is or is not. In figure 6.6 the device has SAS/SATA along with PCIe physical connections, yet it’s what’s inside (e.g. its controller) that determines if it is an SAS, SATA or NVMe enabled device. This also applies to HDDs and PCIe AiC devices, as well as I/O networking cards and adapters that may use common physical connectors, yet implement different protocols. For example, the SFF-8643 HD-Mini SAS internal connector is used for 12 Gbps SAS attachment as well as PCIe to devices such as 8630.

Depending on the type of device inserted, access can be via NVMe over PCIe x4, SAS (12 Gbps or 6Gb) or SATA. 8639 connector based enclosures have a physical connection with their backplanes to the individual drive connectors, as well as to PCIe, SAS, and SATA cards or connectors on the server motherboard or via PCIe riser slots.

While PCIe devices including AiC slot based, M.2 or 8639 can have common physical interfaces and lower level signaling, it’s the protocols, controllers, and drivers that determine how they get a software defined and used. Keep in mind that it’s not just the physical connector or interface that determines what a device is or how it is used, it’s also the protocol, command set, and controller and device drivers.

Continue reading about NVMe with Part V (Where to learn more, what this all means) in this five-part series, or jump to Part I, Part II or Part III.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

NVMe Need for Performance Speed Performance

server storage I/O trends
Updated 1/12/2018

This is the third in a five-part mini-series providing a primer and overview of NVMe. View companion posts and more material at www.thenvmeplace.com.

How fast is NVMe?

It depends! Generally speaking NVMe is fast!

However fast interfaces and protocols also need fast storage devices, adapters, drivers, servers, operating systems and hypervisors as well as applications that drive or benefit from the increased speed.

A server storage I/O example is in figure 5 where a 6 Gbps SATA NVM flash SSD (left) is shown with an NVMe 8639 (x4) drive that were directly attached to a server. The workload is 8 Kbyte sized random writes with 128 threads (workers) showing results for IOPs (solid bar) along with response time (dotted line). Not surprisingly the NVMe device has a lower response time and a higher number of IOPs. However also note how the amount of CPU time used per IOP is lower on the right with the NVMe drive.

NVMe storage I/O performance
Figure 5 6 Gbps SATA NVM flash SSD vs. NVMe flash SSD

While many people are aware or learning about the IOP and bandwidth improvements as well as the decrease in latency with NVMe, something that gets overlooked is how much less CPU is used. If a server is spending time in wait modes that can result in lost productivity, by finding and removing the barriers more work can be done on a given server, perhaps even delaying a server upgrade.

In figure 5 notice the lower amount of CPU used per work activity being done (e.g. I/O or IOP) which translates to more effective resource use of your server. What that means is either doing more work with what you have, or potentially delaying a CPU server upgrade, or, using those extra CPU cycles to power software defined storage management stacks including erasure coding or advanced parity RAID, replication and other functions.

Table 1 shows relative server I/O performance of some NVM flash SSD devices across various workloads. As with any performance, the comparison takes them, and the following with a grain of salt as your speed will vary.

8KB I/O Size

1MB I/O size

NAND flash SSD

100% Seq. Read

100% Seq. Write

100% Ran. Read

100% Ran. Write

100% Seq. Read

100% Seq. Write

100% Ran. Read

100% Ran. Write

NVMe

IOPs

41829.19

33349.36

112353.6

28520.82

1437.26

889.36

1336.94

496.74

PCIe

Bandwidth

326.79

260.54

877.76

222.82

1437.26

889.36

1336.94

496.74

AiC

Resp.

3.23

3.90

1.30

4.56

178.11

287.83

191.27

515.17

CPU / IOP

0.001571

0.002003

0.000689

0.002342

0.007793

0.011244

0.009798

0.015098

12Gb

IOPs

34792.91

34863.42

29373.5

27069.56

427.19

439.42

416.68

385.9

SAS

Bandwidth

271.82

272.37

229.48

211.48

427.19

429.42

416.68

385.9

Resp.

3.76

3.77

4.56

5.71

599.26

582.66

614.22

663.21

CPU / IOP

0.001857

0.00189

0.002267

0.00229

0.011236

0.011834

0.01416

0.015548

6Gb

IOPs

33861.29

9228.49

28677.12

6974.32

363.25

65.58

356.06

55.86

SATA

Bandwidth

264.54

72.1

224.04

54.49

363.25

65.58

356.06

55.86

Resp.

4.05

26.34

4.67

35.65

704.70

3838.59

718.81

4535.63

CPU / IOP

0.001899

0.002546

0.002298

0.003269

0.012113

0.032022

0.015166

0.046545

Table 1 Relative performance of various protocols and interfaces

The workload results in table 1 were generated using a vdbench script running on a Windows 2012 R2 based server and are intended to be a relative indicator of different protocol and interfaces; your performance mileage will vary. The results shown below compare the number of IOPs (activity rate) for reads, writes, random and sequential across small 8KB and large 1MB sized I/Os.

Also shown in table 1 are bandwidth or throughput (e.g. amount of data moved), response time and the amount of CPU used per IOP. Note in table 1 how NVMe can do higher IOPs with a lower CPU per IOP, or, using a similar amount of CPU, do more work at a lower latency. SSD has been used for decades to help reduce CPU bottlenecks or defer server upgrades by removing I/O wait times and reduce CPU consumption (e.g. wait or lost time).

Can NVMe solutions run faster than those shown above? Absolutely!

Where To Learn More

View additional NVMe, SSD, NVM, SCM, Data Infrastructure and related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Continue reading about NVMe with Part IV (Where and How to use NVMe) in this five-part series, or jump to Part I, Part II or Part V.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Different NVMe Configurations

server storage I/O trends
Updated 1/12/2018

This is the second in a five-part mini-series providing a primer and overview of NVMe. View companion posts and more material at www.thenvmeplace.com.

The many different faces or facets of NVMe configurations

NVMe can be deployed and used in many ways, the following are some examples to show you its flexibility today as well as where it may be headed in the future. An initial deployment scenario is NVMe devices (e.g. PCIe cards, M2 or 8639 drives) installed as storage in servers or as back-end storage in storage systems. Figure 2 below shows a networked storage system or appliance that uses traditional server storage I/O interfaces and protocols for front-end access, however with back-end storage being all NVMe, or a hybrid of NVMe, SAS and SATA devices.
NVMe as back-end server storage I/O interface to NVM
Figure 2 NVMe as back-end server storage I/O interface to NVM storage

A variation of the above is using NVMe for shared direct attached storage (DAS) such as the EMC DSSD D5. In the following scenario (figure 3), multiple servers in a rack or cabinet configuration have an extended PCIe connection that attached to a shared storage all flash array using NVMe on the front-end. Read more about this approach and EMC DSSD D5 here or click on the image below.

EMC DSSD D5 NVMe
Figure 3 Shared DAS All Flash NVM Storage using NVMe (e.g. EMC DSSD D5)

Next up in figure 4 is a variation of the previous example, except NVMe is implemented over an RDMA (Remote Direct Memory Access) based fabric network using Converged 10GbE/40GbE or InfiniBand in what is known as RoCE (RDMA over Converged Ethernet pronounced Rocky).

NVMe over Fabric RoCE
Figure 4 NVMe as a “front-end” interface for servers or storage systems/appliances

Where To Learn More

View additional NVMe, SSD, NVM, SCM, Data Infrastructure and related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Watch for more topology and configuration options as NVMe along with associated hardware, software and I/O networking tools and technologies emerge over time.

Continue reading about NVMe with Part III (Need for Performance Speed) in this five-part series, or jump to Part I, Part IV or Part V.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

NVMe overview primer

server storage I/O trends
Updated 2/2/2018

This is the first in a five-part mini-series providing a primer and overview of NVMe. View companion posts and more material at www.thenvmeplace.com.

What is NVM Express (NVMe)

Non-Volatile Memory (NVM) includes persistent memory such as NAND flash and other forms Solid State Devices (SSD). NVM express (NVMe) is a new server storage I/P protocol alternative to AHCI/SATA and the SCSI protocol used by Serial Attached SCSI (SAS). Note that the name NVMe is owned and managed by the industry trade group for NVM Express is (www.nvmexpress.org).

The key question with NVMe is not if, rather when, where, why, how and with what will it appear in your data center or server storage I/O data infrastructure. This is a companion to material that I have on my micro site www.thenvmeplace.com that provides an overview of NVMe, as well as helps to discuss some of the questions about NVMe.

Main features of NVMe include among others:

  • Lower latency due to improve drivers and increased queues (and queue sizes)
  • Lower CPU used to handler larger number of I/Os (more CPU available for useful work)
  • Higher I/O activity rates (IOPs) to boost productivity unlock value of fast flash and NVM
  • Bandwidth improvements leveraging various fast PCIe interface and available lanes
  • Dual-pathing of devices like what is available with dual-path SAS devices
  • Unlock the value of more cores per processor socket and software threads (productivity)
  • Various packaging options, deployment scenarios and configuration options
  • Appears as a standard storage device on most operating systems
  • Plug-play with in-box drivers on many popular operating systems and hypervisors

Why NVMe for Server Storage I/O?
NVMe has been designed from the ground up for accessing fast storage including flash SSD leveraging PCI Express (PCIe). The benefits include lower latency, improved concurrency, increased performance and the ability to unleash a lot more of the potential of modern multi-core modern processors.

NVMe Server Storage I/O
Figure 1 shows common server I/O connectivity including PCIe, SAS, SATA and NVMe.

NVMe, leveraging PCIe, enables modern applications to reach their full potential. NVMe is one of those rare, generational protocol upgrades that comes around every couple of decades to help unlock the full performance value of servers and storage. NVMe does need new drivers, but once in place, it plugs and plays seamlessly with existing tools, software and user experiences. Likewise many of those drivers are now in the box (e.g. ship with) for popular operating systems and hypervisors.

While SATA and SAS provided enough bandwidth for HDDs and some SSD uses, more performance is needed. NVMe near-term does not replace SAS or SATA they can and will coexist for years to come enabling different tiers of server storage I/O performance.

NVMe unlocks the potential of flash-based storage by allowing up to 65,536 (64K) queues each with 64K commands per queue. SATA allowed for only one command queue capable of holding 32 commands per queue and SAS supports a queue with 64K command entries. As a result, the storage IO capabilities of flash can now be fed across PCIe much faster to enable modern multi-core processors to complete more useful work in less time.

Where To Learn More

View additional NVMe, SSD, NVM, SCM, Data Infrastructure and related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Continue reading about NVMe with Part II (Different NVMe configurations) in this five-part series, or jump to Part III, Part IV or Part V.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

NVMe Place NVM Non Volatile Memory Express Resources

Updated 8/31/19
NVMe place server Storage I/O data infrastructure trends

Welcome to NVMe place NVM Non Volatile Memory Express Resources. NVMe place is about Non Volatile Memory (NVM) Express (NVMe) with Industry Trends Perspectives, Tips, Tools, Techniques, Technologies, News and other information.

Disclaimer

Please note that this NVMe place resources site is independent of the industry trade and promoters group NVM Express, Inc. (e.g. www.nvmexpress.org). NVM Express, Inc. is the sole owner of the NVM Express specifications and trademarks.

NVM Express Organization
Image used with permission of NVM Express, Inc.

Visit the NVM Express industry promoters site here to learn more about their members, news, events, product information, software driver downloads, and other useful NVMe resources content.

 

The NVMe Place resources and NVM including SCM, PMEM, Flash

NVMe place includes Non Volatile Memory (NVM) including nand flash, storage class memories (SCM), persistent memories (PM) are storage memory mediums while NVM Express (NVMe) is an interface for accessing NVM. This NVMe resources page is a companion to The SSD Place which has a broader Non Volatile Memory (NVM) focus including flash among other SSD topics. NVMe is a new server storage I/O access method and protocol for fast access to NVM based storage and memory technologies. NVMe is an alternative to existing block based server storage I/O access protocols such as AHCI/SATA and SCSI/SAS devices commonly used for access Hard Disk Drives (HDD) along with SSD among other things.

Server Storage I/O NVMe PCIe SAS SATA AHCI
Comparing AHCI/SATA, SCSI/SAS and NVMe all of which can coexist to address different needs.

Leveraging the standard PCIe hardware interface, NVMe based devices (that have an NVMe controller) can be accessed via various operating systems (and hypervisors such as VMware ESXi) with both in the box drivers or optional third-party device drivers. Devices that support NVMe can be 2.5″ drive format packaged that use a converged 8637/8639 connector (e.g. PCIe x4) coexisting with SAS and SATA devices as well as being add-in card (AIC) PCIe cards supporting x4, x8 and other implementations. Initially, NVMe is being positioned as a back-end to servers (or storage systems) interface for accessing fast flash and other NVM based devices.

NVMe as back-end storage
NVMe as a “back-end” I/O interface for NVM storage media

NVMe as front-end server storage I/O interface
NVMe as a “front-end” interface for servers or storage systems/appliances

NVMe has also been shown to work over low latency, high-speed RDMA based network interfaces including RoCE (RDMA over Converged Ethernet) and InfiniBand (read more here, here and here involving Mangstor, Mellanox and PMC among others). What this means is that like SCSI based SAS which can be both a back-end drive (HDD, SSD, etc) access protocol and interface, NVMe can also being used for back-end can also be used as a front-end of server to storage interface like how Fibre Channel SCSI_Protocol (aka FCP), SCSI based iSCSI, SCSI RDMA Protocol via InfiniBand (among others) are used.

NVMe features

Main features of NVMe include among others:

  • Lower latency due to improve drivers and increased queues (and queue sizes)
  • Lower CPU used to handle larger number of I/Os (more CPU available for useful work)
  • Higher I/O activity rates (IOPs) to boost productivity unlock value of fast flash and NVM
  • Bandwidth improvements leveraging various fast PCIe interface and available lanes
  • Dual-pathing of devices like what is available with dual-path SAS devices
  • Unlock the value of more cores per processor socket and software threads (productivity)
  • Various packaging options, deployment scenarios and configuration options
  • Appears as a standard storage device on most operating systems
  • Plug-play with in-box drivers on many popular operating systems and hypervisors

Shared external PCIe using NVMe
NVMe and shared PCIe (e.g. shared PCIe flash DAS)

NVMe related content and links

The following are some of my tips, articles, blog posts, presentations and other content, along with material from others pertaining to NVMe. Keep in mind that the question should not be if NVMe is in your future, rather when, where, with what, from whom and how much of it will be used as well as how it will be used.

  • How to Prepare for the NVMe Server Storage I/O Wave (Via Micron.com)
  • Why NVMe Should Be in Your Data Center (Via Micron.com)
  • NVMe U2 (8639) vs. M2 interfaces (Via Gamersnexus)
  • Enmotus FuzeDrive MicroTiering (StorageIO Lab Report)
  • EMC DSSD D5 Rack Scale Direct Attached Shared SSD All Flash Array Part I (Via StorageIOBlog)
  • Part II – EMC DSSD D5 Direct Attached Shared AFA (Via StorageIOBlog)
  • NAND, DRAM, SAS/SCSI & SATA/AHCI: Not Dead, Yet! (Via EnterpriseStorageForum)
  • Non Volatile Memory (NVM), NVMe, Flash Memory Summit and SSD updates (Via StorageIOblog)
  • Microsoft and Intel showcase Storage Spaces Direct with NVM Express at IDF ’15 (Via TechNet)
  • MNVM Express solutions (Via SuperMicro)
  • Gaining Server Storage I/O Insight into Microsoft Windows Server 2016 (Via StorageIOblog)
  • PMC-Sierra Scales Storage with PCIe, NVMe (Via EEtimes)
  • RoCE updates among other items (Via InfiniBand Trade Association (IBTA) December Newsletter)
  • NVMe: The Golden Ticket for Faster Flash Storage? (Via EnterpriseStorageForum)
  • What should I consider when using SSD cloud? (Via SearchCloudStorage)
  • MSP CMG, Sept. 2014 Presentation (Flash back to reality – Myths and Realities – Flash and SSD Industry trends perspectives plus benchmarking tips)– PDF
  • Selecting Storage: Start With Requirements (Via NetworkComputing)
  • PMC Announces Flashtec NVMe SSD NVMe2106, NVMe2032 Controllers With LDPC (Via TomsITpro)
  • Exclusive: If Intel and Micron’s “Xpoint” is 3D Phase Change Memory, Boy Did They Patent It (Via Dailytech)
  • Intel & Micron 3D XPoint memory — is it just CBRAM hyped up? Curation of various posts (Via Computerworld)
  • How many IOPS can a HDD, HHDD or SSD do (Part I)?
  • How many IOPS can a HDD, HHDD or SSD do with VMware? (Part II)
  • I/O Performance Issues and Impacts on Time-Sensitive Applications (Via CMG)
  • Via EnterpriseStorageForum: 5 Hot Storage Technologies to Watch
  • Via EnterpriseStorageForum: 10-Year Review of Data Storage

Non-Volatile Memory (NVM) Express (NVMe) continues to evolve as a technology for enabling and improving server storage I/O for NVM including nand flash SSD storage. NVMe streamline performance enabling more work to be done (e.g. IOPs), data to be moved (bandwidth) at a lower response time using less CPU.

NVMe and SATA flash SSD performance

The above figure is a quick look comparing nand flash SSD being accessed via SATA III (6Gbps) on the left and NVMe (x4) on the right. As with any server storage I/O performance comparisons there are many variables and take them with a grain of salt. While IOPs and bandwidth are often discussed, keep in mind that with the new protocol, drivers and device controllers with NVMe that streamline I/O less CPU is needed.

Additional NVMe Resources

Also check out the Server StorageIO companion micro sites landing pages including thessdplace.com (SSD focus), data protection diaries (backup, BC/DR/HA and related topics), cloud and object storage, and server storage I/O performance and benchmarking here.

If you are in to the real bits and bytes details such as at device driver level content check out the Linux NVMe reflector forum. The linux-nvme forum is a good source if you are developer to stay up on what is happening in and around device driver and associated topics.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

Disclaimer

Disclaimer: Please note that this site is independent of the industry trade and promoters group NVM Express, Inc. (e.g. www.nvmexpress.org). NVM Express, Inc. is the sole owner of the NVM Express specifications and trademarks. Check out the NVM Express industry promoters site here to learn more about their members, news, events, product information, software driver downloads, and other useful NVMe resources content.

NVM Express Organization
Image used with permission of NVM Express, Inc.

Wrap Up

Watch for updates with more content, links and NVMe resources to be added here soon.

Ok, nuff said (for now)

Cheers
Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Intel Micron 3D XPoint server storage NVM SCM PM SSD

3D XPoint server storage class memory SCM


Storage I/O trends

Updated 1/31/2018

Intel Micron 3D XPoint server storage NVM SCM PM SSD.

This is the second of a three-part series on the recent Intel and Micron 3D XPoint server storage memory announcement. Read Part I here and Part III here.

Is this 3D XPoint marketing, manufacturing or material technology?

You can’t have a successful manufactured material technology without some marketing, likewise marketing without some manufactured material would be manufactured marketing. In the case of 3D XPoint and its announcement launch, their real technology shown, granted it was only wafer and dies as opposed to an actual DDR4 DIMM or PCIe Add In Card (AIC) or drive form factor Solid State Device (SSD) product. On the other hand, on a relative comparison basis, even though there is marketing collateral available to learn more from, this was far from a over the big-top made for TV or web circus event, which can be a good thing.


Wafer unveiled containing 3D XPoint 128 Gb dies

Who will get access to 3D XPoint?

Initially 3D XPoint production capacity supply will be for the two companies to offer early samples to their customers later this year with general production slated for 2016 meaning early real customer deployed products starting sometime in 2016.

Is it NAND or NOT?

3D XPoint is not NAND flash, it is also not NVRAM or DRAM, it’s a new class of NVM that can be used for server class main memory with persistency, or as persistent data storage among other uses (cell phones, automobiles, appliances and other electronics). In addition, 3D XPoint is more durable with a longer useful life for writing and storing data vs. NAND flash.

Why is 3D XPoint important?

As mentioned during the Intel and Micron announcement, there have only been seven major memory technologies introduced since the transistor back in 1947, granted there have been many variations along with generational enhancements of those. Thus 3D XPoint is being positioned by Intel and Micron as the eighth memory class joining its predecessors many of which continue to be used today in various roles.


Major memory classes or categories timeline

In addition to the above memory classes or categories timeline, the following shows in more detail various memory categories (click on the image below to get access to the Intel interactive infographic).

Intel History of Memory Infographic
Via: https://intelsalestraining.com/memory timeline/ (Click on image to view)

What capacity size is 3D XPoint?

Initially the 3D XPoint technology is available in a 2 layer 128 bit (cell) per die capacity. Keep in mind that there are usually 8 bits to a byte resulting in 16 GByte capacity per chip initially. With density improvements, as well as increased stacking of layers, the number of cells or bits per die (e.g. what makes up a chip) should improve, as well as most implementations will have multiple chips in some type of configuration.

What will 3D XPoint cost?

During the 3D XPoint launch webinar Intel and Micron hinted that first pricing will be between current DRAM and NAND flash on a per cell or bit basis, however real pricing and costs will vary depending on how packaged for use. For example if placed on a DDR4 or different type of DIMM or on a PCIe Add In Card (AIC) or as a drive form factor SSD among other options will vary the real price. Likewise as with other memories and storage mediums, as production yields and volumes increase, along with denser designs, the cost per usable cell or bit can be expected to further improve.

Where to read, watch and learn more

Storage I/O trends

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

DRAM which has been around for sometime has plenty of life left for many applications as does NAND flash including new 3D NAND, vNAND and other variations. For the next several years, there will be a co-existences between new and old NVM and DRAM among other memory technologies including 3D XPoint. Read more in this series including Part I here and Part III here.

Disclosure: Micron and Intel have been direct and/or indirect clients in the past via third-parties and partners, also I have bought and use some of their technologies direct and/or in-direct via their partners.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

3D XPoint nvm pm scm storage class memory

Part III – 3D XPoint server storage class memory SCM


Storage I/O trends

Updated 1/31/2018

3D XPoint nvm pm scm storage class memory.

This is the third of a three-part series on the recent Intel and Micron 3D XPoint server storage memory announcement. Read Part I here and Part II here.

What is 3D XPoint and how does it work?

3D XPoint is a new class or class of memory (view other categories of memory here) that provides performance for reads and writes closer to that of DRAM with about 10x the capacity density. In addition to the speed closer to DRAM vs. the lower NAND flash, 3D XPoint is also non-volatile memory (NVM) like NAND flash, NVRAM and others. What this means is that 3D XPoint can be used as persistent higher density fast server memory (or main memory for other computers and electronics). Besides being fast persistent main memory, 3D XPoint will also be a faster medium for solid state devices (SSD’s) including PCIe Add In Cards (AIC), m2 cards and drive form factor 8637/8639 NVM Express (NVMe) accessed devices that also has better endurance or life span compared to NAND flash.


3D XPoint architecture and attributes

The initial die or basic chip building block 3D XPoint implementation is a layer 128 Gbit device which if using 8 bits would yield 16GB raw. Over time increased densities should become available as the bit density improves with more cells and further scaling of the technology, combined with packaging. For example while a current die could hold up to 16 GBytes of data, multiple dies could be packaged together to create a 32GB, 64GB, 128GB etc. or larger actual product. Think about not only where packaged flash based SSD capacities are today, also think in terms of where DDR3 and DDR4 DIMM are at such as 4GB, 8GB, 16GB, 32GB densities.

The 3D aspect comes from the memory being in a matrix initially being two layers high, with multiple rows and columns that intersect, where those intersections occur is a microscopic material based switch for accessing a particular memory cell. Unlike NAND flash where an individual cell or bit is accessed as part of a larger block or page comprising several thousand bytes at once, 3D XPoint cells or bits can be individually accessed to speed up reads and writes in a more granular fashion. It is this more granular access along with performance that will enable 3D XPoint to be used in lower latency scenarios where DRAM would normally be used.

Instead of trapping electrons in a cell to create a bit of capacity (e.g. on or off) like NAND flash, 3D XPoint leverages the underlying physical material propertied to store a bit as a phase change enabling use of all cells. In other words, instead of being electron based, it is material based. While Intel and Micron did not specify what the actual chemistry and physical materials that are used in 3D XPoint, they did discuss some of the characteristics. If you want to go deep, check out how the Dailytech makes an interesting educated speculation or thesis on the underlying technology.

Watch the following video to get a better idea and visually see how 3D XPoint works.



3D XPoint YouTube Video

What are these chips, cells, wafers and dies?

Left many dies on a wafer, right, a closer look at the dies cut from the wafer

Dies (here and here) are the basic building block of what goes into the chips that in turn are the components used for creating DDR DIMM for main computer memory, as well as for create SD and MicroSD cards, USB thumb drives, PCIe AIC and drive form factor SSD, as well as custom modules on motherboards, or consumption via bare die and wafer level consumption (e.g. where you are doing really custom things at volume, beyond using a soldering iron scale).

Storage I/O trends

Has Intel and Micron cornered the NVM and memory market?

We have heard proclamations, speculation and statements of the demise of DRAM, NAND flash and other volatile and NVM memories for years, if not decades now. Each year there is the usual this will be the year of “x” where “x” can include among others. Resistive RAM aka ReRAM or RRAM aka the memristor that HP earlier announced they were going to bring to market and then earlier this year canceling those plans while Crossbar continues to pursue RRAM. MRAM or Magnetorestive RAM, Phase Change Memory aka CRAM or PCM and PRAM, FRAM aka FeRAM or Ferroelectric RAM among others.

flash SSD and NVM trends

Expanding persistent memory and SSD storage markets

Keep in mind that there are many steps taking time measured in years or decades to go from research and development lab idea to prototype that can then be produced at production volumes in economic yields. As a reference for, there is still plenty of life in both DRAM as well as NAND flash, the later having appeared around 1989.

Industry vs. Customer Adoption and deployment timeline

Technology industry adoption precedes customer adoption and deployment

There is a difference between industry adoption and deployment vs. customer adoption and deployment, they are related, yet separated by time as shown in the above figure. What this means is that there can be several years from the time a new technology is initially introduced and when it becomes generally available. Keep in mind that NAND flash has yet to reach its full market potential despite having made significant inroads the past few years since it was introduced in 1989.

This begs the question of if 3D XPoint is a variation of phase change, RRAM, MRAM or something else. Over at the Dailytech they lay out a line of thinking (or educated speculation) that 3D XPoint is some derivative or variation of phase change, time will tell about what it really is.

What’s the difference between 3D NAND flash and 3D XPoint?

3D NAND is a form of NAND flash NVM, while 3D XPoint is a completely new and different type of NVM (e.g. its not NAND).

3D NAND is a variation of traditional flash with the difference between vertical stacking vs. horizontal to improve density, also known as vertical NAND or V-NAND. Vertical stacking is like building up to house more tenants or occupants in a dense environment or scaling up, vs scaling-out by using up more space where density is not an issue. Note that magnetic HDD’s shifted to perpendicular (e.g. vertical) recording about ten years ago to break through the super parametric barrier and more recently, magnetic tape has also adopted perpendicular recording. Also keep in mind that 3D XPoint and the earlier announced Intel and Micron 3D NAND flash are two separate classes of memory that both just happen to have 3D in their marketing names.

Where to read, watch and learn more

Storage I/O trends

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

First, keep in mind that this is very early in the 3D XPoint technology evolution life-cycle and both DRAM and NAND flash will not be dead at least near term. Keep in mind that NAND flash appeared back in 1989 and only over the past several years has finally hit its mainstream adoption stride with plenty of market upside left. Same with DRAM which has been around for sometime, it too still has plenty of life left for many applications. However other applications that have the need for improved speed over NAND flash, or persistency and density vs. DRAM will be some of the first to leverage new NVM technologies such as 3D XPoint. Thus at least for the next several years, there will be a co-existences between new and old NVM and DRAM among other memory technologies. Bottom line, 3D XPoint is a new class of NVM memory, can be used for persistent main server memory or for persistent fast storage memory. If you have not done so, check out Part I here and Part II here of this three-part series on Intel and Micron 3D XPoint.

Disclosure: Micron and Intel have been direct and/or indirect clients in the past via third-parties and partners, also I have bought and use some of their technologies direct and/or in-direct via their partners.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Intel Micron unveil new 3D XPoint Non Volatie Memory NVM for servers storage

3D XPoint NVM persistent memory PM storage class memory SCM


Storage I/O trends

Updated 1/31/2018

This is the first of a three-part series on Intel Micron unveil new 3D XPoint Non Volatie Memory NVM for servers storage announcement. Read Part II here and Part III here.

In a webcast the other day, Intel and Micron announced new 3D XPoint non-volatile memory (NVM) that can be used for both primary main memory (e.g. what’s in computers, serves, laptops, tablets and many other things) in place of Dynamic Random Access Memory (DRAM), for persistent storage faster than today’s NAND flash-based solid state devices (SSD), not to mention future hybrid usage scenarios. Note that this announcement while having the common term 3D in it is different from the earlier Intel and Micron announcement about 3D NAND flash (read more about that here).

Twitter hash tag #3DXpoint

The big picture, why this type of NVM technology is needed

Server and Storage I/O trends

  • Memory is storage and storage is persistent memory
  • No such thing as a data or information recession, more data being create, processed and stored
  • Increased demand is also driving density along with convergence across server storage I/O resources
  • Larger amounts of data needing to be processed faster (large amounts of little data and big fast data)
  • Fast applications need more and faster processors, memory along with I/O interfaces
  • The best server or storage I/O is the one you do not need to do
  • The second best I/O is one with least impact or overhead
  • Data needs to be close to processing, processing needs to be close to the data (locality of reference)


Server Storage I/O memory hardware and software hierarchy along with technology tiers

What did Intel and Micron announce?

Intel SVP and General Manager Non-Volatile Memory solutions group Robert Crooke (Left) and Micron CEO D. Mark Durcan did the joint announcement presentation of 3D XPoint (webinar here). What was announced is the 3D XPoint technology jointly developed and manufactured by Intel and Micron which is a new form or category of NVM that can be used for both primary memory in servers, laptops, other computers among other uses, as well as for persistent data storage.


Robert Crooke (Left) and Mark Durcan (Right)

Summary of 3D XPoint announcement

  • New category of NVM memory for servers and storage
  • Joint development and manufacturing by Intel and Micron in Utah
  • Non volatile so can be used for storage or persistent server main memory
  • Allows NVM to scale with data, storage and processors performance
  • Leverages capabilities of both Intel and Micron who have collaborated in the past
  • Performance Intel and Micron claim up to 1000x faster vs. NAND flash
  • Availability persistent NVM compared to DRAM with better durability (life span) vs. NAND flash
  • Capacity densities about 10x better vs. traditional DRAM
  • Economics cost per bit between dram and nand (depending on packaging of resulting products)

What applications and products is 3D XPoint suited for?

In general, 3D XPoint should be able to be used for many of the same applications and associated products that current DRAM and NAND flash-based storage memories are used for. These range from IT and cloud or managed service provider data centers based applications and services, as well as consumer focused among many others.


3D XPoint enabling various applications

In general, applications or usage scenarios along with supporting products that can benefit from 3D XPoint include among others’. Applications that need larger amounts of main memory in a denser footprint such as in-memory databases, little and big data analytics, gaming, wave form analysis for security, copyright or other detection analysis, life sciences, high performance compute and high-productivity compute, energy, video and content severing among many others.

In addition, applications that need persistent main memory for resiliency, or to cut delays and impacts for planned or un-planned maintenance or having to wait for memories and caches to be warmed or re-populated after a server boot (or re-boot). 3D XPoint will also be useful for those applications that need faster read and write performance compared to current generations NAND flash for data storage. This means both existing and emerging applications as well as some that do not yet exist will benefit from 3D XPoint over time, like how today’s applications and others have benefited from DRAM used in Dual Inline Memory Module (DIMM) and NAND flash advances over the past several decades.

Where to read, watch and learn more

Storage I/O trends

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

First, keep in mind that this is very early in the 3D XPoint technology evolution life-cycle and both DRAM and NAND flash will not be dead at least near term. Keep in mind that NAND flash appeared back in 1989 and only over the past several years has finally hit its mainstream adoption stride with plenty of market upside left. Continue reading Part II here and Part III here of this three-part series on Intel and Micron 3D XPoint along with more analysis and commentary.

Disclosure: Micron and Intel have been direct and/or indirect clients in the past via third-parties and partners, also I have bought and use some of their technologies direct and/or in-direct via their partners.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Nand flash SSD NVM SCM server storage I/O memory conversations

Updated 8/31/19
Server Storage I/O storageioblog SDDC SDDI Data Infrastructure trends

The SSD Place NVM, SCM, PMEM, Flash, Optane, 3D XPoint, MRAM, NVMe Server, Storage, I/O Topics

Now and then somebody asks me if I’m familiar with flash or nand flash Solid State Devices (SSD) along with other non-volatile memory (NVM) technologies and trends including NVM Express (NVMe).

Having been involved with various types of SSD technology, products and solutions since the late 80s initially as a customer in IT (including as a lunch customer for DEC’s ESE20 SSD’s), then later as a vendor selling SSD solutions, as well as an analyst and advisory consultant cover the technologies, I tell the person asking, well, yes, of course.

That gave me the idea as well as to help me keep track of some of the content and make it easy to find by putting it here in this post (which will be updated now and then).

Thus this is a collection of articles, tips, posts, presentations, blog posts and other content on SSD including nand flash drives, PCIe cards, DIMMs, NVM Express (NVMe), hybrid and other storage solutions along with related themes.

Also if you can’t find it here, you can always do a Google search like this or this to find some more material (some of which is on this page).

HDD, SSHD, HHDD and HDD

Flash SSD Articles, posts and presentations

The following are some of my tips, articles, blog posts, presentations and other content on SSD. Keep in mind that the question should not be if SSD are in your future, rather when, where, with what, from whom and how much. Also keep in mind that a bit of SSD as storage or cache in the right place can go a long way, while a lot of SSD will give you a benefit however also cost a lot of cash.

  • How to Prepare for the NVMe Server Storage I/O Wave (Via Micron.com)
  • Why NVMe Should Be in Your Data Center (Via Micron.com)
  • NVMe U2 (8639) vs. M2 interfaces (Via Gamersnexus)
  • Enmotus FuzeDrive MicroTiering (StorageIO Lab Report)
  • EMC DSSD D5 Rack Scale Direct Attached Shared SSD All Flash Array Part I (Via StorageIOBlog)
  • Part II – EMC DSSD D5 Direct Attached Shared AFA (Via StorageIOBlog)
  • NAND, DRAM, SAS/SCSI & SATA/AHCI: Not Dead, Yet! (Via EnterpriseStorageForum)
  • Non Volatile Memory (NVM), NVMe, Flash Memory Summit and SSD updates (Via StorageIOblog)
  • Microsoft and Intel showcase Storage Spaces Direct with NVM Express at IDF ’15 (Via TechNet)
  • MNVM Express solutions (Via SuperMicro)
  • Gaining Server Storage I/O Insight into Microsoft Windows Server 2016 (Via StorageIOblog)
  • PMC-Sierra Scales Storage with PCIe, NVMe (Via EEtimes)
  • RoCE updates among other items (Via InfiniBand Trade Association (IBTA) December Newsletter)
  • NVMe: The Golden Ticket for Faster Flash Storage? (Via EnterpriseStorageForum)
  • What should I consider when using SSD cloud? (Via SearchCloudStorage)
  • MSP CMG, Sept. 2014 Presentation (Flash back to reality – Myths and Realities – Flash and SSD Industry trends perspectives plus benchmarking tips)– PDF
  • Selecting Storage: Start With Requirements (Via NetworkComputing)
  • PMC Announces Flashtec NVMe SSD NVMe2106, NVMe2032 Controllers With LDPC (Via TomsITpro)
  • Exclusive: If Intel and Micron’s “Xpoint” is 3D Phase Change Memory, Boy Did They Patent It (Via Dailytech)
  • Intel & Micron 3D XPoint memory — is it just CBRAM hyped up? Curation of various posts (Via Computerworld)
  • How many IOPS can a HDD, HHDD or SSD do (Part I)?
  • How many IOPS can a HDD, HHDD or SSD do with VMware? (Part II)
  • I/O Performance Issues and Impacts on Time-Sensitive Applications (Via CMG)
  • Via EnterpriseStorageForum: 5 Hot Storage Technologies to Watch
  • Via EnterpriseStorageForum: 10-Year Review of Data Storage
  • Via CustomPCreview: Samsung SM961 PCIe NVMe SSD Shows Up for Pre-Order
  • StorageIO Industry Trends Perspective White Paper: Seagate 1200 Enterprise SSD (12Gbps SAS) with proof points (e.g. Lab test results)
  • Companion: Seagate 1200 12Gbs Enterprise SAS SSD StorgeIO lab review (blog post part I and Part II)
  • NewEggBusiness: Seagate 1200 12Gbs Enterprise SAS SSD StorgeIO lab review Are NVMe m.2 drives ready for the limelight?
  • Google (Research White Paper): Disks for Data Centers (vs. just SSD)
  • CMU (PDF White Paper): A Large-Scale Study of Flash Memory Failures in the Field
  • Via ZDnet: Google doubles Cloud Compute local SSD capacity: Now it’s 3TB per VM
  • EMC DSSD D5 Rack Scale Direct Attached Shared SSD All Flash Array Part I (Via StorageIOBlog)
  • Part II – EMC DSSD D5 Direct Attached Shared AFA (Via StorageIOBlog)
  • NAND, DRAM, SAS/SCSI & SATA/AHCI: Not Dead, Yet! (Via EnterpriseStorageForum)
  • Here’s why Western Digital is buying SanDisk (Via ComputerWorld)
  • HP, SanDisk partner to bring storage-class memory to market (Via ComputerWorld)
  • Non Volatile Memory (NVM), NVMe, Flash Memory Summit and SSD updates (Via StorageIOblog)
  • Microsoft and Intel showcase Storage Spaces Direct with NVM Express at IDF ’15 (Via TechNet)
  • PMC-Sierra Scales Storage with PCIe, NVMe (Via EEtimes)
  • Seagate Grows Its Nytro Enterprise Flash Storage Line (Via InfoStor)
  • New SAS Solid State Drive First Product From Seagate Micron Alliance (Via Seagate)
  • Wow, Samsung’s New 16 Terabyte SSD Is the World’s Largest Hard Drive (Via Gizmodo)
  • Samsung ups the SSD ante with faster, higher capacity drives (Via ITworld)
  • PMC Announces Flashtec NVMe SSD NVMe2106, NVMe2032 Controllers With LDPC (Via TomsITpro)
  • New SATA SSD powers elastic cloud agility for CSPs (Via Cbronline)
  • Toshiba Solid-State Drive Family Features PCIe Technology (Via Eweek)
  • SanDisk aims CloudSpeed Ultra SSD at cloud providers (Via ITwire)
  • Everspin & Aupera reveal all-MRAM Storage Module in M.2 Form Factor (Via BusinessWire)
  • Intel, Micron Launch “Bulk-Switching” ReRAM (Via EEtimes)
  • Exclusive: If Intel and Micron’s “Xpoint” is 3D Phase Change Memory, Boy Did They Patent It (Via Dailytech)
  • Intel & Micron 3D XPoint memory — is it just CBRAM hyped up? Curation of various posts (Via Computerworld)
  • NVMe: The Golden Ticket for Faster Flash Storage? (Via EnterpriseStorageForum)

server I/O hirearchy

  • What should I consider when using SSD cloud? (Via SearchCloudStorage)
  • MSP CMG, September 2014 Presentation (Flash back to reality – Myths and Realities Flash and SSD Industry trends perspectives plus benchmarking tips) – PDF
  • Selecting Storage: Start With Requirements (Via NetworkComputing)
  • Spot The Newest & Best Server Trends (Via Processor)
  • Market ripe for embedded flash storage as prices drop (Via Powermore (Dell))
  • 2015 Tech Preview: SSD and SMBs (Via ChannelProNetworks )
  • How to test your HDD, SSD or all flash array (AFA) storage fundamentals (Via StorageIOBlog)
  • Processor: Comments on What Abandoned Data Is Costing Your Company
  • Processor: Comments on Match Application Needs & Infrastructure Capabilities
  • Processor: Comments on Explore The Argument For Flash-Based Storage
  • Processor: Comments on Understand The True Cost Of Acquiring More Storage
  • Processor: Comments on What Resilient & Highly Available Mean
  • Processor: Explore The Argument For Flash-Based Storage
  • SearchCloudStorage What should I consider when using SSD cloud?
  • StorageSearch.com: (not to be confused with TechTarget, good site with lots of SSD related content)
  • StorageSearch.com: What kind of SSD world… 2015?
  • StorageSearch.com: Various links about SSD
  • FlashStorage.com: (Various flash links curated by Tegile and analyst firm Actual Tech Media [Scott D. Lowe])
  • StorageSearch.com: How fast can your SSD run backwards?
  • Seagate has shipped over 10 Million storage HHDD’s (SSHDs), is that a lot?
  • Are large storage arrays dead at the hands of SSD?
  • Can we get a side of context with them IOPS and other storage metrics?
  • Cisco buys Whiptail continuing the SSD storage I/O flash cash cache dash
  • EMC VFCache respinning SSD and intelligent caching (Part I)
  • Flash Data Storage: Myth vs. Reality (Via InfoStor)
  • Have SSDs been unsuccessful with storage arrays (with poll)?
  • How many IOPS can a HDD, HHDD or SSD do (Part I)?
  • How many IOPS can a HDD, HHDD or SSD do with VMware? (Part II)
  • I/O Performance Issues and Impacts on Time-Sensitive Applications (Via CMG)

server storage i/o memory hirearchy

  • Spiceworks SSD and related conversation here and here, profiling IOPs here, and SSD endurance here.
  • SSD is in your future, How, when, with what and where you will be using it (PDF Presentation)
  • SSD for Virtual (and Physical) Environments: Part I Spinning up to speed on SSD (Via TheVirtualizationPractice), Part II, The call to duty, SSD endurance, Part III What SSD is best for you?, and Part IV what’s best for your needs.
  • IT and storage economics 101, supply and demand
  • SSD, flash and DRAM, DejaVu or something new?
  • The Many Faces of Solid State Devices/Disks (SSD)
  • The Nand Flash Cache SSD Cash Dance (Via InfoStor)
  • The Right Storage Option Is Important for Big Data Success (Via FedTech)

server storage i/o nand flash ssd options

  • Viking SATADIMM: Nand flash SATA SSD in DDR3 DIMM slot?
  • WD buys nand flash SSD storage I/O cache vendor Virident (Via VMware Communities)
  • What is the best kind of IO? The one you do not have to do
  • When and Where to Use NAND Flash SSD for Virtual Servers (Via TheVirtualizationPractice)
  • Why SSD based arrays and storage appliances can be a good idea (Part I)
  • Why SSD based arrays and storage appliances can be a good idea (Part II)
  • Q&A on Access data more efficiently with automated storage tiering and flash (Via SearchSolidStateStorage)
  • InfoStor: Flash Data Storage: Myth vs. Reality (Via InfoStor)
  • Enterprise Storage Forum: Not Just a Flash in the Pan (Via EnterpriseStorageForum)

SSD Storage I/O and related technologies comments in the news

The following are some of my commentary and industry trend perspectives that appear in various global venues.

Storage I/O ssd news

  • Comments on using Flash Drives To Boost Performance (Via Processor)
  • Comments on selecting the Right Type, Amount & Location of Flash Storage (Via Toms It Pro)
  • Comments Google vs. AWS SSD: Which is the better deal? (Via SearchAWS)
  • Tech News World: SANdisk SSD comments and perspectives.
  • Tech News World: Samsung Jumbo SSD drives perspectives
  • Comments on Why Degaussing Isn’t Always Effective (Via StateTech Magazine)
  • Processor: SSD (FLASH and RAM)
  • SearchStorage: FLASH and SSD Storage
  • Internet News: Steve Wozniak joining SSD startup
  • Internet News: SANdisk sale to Toshiba
  • SearchSMBStorage: Comments on SanDisk and wireless storage product
  • StorageAcceleration: Comments on When VDI Hits a Storage Roadblock and SSD
  • Statetechmagazine: Boosting performance with SSD
  • Edtechmagazine: Driving toward SSDsStorage I/O trends
  • SearchStorage: Seagate SLC and MLC flash SSD
  • SearchWindowServer: Making the move to SSD in a SAN/NAS
  • SearchSolidStateStorage: Comments SSD marketplace
  • InfoStor: Comments on SSD approaches and opportunities
  • SearchSMBStorage: Solid State Devices (SSD) benefits
  • SearchSolidState: Comments on Fusion-IO flash SSD and API’s
  • SeaarchSolidStateStorage: Comments on SSD industry activity and OCZ bankruptcy
  • Processor: Comments on Plan Your Storage Future including SSD
  • Processor: Comments on Incorporate SSDs Into Your Storage PlanStorage I/O ssd news
  • Digistor: Comments on SSD and flash storage
  • ITbusinessEdge: Comments on flash SSD and hybrid storage environments
  • SearchStorage: Perspectives on Cisco buying SSD storage vendor Whiptail
  • StateTechMagazine: Comments on all flash SSD storage arrays
  • Processor: Comments on choosing SSDs for your data center needs
  • Searchsolidstatestorage: Comments on how to add solid state devices (SSD) to your storage system
  • Networkcomputing: Comments on SSD/Hard Disk Hybrids Bridge Storage Divide
  • Internet Evolution: Comments on IBM buying flash SSD vendor TMS
  • ITKE: Comments on IBM buying flash SSD vendor TMSStorage I/O trends
  • Searchsolidstatestorage: SSD, Green IT and economic benefits
  • IT World Canada: Cloud computing, dot be scared, look before you leap
  • SearchStorage: SSD in storage systems
  • SearchStorage: SAS SSD
  • SearchSolidStateStorage: Comments on Access data more efficiently with automated storage tiering and flash
  • InfoStor: Comments on EMC’s Light to Speed: Flash, VNX, and Software-Defined
  • EnterpriseStorageForum: Cloud Storage Mergers and Acquisitions: What’s Going On?

Check out the Server StorageIO NVM Express (NVMe) focus page aka www.thenvmeplace.com for additional related content. nterested in data protection, check out the data protection diaries series of posts here, or cloud and object storage here, and server storage I/O performance benchmarking here. Also check out the StorageIO events and activities page here, as well as tips and articles here, news commentary here, along out newsletter here.

Ok, nuff said (for now)

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

How many I/O iops can flash SSD or HDD do?

How many i/o iops can flash ssd or hdd do with vmware?

sddc data infrastructure Storage I/O ssd trends

Updated 2/10/2018

A common question I run across is how many I/O iopsS can flash SSD or HDD storage device or system do or give.

The answer is or should be it depends.

This is the first of a two-part series looking at storage performance, and in context specifically around drive or device (e.g. mediums) characteristics across HDD, HHDD and SSD that can be found in cloud, virtual, and legacy environments. In this first part the focus is around putting some context around drive or device performance with the second part looking at some workload characteristics (e.g. benchmarks).

What about cloud, tape summit resources, storage systems or appliance?

Lets leave those for a different discussion at another time.

Getting started

Part of my interest in tools, metrics that matter, measurements, analyst, forecasting ties back to having been a server, storage and IO performance and capacity planning analyst when I worked in IT. Another aspect ties back to also having been a sys admin as well as business applications developer when on the IT customer side of things. This was followed by switching over to the vendor world involved with among other things competitive positioning, customer design configuration, validation, simulation and benchmarking HDD and SSD based solutions (e.g. life before becoming an analyst and advisory consultant).

Btw, if you happen to be interested in learn more about server, storage and IO performance and capacity planning, check out my first book Resilient Storage Networks (Elsevier) that has a bit of information on it. There is also coverage of metrics and planning in my two other books The Green and Virtual Data Center (CRC Press) and Cloud and Virtual Data Storage Networking (CRC Press). I have some copies of Resilient Storage Networks available at a special reader or viewer rate (essentially shipping and handling). If interested drop me a note and can fill you in on the details.

There are many rules of thumb (RUT) when it comes to metrics that matter such as IOPS, some that are older while others may be guess or measured in different ways. However the answer is that it depends on many things ranging from if a standalone hard disk drive (HDD), Hybrid HDD (HHDD), Solid State Device (SSD) or if attached to a storage system, appliance, or RAID adapter card among others.

Taking a step back, the big picture

hdd image
Various HDD, HHDD and SSD’s

Server, storage and I/O performance and benchmark fundamentals

Even if just looking at a HDD, there are many variables ranging from the rotational speed or Revolutions Per Minute (RPM), interface including 1.5Gb, 3.0Gb, 6Gb or 12Gb SAS or SATA or 4Gb Fibre Channel. If simply using a RUT or number based on RPM can cause issues particular with 2.5 vs. 3.5 or enterprise and desktop. For example, some current generation 10K 2.5 HDD can deliver the same or better performance than an older generation 3.5 15K. Other drive factors (see this link for HDD fundamentals) including physical size such as 3.5 inch or 2.5 inch small form factor (SFF), enterprise or desktop or consumer, amount of drive level cache (DRAM). Space capacity of a drive can also have an impact such as if all or just a portion of a large or small capacity devices is used. Not to mention what the drive is attached to ranging from in internal SAS or SATA drive bay, USB port, or a HBA or RAID adapter card or in a storage system.

disk iops
HDD fundamentals

How about benchmark and performance for marketing or comparison tricks including delayed, deferred or asynchronous writes vs. synchronous or actually committed data to devices? Lets not forget about short stroking (only using a portion of a drive for better IOP’s) or even long stroking (to get better bandwidth leveraging spiral transfers) among others.

Almost forgot, there are also thick, standard, thin and ultra thin drives in 2.5 and 3.5 inch form factors. What’s the difference? The number of platters and read write heads. Look at the following image showing various thickness 2.5 inch drives that have various numbers of platters to increase space capacity in a given density. Want to take a wild guess as to which one has the most space capacity in a given footprint? Also want to guess which type I use for removable disk based archives along with for onsite disk based backup targets (compliments my offsite cloud backups)?

types of disks
Thick, thin and ultra thin devices

Beyond physical and configuration items, then there are logical configuration including the type of workload, large or small IOPS, random, sequential, reads, writes or mixed (various random, sequential, read, write, large and small IO). Other considerations include file system or raw device, number of workers or concurrent IO threads, size of the target storage space area to decide impact of any locality of reference or buffering. Some other items include how long the test or workload simulation ran for, was the device new or worn in before use among other items.

Tools and the performance toolbox

Then there are the various tools for generating IO’s or workloads along with recording metrics such as reads, writes, response time and other information. Some examples (mix of free or for fee) include Bonnie, Iometer, Iorate, IOzone, Vdbench, TPC, SPC, Microsoft ESRP, SPEC and netmist, Swifttest, Vmark, DVDstore and PCmark 7 among many others. Some are focused just on the storage system and IO path while others are application specific thus exercising servers, storage and IO paths.

performance tools
Server, storage and IO performance toolbox

Having used Iometer since the late 90s, it has its place and is popular given its ease of use. Iometer is also long in the tooth and has its limits including not much if any new development, never the less, I have it in the toolbox. I also have Futremark PCmark 7 (full version) which turns out has some interesting abilities to do more than exercise an entire Windows PC. For example PCmark can use a secondary drive for doing IO to.

PCmark can be handy for spinning up with VMware (or other tools) lots of virtual Windows systems pointing to a NAS or other shared storage device doing real world type activity. Something that could be handy for testing or stressing virtual desktop infrastructures (VDI) along with other storage systems, servers and solutions. I also have Vdbench among others tools in the toolbox including Iorate which was used to drive the workloads shown below.

What I look for in a tool are how extensible are the scripting capabilities to define various workloads along with capabilities of the test engine. A nice GUI is handy which makes Iometer popular and yes there are script capabilities with Iometer. That is also where Iometer is long in the tooth compared to some of the newer generation of tools that have more emphasis on extensibility vs. ease of use interfaces. This also assumes knowing what workloads to generate vs. simply kicking off some IOPs using default settings to see what happens.

Another handy tool is for recording what’s going on with a running system including IO’s, reads, writes, bandwidth or transfers, random and sequential among other things. This is where when needed I turn to something like HiMon from HyperIO, if you have not tried it, get in touch with Tom West over at HyperIO and tell him StorageIO sent you to get a demo or trial. HiMon is what I used for doing start, stop and boot among other testing being able to see IO’s at the Windows file system level (or below) including very early in the boot or shutdown phase.

Here is a link to some other things I did awhile back with HiMon to profile some Windows and VDI activity test profiling.

What’s the best tool or benchmark or workload generator?

The one that meets your needs, usually your applications or something as close as possible to it.

disk iops
Various 2.5 and 3.5 inch HDD, HHDD, SSD with different performance

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

That depends, however continue reading part II of this series to see some results for various types of drives and workloads.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Trick or treat and vendor fun games

In the spirit of Halloween and zombies season, a couple of thoughts come to mind about vendor tricks and treats. This is an industry trends and perspectives post, part of an ongoing series looking at various technology and fun topics.

The first trick or treat game pertains to the blame game; you know either when something breaks, or at the other extreme, before you have even made a decision to buy something. The trick or treat game for decision-making goes something like this.

StorageIO industry trends cloud, virtualization and big data

Vendor “A” says products succeed with their solution while failure results with a solution from “B” when doing “X”. Otoh, vendor “B” claims that “X” will fail when using a solution from vendor “A”. In fact, you can pick what you want to substitute for “X”, perhaps VDI, PCIe, Big Data, Little Data, Backup, Archive, Analytics, Private Cloud, Public Cloud, Hybrid Cloud, eDiscovery you name it.

This is not complicated math or big data problem requiring a high-performance computing (HPC) platform. A HPC Zetta-Flop processing ability using 512 bit addressing of 9.9 (e.g. 1 nine) PettaBytes of battery-backed DRAM and an IO capability of 9.99999 (e.g. 5 9’s) trillion 8 bit IOPS to do table pivots or runge kutta numerical analysis, map reduce, SAS or another modeling with optional iProduct or Android interface are not needed.

image of StorageIO big data HPC cloud storageimage of StorageIO big data HPC cloud storage
StorageIO images of touring Texas Advanced Computing (e.g. HPC) Center

Can you solve this equation? Hint it does not need a PhD or any other advanced degree. Another hint, if you have ever been at any side of the technology product and services decision-making table, regardless of the costume you wore, you should know the answer.

Of course the question of would “X” fail regardless of who or what “A” or “B” let alone a “C”, “D” or “F”? In other words, it is not the solution, technology, vendor or provider, rather the problem or perhaps even lack thereof that is the issue. Or is it a case where there is a solution from “A”, “B” or any others that is looking for a problem, and if it is the wrong problem, there can be a wrong solution thus failure?

StorageIO industry trends cloud, virtualization and big data

Another trick or treat game is vendors public relations (PR) or analyst relations (AR) people to ask for one thing and delivery or ask another. For example, some vendor, service provider, their marketing AR and PR people or surrogates make contact wanting to tell of various success and failure story. Of course, this is usually their success and somebody else’s failure, or their victory over something or someone who sometimes can be interesting. Of course, there are also the treats to get you to listen to the above, such as tempt you with a project if you meet with their subject, which may be a trick of a disappearing treat (e.g. magic, poof it is gone after the discussion).

There are another AR and PR trick and treat where they offer on behalf of their representative organization or client to a perspective or exclusive insight on their competitor. Of course, the treat from their perspective is that they will generously expose all that is wrong with what a competitor is saying about their own (e.g. the competitors) product.

StorageIO industry trends cloud, virtualization and big data

Let me get this straight, I am not supposed to believe what somebody says about his or her own product, however, supposed to believe what a competitor says is wrong with the competition’s product, and what is right with his or her own product.

Hmm, ok, so let me get this straight, a competitor say “A” wants to tell me what somebody say from “B” has told me is wrong and I should schedule a visit with a truth squad member from “A” to get the record set straight about “B”?

Does that mean then that I go to “B” for a rebuttal, as well as an update about “A” from “B”, assuming that what “A” has told me is also false about themselves, and perhaps about “B” or any other?

Too be fair, depending on your level of trust and confidence in either a vendor, their personal or surrogates, you might tend to believe more from them vs. others, or at least until you been tricked after given treats. There may be some that have been tricked, or they tried applying to many treats to present a story that behind the costume might be a bit scary.

StorageIO industry trends cloud, virtualization and big data

Having been through enough of these, and I candidly believe that sometimes “A” or “B” or any other party actually do believe that they have more or better info about their competitor and that they can convince somebody about what their competitor is doing better than the competitor can. I also believe that there are people out there who will go to “A” or “B” and believe what they are told by based on their preference, bias or interests.

When I hear from vendors, VARs, solution or service providers and others, it’s interesting hearing point, counterpoint and so forth, however if time is limited, I’am more interested in hearing from such as “A” about them, what they are doing, where success, where challenges, where going and if applicable, under NDA go into more detail.

StorageIO industry trends cloud, virtualization and big data

Customer success stories are good, however again, if interested in what works, what kind of works, or what does not work, chances are when looking for G2 vs. GQ, a non-scripted customer conversation or perspective of the good, the bad and the ugly is preferred, even if under NDA. Again, if time is limited which it usually is, focus on what is being done with your solution, where it is going and if compelled send follow-up material that can of course include MUD and FUD about others if that is your preference.

Then there is when during a 30 minute briefing, the vendor or solution provider is still talking about trends, customer pain points, what competitors are doing at 21 minutes into the call with no sign of an announcement, update or news in site

Lets not forget about the trick where the vendor marketing or PR person reaches out and says that the CEO, CMO, CTO or some other CxO or Chief Jailable Officer (CJO) wants to talk with you. Part of the trick is when the CxO actually makes it to the briefing and is not ready, does not know why the call is occurring, or, thinks that a request for an audience has been made with them for an interview or something else.

StorageIO industry trends cloud, virtualization and big data

A treat is when 3 to 4 minutes into a briefing, the vendor or solution provider has already framed up what and why they are doing something. This means getting to what they are announcing or planning on doing and getting into a conversation to discuss what they are doing and making good follow-up content and resources available.

StorageIO industry trends cloud, virtualization and big data

Sometimes a treat is when a briefer goes on autopilot nailing their script for 29 of a 30 minute session then use the last-minute to ask if there are any questions. The reason autopilot briefings can be a treat is when they are going over what is in the slide deck, webex, or press release thus affording an opportunity to get caught up on other things while talk at you. Hmm, perhaps need to consider playing some tricks in reward for those kind of treats? ;)

StorageIO industry trends cloud, virtualization and big data

Do not be scared, not everybody is out to trick you with treats, and not all treats have tricks attached to them. Be prepared, figure out who is playing tricks with treats, and who has treats without tricks.

Oh, and as a former IT customer, vendor and analyst, one of my favorites is contact information of my dogs to vendors who require registration on their websites for basic things such as data sheets. Another is supplying contact information of competing vendors sales reps to vendors who also require registration for basic data sheets or what should otherwise be generally available information as opposed to more premium treats. Of course there are many more fun tricks, however lets leave those alone for now.

Note: Zombie voting rules apply which means vote early, vote often, and of course vote for those who cannot include those that are dead (real or virtual).

Where To Learn More

View additiona related material via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Watch out for tricks and treats, have a safe and fun Zombie (aka Halloween) season. See you while out and about this fall and don’t forget to take part in the ongoing zombie technology poll. Oh, and be safe with trick or treat and vendor fun games

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

What is DFR or Data Footprint Reduction?

What is DFR or Data Footprint Reduction?

What is DFR or Data Footprint Reduction?

Updated 10/9/2018

What is DFR or Data Footprint Reduction?

Data Footprint Reduction (DFR) is a collection of techniques, technologies, tools and best practices that are used to address data growth management challenges. Dedupe is currently the industry darling for DFR particularly in the scope or context of backup or other repetitive data.

However DFR expands the scope of expanding data footprints and their impact to cover primary, secondary along with offline data that ranges from high performance to inactive high capacity.

Consequently the focus of DFR is not just on reduction ratios, its also about meeting time or performance rates and data protection windows.

This means DFR is about using the right tool for the task at hand to effectively meet business needs, and cost objectives while meeting service requirements across all applications.

Examples of DFR technologies include Archiving, Compression, Dedupe, Data Management and Thin Provisioning among others.

Read more about DFR in Part I and Part II of a two part series found here and here.

Where to learn more

Learn more about data footprint reducton (DFR), data footprint overhead and related topics via the following links:

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

That is all for now, hope you find these ongoing series of current or emerging Industry Trends and Perspectives posts of interest.

Ok, nuff said, for now.

Cheers Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Server Storage I/O Network Virtualization Whats Next?

Server Storage I/O Network Virtualization Whats Next?
Server Storage I/O Network Virtualization Whats Next?
Updated 9/28/18

There are many faces and thus functionalities of virtualization beyond the one most commonly discussed which is consolidation or aggregation. Other common forms of virtualization include emulation (which is part of enabling consolidation) which can be in the form of a virtual tape library for storage to bridge new disk technology to old software technology, processes, procedures and skill sets. Other forms of virtualization functionality for life beyond consolidation include abstraction for transparent movement of applications or operating systems on servers, or data on storage to support planned and un-planned maintenance, upgrades, BC/DR and other activities.

So the gist is that there are many forms of virtualization technologies and techniques for servers, storage and even I/O networks to address different issues including life beyond consolidation. However the next wave of consolidation could and should be that of reducing the number of logical images, or, the impact of the multiple operating systems and application images, along with their associated management costs.

This may be easier said than done, however, for those looking to cut costs even further than from what can be realized by reducing physical footprints (e.g. going from 10 to 1 or from 250 to 25 physical servers), there could be upside however it will come at a cost. The cost is like that of reducing data and storage footprint impacts with such as data management and archiving.

Savings can be realized by archiving and deleting data via data management however that is easier said than done given the cost in terms of people time and ability to decide what to archive, even for non-compliance data along with associated business rules and policies to be defined (for automation) along with hardware, software and services (managed services, consulting and/or cloud and SaaS).

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.