PCIe Fundamentals Server Storage I/O Network Essentials

Updated 8/31/19

PCIe Fundamentals Server Storage I/O Network Essentials

PCIe fundamentals data infrastructure trends

This piece looks at PCIe Fundamentals topics for server, storage, I/O network data infrastructure environments. Peripheral Computer Interconnect (PCI) Express aka PCIe is a Server, Storage, I/O networking fundamentals component. This post is an excerpt from chapter 4 (Chapter 4: Servers: Physical, Virtual, Cloud, and Containers) of my new book Software Defined Data Infrastructure Essentials – Cloud, Converged and Virtual Fundamental Server Storage I/O Tradecraft (CRC Press 2017) Available via Amazon.com and other global venues. In this post, we look various PCIe fundamentals to learn and expand or refresh your server, storage, and I/O and networking tradecraft skills experience.

PCIe fundamentals Server Storage I/O Fundamentals

PCIe fundamental common server I/O component

Common to all servers is some form of a main system board, which can range from a few square meters in supercomputers, data center rack, tower, and micro towers converged or standalone, to small Intel NUC (Next Unit of Compute), MSI and Kepler-47 footprint, or Raspberry Pi-type desktop servers and laptops. Likewise, PCIe is commonly found in storage and networking systems, appliances among other devices.

For example, a blade server will have multiple server blades or modules, each with its motherboard, which shares a common back plane for connectivity. Another variation is a large server such as an IBM “Z” mainframe, Cray, or another supercomputer that consists of many specialized boards that function similar to a smaller-sized motherboard on a larger scale.

Some motherboards also have mezzanine or daughter boards for attachment of additional I/O networking or specialized devices. The following figure shows a generic example of a two-socket, with eight-memory-channel-type server architecture.

PCIe fundamentals SDDC, SDI, SDDI Server fundamentals
Generic computer server hardware architecture. Source: Software Defined Data Infrastructure Essentials (CRC Press 2017)

The above figure shows several PCIe, USB, SAS, SATA, 10 GbE LAN, and other I/O ports. Different servers will have various combinations of processor, and Dual Inline Memory Module (DIMM) Dynamic RAM (DRAM) sockets along with other features. What will also vary are the type and some I/O and storage expansion ports, power and cooling, along with management tools or included software.

PCIe, Including Mini-PCIe, NVMe, U.2, M.2, and GPU

At the heart of many servers I/O and connectivity solutions are the PCIe industry-standard interface (see PCIsig.com). PCIe is used to communicate with CPUs and the outside world of I/O networking devices. The importance of a faster and more efficient PCIe bus is to support more data moving in and out of servers while accessing fast external networks and storage.

For example, a server with a 40-GbE NIC or adapter would have to have a PCIe port capable of 5 GB per second. If multiple 40-GbE ports are attached to a server, you can see where the need for faster PCIe interfaces come into play.

As more VM are consolidated onto PM, as applications place more performance demand either regarding bandwidth or activity (IOPS, frames, or packets) per second, more 10-GbE adapters will be needed until the price of 40-GbE (also 25, 50 or 100 Gbe) becomes affordable. It is not if, but rather when you will grow into the performance needs on either a bandwidth/throughput basis or to support more activity and lower latency per interface.

PCIe is a serial interface specified for how servers communicate between CPUs, memory, and motherboard-mounted as well as AiC devices. This communication includes support attachment of onboard and host bus adapter (HBA) server storage I/O networking devices such as Ethernet, Fibre Channel, InfiniBand, RapidIO, NVMe (cards, drives, and fabrics), SAS, and SATA, among other interfaces.

In addition to supporting attachment of traditional LAN, SAN, MAN, and WAN devices, PCIe is also used for attaching GPU and video cards to servers. Traditionally, PCIe has been focused on being used inside of a given server chassis. Today, however, PCIe is being deployed on servers spanning nodes in dual, quad, or CiB, CI, and HCI or Software Defined Storage (SDS) deployments. Another variation of PCIe today is that multiple servers in the same rack or proximity can attach to shared devices such as storage via PCIe switches.

PCIe components (hardware and software) include:

  • Hardware chipsets, cabling, connectors, endpoints, and adapters
  • Root complex and switches, risers, extenders, retimers, and repeaters
  • Software drivers, BIOS, and management tools
  • HBAs, RAID, SSD, drives, GPU, and other AiC devices
  • Mezzanine, mini-PCIe, M.2, NVMe U.2 (8639 drive form factor)

There are many different implementations of PCIe, corresponding to generations representing speed improvements as well as physical packing options. PCIe can be deployed in various topologies, including a traditional model where an AiC such as GbE or Fibre Channel HBA connects the server to a network or storage device.

Another variation is for a server to connect to a PCIe switch, or in a shared PCIe configuration between two or more servers. In addition to different generations and topologies, there are also various PCIe form factors and physical connectors (see the following figure), ranging from AiC of various length and height, as well as M.2 small-form-factor devices and U.2 (8639) drive form-factor device for NVMe, among others.

Note that the presence of M.2 does not guarantee PCIe NVMe, as it also supports SATA.

Likewise, different NVMe devices run at various PCIe speeds based on the number of lanes. For example, in the following figure, the U.2 (8639) device (looks like a SAS device) shown is a PCIe x4.

SDDC, SDI, SDDI PCIe NVMe U.2 8639 drive fundamentals
PCIe devices NVMe U.2, M.2, and NVMe AiC. (Source: StorageIO Labs.)

PCIe leverages multiple serial unidirectional point-to-point links, known as lanes, compared to traditional PCI, which used a parallel bus design. PCIe interfaces can have one (x1), four (x4), eight (x8), sixteen (x16), or thirty-two (x32) lanes for data movement. Those PCIe lanes can be full-duplex, meaning data is sent and received at the same time, providing improved effective performance.

PCIe cards are upward-compatible, meaning that an x4 can work in an x8, an x8 in an x16, and so forth. Note, however, that the cards will not perform any faster than their specified speed; an x4 in an x8 slot will only run at x8. PCIe cards can also have single, dual, or multiple external ports and interfaces. Also, note that there are still some motherboards with legacy PCI slots that are not interoperable with PCIe cards and vice versa.

Note that PCIe cards and slots can be mechanically x1, x4, x8, x16, or x32, yet electrically (or signal) wired to a slower speed, based on the type and capabilities of the processor sockets and corresponding chipsets being used. For example, you can have a PCIe x16 slot (mechanical) that is wired for x8, which means it will only run at x8 speed.

In addition to the differences between electrical and mechanical slots, also pay attention to what generation the PCIe slots are, such as Gen 2 or Gen 3 or higher. Also, some motherboards or servers will advertise multiple PCIe slots, but those are only active with a second or additional processor socket occupied by a CPU. For example, a PCIe card that has dual x4 external PCIe ports requiring full PCIe bandwidth will need at least PCIe x8 attachment in the server slot. In other words, for full performance, the external ports on a PCIe card or device need to match the external electrical and mechanical card type and vice versa.

Recall big “B” as in Bytes vs. little “b” as in bits; for example, a PCIe Gen 3 x4 electrical could provide up to 4 GB/s bandwidth (your mileage and performance will vary), which translates to 8 × 4 GB or 32 Gbits/s. In the following table below, there is a mix of Big “B” Bytes per second and small “b” bits per second.

Each generation of PCIe has improved on the previous one by increasing the effective speed of the links. Some of the speed improvements have come from faster clock rates while implementing lower overhead encoding (e.g., from 8 b/10 b to 128 b/130 b).

For example, PCIe Gen 3 raw bit or line rate is 8 GT/s or 8 Gbps or about 2 GBps by using a 128 b/130 b encoding scheme that is very efficient compared to PCIe Gen 2 or Gen 1, which used an 8 b/10 b encoding scheme. With 8 b/10 b, there is a 20% overhead vs. a 1.5% overhead with 128 b/130 b (i.e., of 130 bits sent, 128 bits contain data, and 2 bits are for overhead).

PCIe Gen 1

PCIe Gen 2

PCIe Gen 3

PCIe Gen 4

PCIe Gen 5

Raw bit rate

2.5 GT/s

5 GT/s

8 GT/s

16 GT/s

32 GT/s

Encoding

8 b/10 b

8 b/10 b

128 b/130 b

128 b/130 b

128 b/130 b

x1 Lane bandwidth

2 Gb/s

4 Gb/s

8 Gb/s

16 Gb/s

32 Gb/s

x1 Single lane (one-way)

~250 MB/s

~500 MB/s

~1 GB/s

~2 GB/s

~4GB/s

x16 Full duplex (both ways)

~8 GB/s

~16 GB/s

~32 GB/s

~64 GB/s

~128 GB/s

Above Table: PCIe Generation and Sample Lane Comparison

Note that PCIe Gen 3 is the currently generally available shipping technology with PCIe Gen 4 appearing in the not so distant future, with PCIe Gen 5 in the wings appearing a few more years down the road.

By contrast, older generations of Fibre Channel and Ethernet also used 8 b/10 b, having switched over to 64 b/66 b encoding with 10 Gb and higher. PCIe, like other serial interfaces and protocols, can support full-duplex mode, meaning that data can be sent and received concurrently.

PCIe Bit Rate, Encoding, Giga Transfers, and Bandwidth

Let’s clarify something about data transfer or movement both internal and external to a server. At the core of a server, there is data movement within the sockets of the processors and its cores, as well as between memory and other devices (internal and external). For example, the QPI bus is used for moving data between some Intel processors whose performance is specified in giga transfers (GT).

PCIe is used for moving data between processors, memory, and other devices, including internal and external facing devices. Devices include host bus adapters (HBAs), host channel adapters (HCAs), converged network adapters (CNAs), network interface cards (NICs) or RAID cards, and others. PCIe performance is specified in multiple ways, given that it has a server processor focus which involves GT for raw bit rate as well as effective bandwidth per lane.

Note to keep in perspective PCIe mechanical as well as electrical lanes in that a card or slot may be advertised as say x8 mechanical (e.g., its physical slot form factor) yet only be x4 electrical (how many of those lanes are used or enabled). Also in the case of an adapter that has two or more ports, if the device is advertised as x8 does that mean it is x8 per port or x4 per port with an x8 connection to the PCIe bus.

Effective bandwidth per lane can be specified as half- or full-duplex (data moving in one or both directions for send and receive). Also, effective bandwidth can be specified as a single lane (x1), four lanes (x4), eight lanes (x8), sixteen lanes (x16), or 32 lanes (x32), as shown in the above table. The difference in speed or bits moved per second between the raw bit or line rate, and the effective bandwidth per lane in a single direction (i.e., half-duplex) is the encoding that is common to all serial data transmissions.

When data gets transmitted, the serializer/deserializer, or serdes, convert the bytes into a bit stream via encoding. There are different types of encoding, ranging from 8 b/10 b to 64 b/66 b and 128 b//130 b, shown in the following table.

Single 1542-byte frame

64 × 1542-byte frames

Encoding Scheme

Overhead

Data Bits

Encoding Bits

Bits Transmitted

Data Bits

Encoding Bits

Bits Transferred

8 b/10 b

20%

12,336

3,084

15,420

789,504

197,376

986,880

64 b/66 b

3%

12,336

386

12,738

789,504

24,672

814,176

128 b/130 b

1.5%

12,336

194

12,610

789,504

12,336

801,840

Above Table: Low-Level Serial Encoding Data Transmit Efficiency

In these encoding schemes, the smaller number represents the amount of data being sent, and the difference is the overhead. Note that this is different yet related to what occurs at a higher level with the various network protocols such as TCP/IP (IP). With IP, there is a data payload plus addressing and other integrity and management features in a given packet or frame.

The 8-b/10-b, 64-b/66-b or 128-b/130-b encoding is at the lower physical layer. Thus, a small change there has a big impact and benefit when optimized. Table 4.2 shows comparisons of various encoding schemes using the example of moving a single 1542-byte packet or frame, as well as sending (or receiving) 64 packets or frames that are 1542 bytes in size.

Why 1542? That is a standard IP packet including data and protocol framing without using jumbo frames (MTU or maximum transmission units).

What does this have to do with PCIe? GbE, 10-GbE, 40-GbE, and other physical interfaces that are used for moving TCP/IP packets and frames interface with servers via PCIe.

This encoding is important as part of server storage I/O tradecraft regarding understanding the impact of performance and network or resource usage. It also means understanding why there are fewer bits per second of effective bandwidth (independent of compression or deduplication) vs. line rate in either half- or full-duplex mode.

Another item to note is that looking at encoding such as the example given in the above table shows how a relatively small change at a large scale can have a big effective impact benefit. If the bits and bytes encoding efficiency and effectiveness scenario in Table 4.2 do not make sense, then try imagining 13 MINI Cooper automobiles each with eight people in it (yes, that would be a tight fit) end to end on the same road.

Now imagine a large bus that takes up much less length on the road than the 13 MINI Coopers. The bus holds 128 people, who would still be crowded but nowhere near as cramped as eight people in a MINI, plus 24 additional people can be carried on the bus. That is an example of applying basic 8-b/10-b encoding (the MINI) vs. applying 128-b/130-b encoding (the bus) and is also similar to PCIe G3 and G4, which use 128-b/130-b encoding for data movement.

PCIe Topologies

The basic PCIe topology configuration has one or more devices attached to the root complex shown in the following figure via an AiC or onboard device connector. Examples of AiC and motherboard-mounted devices that attach to PCIe root include LAN or SAN HBA, networking, RAID, GPU, NVM or SSD, among others. At system start-up, the server initializes the PCIe bus and enumerates the devices found with their addresses.

PCIe devices attach (shown in the following figure) to a bus that communicates with the root complex that connects with processor CPUs and memory. At the other end of a PCIe device is an end-point target, a PCIe switch that in turn has end-point targets attached. From a software standpoint, hypervisor or operating system device drivers communicate with the PCI devices that in turn send or receive data or perform other functions.

SDDC, SDI, SDDI PCIe fundamentals
Basic PCIe root complex with a PCIe switch or expander.

Note that in addition to PCIe AiC such as HBAs, GPU, and NVM SSD, among others that install into PCIe slots, servers also have converged storage or disk drive enclosures that support a mix of SAS, SATA, and PCIe. These enclosure backplanes have a connector that attaches to a SAS or SATA onboard port, or a RAID card, as well as to a PCIe riser card or motherboard connector. Depending on what type of drive is installed in the connector, either the SAS, SATA, or NVMe (AiC, U.2, and M2) using PCIe communication paths are used.

In addition to traditional and switched PCIe, using PCIe switches as well as nontransparent bridging (NTB), various other configurations can be deployed. These include server to server for clustering, failover, or device sharing as well as fabrics. Note that this also means that while traditionally found inside a server, PCIe can today use an extender, retimer, and repeaters extended across servers within a rack or cabinet.

A nontransparent bridge (NTB) is a point-to-point connection between two PCIe-based systems that provide electrical isolation yet functions as a transport bridge between two different address domains. Hosts on either side of the NTB see their respective memory or I/O address space. The NTB presents an endpoint exposed to the local system where writes are mirrored to memory on the remote system to allow the systems to communicate and share devices using associated device drivers. For example, in the following figure, two servers, each with a unique PCIe root complex, address, and memory map, are shown using NTB to any communication between the systems while maintaining data integrity.

SDDC, SDI, SDDI PCIe two server fundamentals
PCIe dual server example using NTB along with switches.

General PCIe considerations (slots and devices) include:

  • Power consumption (and heat dissipation)
  • Physical and software plug-and-play (good interoperability)
  • Drivers (in-the-box, built into the OS, or add-in)
  • BIOS, UEFI, and firmware being current versions
  • Power draw per card or adapters
  • Type of processor, socket, and support chip (if not an onboard processor)
  • Electrical signal (lanes) and mechanical form factor per slot
  • Nontransparent bridge and root port (RP)
  • PCI multi-root (MR), single-root (SR), and hot plug
  • PCIe expansion chassis (internal or external)
  • External PCIe shared storage

Various operating system and hypervisor commands are available for viewing and managing PCIe devices. For example, on Linux, the “lspci” and “lshw–c pci” commands displays PCIe devices and associated information. On a VMware ESXi host, the “esxcli hardware pci list” command will show various PCIe devices and information, while on Microsoft Windows systems, “device manager” (GUI) or “devcon” (command line) will show similar information.

Who Are Some PCIe Fundamentals Vendors and Service Providers

While not an exhaustive list, here is a sampling of some vendors and service providers involved in various ways with PCIe from solutions to components to services to trade groups include Amphenol (connectors and cables), AWS (cloud data infrastructure services), Broadcom (PCIe components), Cisco (servers), DataOn (servers), Dell EMC (servers, storage, software), E8 (storage software), Excelero (storage software), HPE (storage, servers), Huawei (storage, servers), IBM, Intel (storage, servers, adapters), Keysight (test equipment and tools).

Others include Lenovo (servers), Liqid (composable data infrastructure), Mellanox (server and storage adapters), Micron (storage devices), Microsemi (PCIe components), Microsoft (Cloud and Software including S2D), Molex (connectors, cables), NetApp, NVMexpress.org (NVM Express trade group organizations), Open Compute Project (server, storage, I/O network industry group), Oracle, PCISIG (PCIe industry trade group), Samsung (storage devices), ScaleMP (composable data infrastructure), Seagate (storage devices), SNIA (industry trade group), Supermicro (servers), Tidal (composable data infrastructure), Vantar (formerly known as HDS), VMware (Software including vSAN), and WD among others.

Where To Learn More

Learn more about related technology, trends, tools, techniques, and tips with the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

PCIe fundamentals are resources for building legacy and software-defined data infrastructures (SDDI), software-defined infrastructures (SDI), data centers and other deployments from laptop to large scale, hyper-scale cloud service providers. Learn more about Servers: Physical, Virtual, Cloud, and Containers in chapter 4 of my new book Software Defined Data Infrastructure Essentials (CRC Press 2017) Available via Amazon.com and other global venues. Meanwhile, PCIe fundamentals continues to evolve as a Server, Storage, I/O networking fundamental component.

Ok, nuff said, for now.
Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

Hot Popular New Trending Data Infrastructure Vendors To Watch

Hot Popular New Trending Data Infrastructure Vendors To Watch

server storage I/O data infrastructure trends

Updated 1/21/2018

A common question I get asked is who are the hot popular new trending data infrastructure vendors to watch. This post looks at some data infrastructure vendors to watch and keep an eye on.

Keep in mind that there is a difference between industry adoption and customer deployment, the former being what the industry (e.g. Vendors, resellers, integrators, investors, consultants, analyst, press, media, analysts, bloggers or other influences) like, want and need to talk about. Then there is customer adoption and deployment which is what is being bought, installed and used.

Some Popular Trending Vendors To Watch

The following is far from an exhaustive list however here are some that come to mind that I’m watching.

Apcera – Enterprise class containers and management tools
AWS – Rolls our new services like a startup with size momentum of a legacy player
Blue Medora – Data Infrastructure insight, software defined management
Broadcom – Avago/LSI, legacy Broadcom, Emulex, Brocade acquisition interesting portfolio
Chelsio – Server, storage and data Infrastructure I/O technologies
Commvault – Data protection and backup solutions
Compuverde – Software defined storage
Data Direct Networks (DDN) – Scale out and high performance storage
Datadog – Software defined management, data infrastructure insight, analytics, reporting
Datrium – Converged software defined data infrastructure solutions
Dell EMC Code – Rexray container persistent storage management
Docker – Container and management tools
E8 Storage – NVMe based storage solutions
Elastifile – Scale out software defined storage and file system
Enmotus – MicroTiering that works with Windows, Linux and various cloud platforms
Everspin – storage class memories and NVDIMM
Excelero – NVMe based storage
Hedvig – Scale out software defined storage
Huawei – While not common in the US, in Europe and elsewhere they are gaining momentum
Intel – Watch what they do with Optane and storage class memories
Kubernetes – Container software defined management
Liqid – Stealth Colorado startup focusing on PCIe fabrics and composable infrastructure
Maxta – Hyper converged infrastructure (HCI) and software defined data infrastructure vendor
Mellanox – While not a startup, keep an eye on what they are doing with their adapters
Micron – Watch what they do with 3D XPoint storage class memory and SSD
Microsoft – Not a startup, however keep an eye on Azure, Azure Stack, Window Server with S2D, ReFS, tiering, CI/HCI as well as Linux services on Windows.
Minio – Software defined storage solutions
NetApp – While FAS/Ontap and Solidfire get the headlines, E series generates revenue, keep an eye on StorageGrid and AltaVault
Neuvector – Container management and security
Noobaa – Software defined storage and more
NVIDA – No longer just another graphics process unit based company
Pivot3 – An original HCI software defined players, granted, some of their competitors might not think so
Pluribus Networks – Software Defined Networks for Software Defined Data Infrastructures
Portwork – Container management and persistent storage
Rozo Systems – Scale out software defined storage and file system
Rubrik – Data Protection software, reminds me of a startup called Commvault 20 years ago.
ScaleMP – Composable scale out software defined servers
Storpool – Scale out software defined storage
Stratoscale – Software defined data infrastructure and hybrid solutions
SUSE – Linux distribution looking to expand their offerings, gain more insight
Tidalscale – Composable software defined data infrastructures
Turbonomic – Software Defined Management, insight, analytics and automation
Ubuntu – Known for their Linux distribution, check out their Metal as a Service (MaaS) technology
Veeam – Data protection and backup solutions
technology
Virtuozzo – Software defined storage and data infrastructure technologies
VMware – AWS, vSAN, NSX, Integrated Containers and much more
WekaIO – Scale out software defined storage and file system

Some Popular Trending Technology Trends

  • ARM, ASIC, FPGA, GPU servers among others
  • Converged Infrastructure (CI), Hyper Converged Infrastructure (HCI), Composable Infrastructure
  • Analytics, reporting, insight, machine learning (ML), artificial intelligence (AI), automation
  • Software Defined including Cloud, Virtual, Containers, Docker, kubernetes, mesos, serverless, micro services
  • Data protection, backup/restore, archive, security, business resiliency (BR), business continuance (BC), disaster recovery (DR)
  • Non-volatile memory (NMV), NVM Express (NVMe), storage class memories (SCM), persistent memory, nand flash, SSD

Where To Learn More

Learn more about related technology, trends, tools, techniques, and tips with the following links.

Data Infrastructures Protect Preserve Secure and Serve Information
Various IT and Cloud Infrastructure Layers including Data Infrastructures

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

There are always more hot popular new or trending data infrastructure vendors to watch, which ones are you keeping an eye on?

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Microsoft Azure Software Defined Data Infrastructure Reference Resources

Azure Software Defined Data Infrastructure Architecture Resources

Need to learn more about Microsoft Azure Cloud Software Defined Data Infrastructure topics including reference architecture among other resources for various application workloads?

Microsoft Azure has an architecture and resources page (here) that includes various application workload reference tools.

Microsoft Azure Software Defined Cloud
Azure Reference Architectures via Microsoft Azure

Examples of some Azure Reference Architecture for various application and workloads include among others:

For example, need to know how to configure a high availability (HA) Sharepoint deployment with Azure, then check out this reference architecture shown below.

Microsoft Azure Sharepoint HA reference architecture
Sharepoint HA via Microsoft Azure

Where To Learn More

Learn more about related technology, trends, tools, techniques, and tips with the following links.

Data Infrastructures Protect Preserve Secure and Serve Information
Various IT and Cloud Infrastructure Layers including Data Infrastructures

What This All Means

Data Infrastructures exist to protect, preserve, secure and serve information along with the applications and data they depend on. Software Defined Data Infrastructures span legacy, virtual, container, cloud and other environments to support various application workloads. Check out the Microsoft Azure cloud reference architecture and resources mentioned above as well as the Azure Free trial and getting started site here.

Ok, nuff said, for now.
Gs

Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

Like Data They Protect For Now Quantum Revenues Continue To Grow

For Now Quantum Revenues Continue To Grow

server storage I/O data infrastructure trends

For Now Quantum Revenues Continue To Grow. The other day following their formal announced, I received an summary update from Quantum pertaining to their recent Q1 Results (show later below).

Data Infrastructures Protect Preserve Secure and Serve Information
Various IT and Cloud Infrastructure Layers including Data Infrastructures

Quantums Revenues Continue To Grow Like Data

One of the certainties in life is change and the other is continued growth in data that gets transformed into information via IT and other applications. Data Infrastructures fundamental role is to enable an environment for applications and data to be transformed into information and delivered as services. In other words, Data Infrastructures exist to protect, preserve, secure and serve information along with the applications and data they depend on. Quantums role is to provide solutions and technologies for enabling legacy and cloud or other software defined data infrastructures to protect, preserve, secure and serve data.

What caught my eye in Quantums announcements was that while not earth shattering growth numbers normally associated with a hot startup, being a legacy data infrasture and storage vendor, Quantum’s numbers are hanging in there.

At a time when some legacy as well as startups struggle with increased competition from others including cloud, Quantum appears for at least now to be hanging in there with some gains.

The other thing that caught my eye is that most of the growth not surprisingly is non tape related solutions, particular around their bulk scale out StorNext storage solutions, there is some growth in tape.

Here is the excerpt of what Quantum sent out:


Highlights for the quarter (all comparisons are to the same period a year ago):

•	Grew total revenue and generated profit for 5th consecutive quarter
•	Total revenue was up slightly to $117M, with 3% increase in branded revenue
•	Generated operating profit of $1M with earnings per share of 4 cents, up 2 cents
•	Grew scale-out tiered storage revenue 10% to $34M, with strong growth in video surveillance and technical workflows
o	Key surveillance wins included deals with an Asian government for surveillance at a presidential palace and other government facilities, with a major U.S. port and with four new police department customers
o	Established several new surveillance partnerships – one of top three resellers/integrators in China (Uniview) and two major U.S. integrators (Protection 1 and Kratos)
o	Won two surveillance awards for StorNext – Security Industry Association’s New Product Showcase award and Security Today magazine’s Platinum Govies Government Security award
o	Key technical workflow wins included deals at an international defense and aerospace company to expand StorNext archive environment, a leading biotechnology firm for 1 PB genomic sequencing archive, a top automaker involving autonomous driving research data and a U.S. technology institute involving high performance computing  
o	Announced StorNext 6, which adds new advanced data management features to StorNext’s industry-leading performance and is now shipping
o	Announced scale-out partnerships with Veritone on artificial intelligence and DataFrameworks on data visualization and management  
•	Tape automation, devices and media revenue increased 6% overall while branded revenue for this product category was up 14%
o	Strong sales of newest generation Scalar i3 and i6 tape libraries
•	Established new/enhanced data protection partnerships
o	Enhanced partnership with Veeam, making it easier for their customers to deploy 3-2-1 data protection best practices
o	Became Pure Storage alliance partner, providing our data protection and archive solutions for their customers through mutual channel partners

Where To Learn More

Learn more about related technology, trends, tools, techniques, and tips with the following links.

What This All Means

Keep in mind that Data Infrastructures fundamental role is to enable an environment for applications and data to be transformed into information and delivered as services. Data Infrastructures exist to protect, preserve, secure and serve information along with the applications and data they depend on. Quantum continues to evolve their business as they have for several years from one focused on tape and related technologies to one that includes tape as well as many other solutions for legacy as well as software defined, cloud and virtual environments. For now, quantum revenues continue to grow and diversify.

Ok, nuff said, for now.
Gs

Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

Like IT Data Centers Do You Take Trade Show Exhibit Infrastructure For Granted?

Do You Take Trade Show Exhibit Infrastructure For Granted?

server storage I/O data infrastructure trends

Think about this for a moment; do you assume that Information Technology (IT) and Cloud based data centers along with their associated Data Infrastructure supporting various applications will be accessible when needed. Likewise, when you go to a trade show, conference, symposium, user group or another conclave is it assumed that the trade show, exposition (expo), exhibits, booths, stands or demo areas will be ready, waiting and accessible?

IT industry cloud software defined events

Fire Disrupts Flash Memory Summit Conference Exhibits

This past week at the Flash Memory Summit (FMS) conference trade show event in Santa Clara California, what normally would be taken for granted (e.g. expo hall and exhibits) were disrupted. The disruption (more here and here) was caused by an early morning fire in one of the exhibitor’s booths (stand) in the expo hall (view some photos here via Toms Hardware.com).

Fortunately, nobody was hurt, at least physically, and damage (physically) appears to have been isolated.

However while the key notes, panels, and other presentations did take place as part of the show must go on, the popular exhibit expo hall did not. Granted for some people who only attend conferences or seminar events for the presentation content, lack of the exhibition hall simply meant no free giveaways.

On the other hand, for those who attend events like FMS mainly for the exhibition hall experience, the show did not go on, perhaps resulting in a trip in vain (e.g. how you might be able to recoup some travel costs in some scenarios) for some people. For example, those who were attending to meet with a particular vendor, see a product technology, conduct some business or other meetings, do an interview, video, podcast, take some photos, or simply get some free stuff were disrupted.

Likewise those behind the scenes, from conference organizers, event staff not to mention the vendor’s sponsors who put resources (time, money, people, and equipment) into an exhibit were disrupted. Vendors were still able to issue their press releases and conduct their presentations, keynotes, panel discussions, however what about the lack of the expo.

Do We Take Data and Event Infrastructures For Granted

This begs the question of if trade show exhibits still have value, or can an event function without one?

I am not sure as some events can and do stand on their merit with presentation content being the primary focus, others the expo is the draw, many are hybrid with a mix of both.

A question and point of this piece is that how many people take conferences in general, and exhibits along with their associated Infrastructure for granted?

How many know or understand the amount of time, money, people resources and various tradecraft skills across different disciplines go into event planning, staging, coordination, the execution, so they occur?

This also ties into the theme of how many people only think and assume that IT data centers and clouds along with their data Infrastructure resources, services are available supporting applications along with data access to give information?

The same holds true for your telephone (plain old telephone system [POTS] and cellular or mobile) service, gas, electric, sewer, water, waste (garbage), traditional or network based television, internet provider, highways, railroads, airports, the list goes on.

Where To Learn More

Learn more about related technology, trends, tools, techniques, and tips with the following links.

What This All Means

The good news is that nobody physically was injured this past week.

Granted some may have incurred emotional, monetary or public and marketing related injuries, however, those can be dealt with over time.

My point is, do we assume too much (perhaps rightfully so) that events, exhibits and other trade show conference related items are always on, always available, accessible open on time? With IT data center and clouds, you have different expectation levels of access, availability, durability, survivability for a given cost to meet service expectations.

Data center, cloud and data infrastructure SDC, SDDI, SDI, SDx

Next time you attend a webinar, seminar, conference, symposium, trade show, presentation, exhibit or expo, take a moment and look around at what you see, as well as what you do not see. Having been in involved in and around conferences, conventions, seminars, expos across different industries, both behind the scenes as well as on the public side, I do not take these events for granted.

Knowing what goes into the planning, coordination, scheduling, promotion, logistics, all the things behind the scenes, next time you go to an event, look around. What you can see that perhaps are not meant to be seen as part of their Infrastructure. In event venue exhibit halls as well as data centers, there are those things you see such as data infrastructure resources including racks of servers, storage, I/O networking, monitors, displays, work areas, heating ventilation air conditioning (HVAC) along with those you might not see.

What you might not see and take for granted are the smoke and fire detection along with suppression systems which at the Santa Clara convention center appeared to have done their job. There are also the electrical power and distribution systems; perhaps battery backed uninterruptible power systems (UPS) along with standby alternate generator power.

How about a big round of applause, thank you, Atta boy and Atta girl, acknowledgment and other signs of appreciation for all those involved behind the scenes who do the planning, preparation, coordination, setup, tear down and in person what you see at events.

Thank you to all who have, and continue to enable trade shows, conferences, seminars, exhibits, road shows among other events to take place, after all, the show must go on. In other words, like IT and cloud Data Centers, do you take trade show exhibit infrastructures for granted?

Ok, nuff said, for now.

Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

NVMe Wont Replace Flash By Itself They Complement Each Other

NVMe Wont Replace Flash By Itself They Complement Each Other

server storage I/O data infrastructure trends

Updated 2/2/2018

NVMe Wont Replace Flash By Itself They Complement Each Other

>various NVM flash and SSD devices
Various Solid State Devices (SSD) including NVMe, SAS, SATA, USB, M.2

There has been some recent industry marketing buzz generated by a startup to get some attention by claiming via a study sponsored by including the startup that Non-Volatile Memory (NVM) Express (NVMe) will replace flash storage. Granted, many IT customers as well as vendors are still confused by NVMe thinking it is a storage medium as opposed to an interface used for accessing fast storage devices such as nand flash among other solid state devices (SSDs). Part of that confusion can be tied to common SSD based devices rely on NVM that are persistent memory retaining data when powered off (unlike the memory in your computer).

NVMe is an access interface and protocol

Instead of saying NVMe will mean the demise of flash, what should or could be said however some might be scared to say it is that other interfaces and protocols such as SAS (Serial Attached SCSI), AHCI/SATA, mSATA, Fibre Channel SCSI Protocol aka FCP aka simply Fibre Channel (FC), iSCSI and others are what can be replaced by NVMe. NVMe is simply the path or roadway along with traffic rules for getting from point a (such as a server) to point b (some storage device or medium e.g. flash SSD). The storage medium is where data is stored such as magnetic for Hard Disk Drive (HDD) or tape, nand flash, 3D XPoint, Optane among others.

NVMe and NVM better together

NVMe and NVM including flash are better together

The simple quick get to the point is that NVMe (e.g. Non Volatile Memory aka NVM Express [NVMe]) is an interface protocol (like SAS/SATA/iSCSI among others) used for communicating with various nonvolatile memory (NVM) and solid state device (SSDs). NVMe is how data gets moved between a computer or other system and the NVM persistent memory such as nand flash, 3D XPoint, Spintorque or other storage class memories (SCM).

In other words, the only thing NVMe will, should, might or could kill off would be the use of some other interface such as SAS, SATA/AHCI, Fibre Channel, iSCSI along with propritary driver or protocols. On the other hand, given the extensibility of NVMe and how it can be used in different configurations including as part of fabrics, it is an enabler for various NVMs also known as persistent memories, SCMs, SSDs including those based on NAND flash as well as emerging 3D XPoint (or Intel version) among others.

Where To Learn More

View additional NVMe, SSD, NVM, SCM, Data Infrastructure and related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Context matters for example, NVM as the medium compared to NVMe as the interface and access protocols. With context in mind you can compare like or similar apples to apples such as nand flash, MRAM, NVRAM, 3D XPoint, Optane among other persistent memories also known as storage class memories, NVMs and SSDs. Likewise with context in mind NVMe can be compared to other interfaces and protocols such as SAS, SATA, PCIe, mSATA, Fibre Channel among others. The following puts all of this into context including various packaging options, interfaces and access protocols, functionality and media.

NVMe is the access for NVM flash
Putting IT all together

Will NVMe kill off flash? IMHO no not by itself, however NVMe combined with some other form of NVM, SCM, persistent memory as a storage medium may eventually combine as an alternative to NVMe and flash (or SAS/SATA and flash). However, for now at least for many applications, NVMe is in your future (along with flash among other storage mediums), the questions include when, where, why, how, with what among other questions (and answers). NVMe wont replace flash by itself (at least yet) as they complement each other.

Keep in mind, if NVMe is the answer, what are the questions.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

July 2017 Server StorageIO Data Infrastructures Update Newsletter

Volume 17, Issue VII

Hello and welcome to the July 2017 issue of the Server StorageIO update newsletter.

It has been busy time with a lot going on, so let’s get right to this months topics which include software defined, data infrastructures, server, I/O networking, storage and related topics.

Software-Defined Data Infrastructure Essentials SDDI SDDC

A quick update following up from the June newsletter is that my new book is now available via Amazon.com, CRC Press and other venues in hardcopy hardcover as well as electronic versions. Visit storageio.com/book4 to learn more including view table of contents, preface, how organized among other items.

In This Issue

Enjoy this edition of the Server StorageIO update newsletter.

Cheers GS

Data Infrastructure and IT Industry Activity Trends

Some recent Industry Activities, Trends, News and Announcements include:

Arcserve who gained their independence from CA a few years ago has now acquired Zetta to expand its data protection solution portfolio for legacy, software defined virtual and cloud data infrastructure environments.

Software Defined Data Infrastructure (SDDI) solution provider Compuverde has been awarded a US Patent for optimal server selection in software defined data centers (SDDC).

The InfiniBand Trade Association (IBTA) announced its April 2017 integrators list including RDMA over Converged Ethernet (RoCE) along with other recent plugfest updates. Learn more about IBTA and related topics at www.infinibandta.org

Next Platform has an interesting piece about a slump in the High Performance Computing (HPC) also known as High Profit Compute (for financial firms among others) along with Super Compute (SC) industry sector. Some of the vendors in the HPC and SC space include AMD, Cisco, Cray, DDN, Dell EMC, Fujifilm, IBM, Intel, HPE/SGI, Mellanox, NetApp, Oracle, Seagate and Western Digital (WD) among others. Check out the piece over at Next Platform here.

To beef up its storage solution offerings, Cray has done a deal with Seagate who is one of their suppliers of HDDs as well as software defined storage software (ClusterStore) and related systems. In this new deal, Cray will get (e.g. now own) Lustre based ClusterStore storage solution which besides the intellectual property (IP) including software, around 100 or so workers will shift from being Seagate to becoming Cray employees. Note that Seagate acquired ClusterStore solution as part of its acquisition a few years ago of Xyratex (enclosures and Lustre storage system software).

Meanwhile Seagate CEO Stephen Luczo is steeping down from his top leadership position after posting poor earnings and more job cuts. We have heard that HDDs are dead for decades, yet they continue to be consumed, granted with ups and downs, lately more downs for Seagate than its competitor Western Digital (WD). Seagate has dabbled in flash solid state devices (SSDs) ranging from drives to cards including acquisition of the flash business from LSI/Avago a few years ago, along with some partnerships. As a component supplier, does Seagate need to take a bold move and get closer or do a deal with one of the nand flash or other persistent memory chip makers? Or, does Seagate need to continue to move up the stack with solutions building on their previous deals buying Xyratex (enclosure and ClusterStor), Evault (data protection software), DotHill (storage systems), LSI/Avago flash (flash cards)? Lets see what happens with Seagate both from a big picture as well as more focused product, technology, portfolio perspective.

Watch for a flurry of NVMe, along with flash SSD and other non-volatile memory (NVM), persistent memories along with storage class memories over the next few weeks. Keep in mind that If Answer is NVMe, what are the questions? Also watch for a flurry of software defined, cloud, virtual and related news towards the end of the month and into September.

Just for fun, Mike Acton (@mike_acton) has an interesting read on Introductory bullshit detection for non-technical managers that you can check out here. Over at Coding Horror there is another interesting read on the notion of paying down your technical debt, check it out here.

Check out other industry news, comments, trends perspectives here.

Server StorageIO Commentary in the news

Recent Server StorageIO industry trends perspectives commentary in the news.

Via EnterpriseStorageForum: Comments on Who Will Rule the Storage World?
Via SearchDataCenter: Comments on Dell EMC Cisco VxBlock news

View more Server, Storage and I/O trends and perspectives comments here

Server StorageIO Featured White Paper Report

This months featured Server StorageIO Data Infrastructure content is a new white paper industry trends perspective report looking at Weka.IO Matrix Multi-Dimensional Software Based Storage (e.g. software defined storage). In this report, we look at WekaIO Matrix, an elastic, flexible, highly scalable easy to use (and manage) software-defined (e.g. software-based) storage solution. WekaIO Matrix enables radically simple software defined storage that is flexible elastic scaling with stability and without compromise.

Weka.io Matrix software defined storage

  • Matrix is a new storage solution that:
  • Installs on bare metal, virtual or cloud servers
  • Has POSIX, NFS, SMB, and HDFS storage access
  • Adaptable performance for little and big data
  • Tiering of flash SSD and cloud object storage
  • Distributed resilience without compromise
  • Removes complexity of traditional storage

Read more in this StorageIO Industry Trends and Perspective (ITP) Report compliments of WekaIO by clicking here. Visit www.weka.io to learn more about WekaIO and their Matrix solution.

View more Server StorageIO Data Infrastructure White Papers, Lab Reports, Solution Briefs, Research, Polls, Surveys and additional content here on our portfolio page.

 

Server StorageIOblog Posts

Recent and popular Server StorageIOblog posts include:

  • Intel Announces New Xeon Processors for Software Defined Data Infrastructures
    Intel announced a new family of Xeon Scalable Processors (aka Purely) that for some workloads Intel claims to be on average of 1.65x faster than their predecessors. Note your real improvement will vary based on workload, configuration, benchmark testing, type of processor, memory, and many other server storage I/O performance considerations.

  • Who Will Be At Top Of Storage World Next Decade?
    It is safe to say that each new year will bring new trends, techniques, technologies, tools, features, functionality as well as solutions involving data storage as well as data infrastructures. This means a usual safe bet is to say that the current year is the most exciting and has the most new things than in the past when it comes to data infrastructures along with resources such as data storage.

  • Zombie Technology Life after Death Tape Is Still Alive
    A Zombie Technology is one declared dead yet has Life after Death such as Tape which is still alive, despite having declared dead for decades.

In Case You Missed It #ICYMI

View other recent as well as past StorageIOblog posts here

Server StorageIO Data Infrastructure Tips and Articles

Recent Server StorageIO industry trends perspectives commentary in the news.

Via IDG/NetworkWorld: Ensure your data infrastructure remains available and resilient
Via IDG/NetworkWorld: Whats a data infrastructure?
Via InfoStor: Object Storage Is In Your Future
Via InfoStor: Cloud Storage Concerns, Considerations and Trends
Via InfoStor: SSD Trends, Tips and Topics

View more Server, Storage and I/O trends and perspectives comments here

Events and Activities

Recent and upcoming event activities.

Sep. 21, 2017 – MSP CMG – Minneapolis MN

Sep. 14, 2017 – Fujifilm IT Executive Summit – Seattle WA

Sep. 12, 2017 – SNIA Software Developers Conference (SDC) – Santa Clara CA

Sep. 7, 2017 – TBA – Enabling, Planning and Executing Your Software Defined Journey

August 28-30, 2017 – VMworld – Las Vegas

June 22, 2017 – Webinar – GDPR and Microsoft Environments

May 11, 2017 – Webinar – Email Archiving, Compliance and Ransomware

See more webinars and activities on the Server StorageIO Events page here.

Server StorageIO Industry Resources and Links

Useful links and pages:
Microsoft TechNet – Various Microsoft related from Azure to Docker to Windows
storageio.com/links – Various industry links (over 1,000 with more to be added soon)
objectstoragecenter.com – Cloud and object storage topics, tips and news items
OpenStack.org – Various OpenStack related items
storageio.com/protect – Various data protection items and topics
thenvmeplace.com – Focus on NVMe trends and technologies
thessdplace.com – NVM and Solid State Disk topics, tips and techniques
storageio.com/converge – Various CI, HCI and related SDS topics
storageio.com/performance – Various server, storage and I/O benchmark and tools
VMware Technical Network – Various VMware related items

Ok, nuff said, for now.

Cheers
Gs

Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

Zombie Technology Life after Death Tape Is Still Alive

Zombie Technology Life after Death Tape Is Still Alive

server storage I/O data infrastructure trends

A Zombie Technology is one declared dead yet has Life after Death such as Tape which is still alive.

zombie technology
Image via StorageIO.com (licensed for use from Shutterstock.com)

Tapes Evolving Role

Sure we have heard for decade’s about the death of tape, and someday it will be dead and buried (I mean really dead), no longer used, buried, existing only in museums. Granted tape has been on the decline for some time, and even with many vendors exiting the marketplace, there remains continued development and demand within various data infrastructure environments, including software defined as well as legacy.

data infrastructures

Tape remains viable for some environments as part of an overall memory data storage hierarchy including as a portability (transportable) as well as bulk storage medium.

memory data storage hirearchy classes tiers

Keep in mind that tapes role as a data storage medium also continues to change as does its location. The following table (via Software Defined Data Infrastructure Essentials (CRC Press)) Chapter 10 shows examples of various data movements from source to destination. These movements include migration, replication, clones, mirroring, and backup, copies, among others. The source device can be a block LUN, volume, partition, physical or virtual drive, HDD or SSD, as well as a file system, object, or blob container or bucket. An example of the modes in Table 10.1 include D2D backup from local to local (or remote) disk (HDD or SSD) storage or D2D2D copy from local to local storage, then to the remote.

Mode – Description
D2D – Data gets copied (moved, migrated, replicated, cloned, backed up) from source storage (HDD or SSD) to another device or disk (HDD or SSD)-based device
D2C – Data gets copied from a source device to a cloud device.
D2T – Data gets copied from a source device to a tape device (drive or library).
D2D2D – Data gets copied from a source device to another device, and then to another device.
D2D2T – Data gets copied from a source device to another device, then to tape.
D2D2C   Data gets copied from a source device to another device, then to cloud.
Data Movement Modes from Source to Destination

Note that movement from source to the target can be a copy, rsync, backup, replicate, snapshot, clone, robocopy among many other actions. Also, note that in the earlier examples there are occurrences of tape existing in clouds (e.g. its place) and use changing.  Tip – In the past, “disk” usually referred to HDD. Today, however, it can also mean SSD. Think of D2D as not being just HDD to HDD, as it can also be SSD to SSD, Flash to Flash (F2F), or S2S among many other variations if you prefer (or needed).

Image via Tapestorage.org

For those still interested in tape, check out the Active Archive Alliance recent posts (here), as well as the 2017 Tape Storage Council Memo and State of their industry report (here). While lower end-tape such as LTO (which is not exactly the low-end it was a decade or so ago) continues to evolve, things may not be as persistent for tape at the high-end. With Oracle (via its Sun/StorageTek acquisition) exiting the high-end (e.g. Mainframe focused) tape business, that leaves mainly IBM as a technology provider.

Image via Tapestorage.org

With a single tape device (e.g. drive) vendor at the high-end, that could be the signal for many organizations that it is time to finally either move from tape or at least to LTO (linear tape open) as a stepping stone (e.g. phased migration). The reason not being technical rather business in that many organizations need to have a secondary or competitive offering or go through an exception process.

On the other hand, just as many exited the IBM mainframe server market (e.g. Fujitsu/Amdahl, HDS, NEC), big blue (e.g. IBM) continues to innovate and drive both revenue and margin from those platforms (hardware, software, and services). This leads me to believe that IBM will do what it can to keep its high-end tape customers supported while also providing alternative options.

Where To Learn More

Learn more about related technology, trends, tools, techniques, and tips with the following links.

What This All Means

I would not schedule the last tape funeral just yet, granted there will continue to be periodic wakes and send off over the coming decade. Tape remains for some environments a viable data storage option when used in new ways, as well as new locations complementing flash SSD and other persistent memories aka storage class memories along with HDD.

Personally, I have been directly tape free for over 14 years. Granted, I have data in some clouds and object storage that may exist on a very cold data storage tier possibly maybe on tape that is transparent to my use. However just because I do not physically have tape, does not mean I do not see the need why others still have to or prefer to use it for different needs.

Also, keep in mind that tape continues to be used as an economic data transport for bulk movement of data for some environments. Meanwhile for those who only want, need or wish tape to finally go away, close your eyes, click your heels together and repeat your favorite tape is not alive chant three (or more) times. Keep in mind that HDDs are keeping tape alive by off loading some functions, while SSDs are keeping HDDs alive handling tasks formerly done by spinning media. Meanwhile, tape can and is still called upon by some organizations to protect or enable bulk recovery for SSD and HDDs even in cloud environments, granted in new different ways.

What this all means is that as a zombie technology having been declared dead for decades yet still live there is life after death for tape, which is still alive, for now.

Ok, nuff said (for now…).

Cheers
Gs

Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

Who Will Be At Top Of Storage World Next Decade?

Who Will Be At Top Of Storage World Next Decade?

server storage I/O data infrastructure trends

Data Storage regardless of if hardware, legacy, new, emerging, cloud service or various software defined storage (SDS) approaches are all fundamental resource components of data infrastructures along with compute server, I/O networking as well as management tools, techniques, processes and procedures.

fundamental Data Infrastructure resource components
Fundamental Data Infrastructure resources

Data infrastructures include legacy along with software defined data infrastructures (SDDI), along with software defined data centers (SDDC), cloud and other environments to support expanding workloads more efficiently as well as effectively (e.g. boosting productivity).

Data Infrastructures and workloads
Data Infrastructure and other IT Layers (stacks and altitude levels)

Various data infrastructures resource components spanning server, storage, I/O networks, tools along with hardware, software, services get defined as well as composed into solutions or services which may in turn be further aggregated into more extensive higher altitude offerings (e.g. further up the stack).

IT and Data Infrastructure Stack Layers
Various IT and Data Infrastructure Stack Layers (Altitude Levels)

Focus on Data Storage Present and Future Predictions

Drew Robb (@Robbdrew) has a good piece over at Enterprise Storage Forum looking at the past, present and future of who will rule the data storage world that includes several perspective predictions comments from myself as well as others. Some of the perspectives and predictions by others are more generic and technology trend and buzzword bingo focus which should not be a surprise. For example including the usual performance, Cloud and Object Storage, DPDK, RDMA/RoCE, Software-Defined, NVM/Flash/SSD, CI/HCI, NVMe among others.

Here are some excerpts from Drews piece along with my perspective and prediction comments of who may rule the data storage roost in a decade:

Amazon Web Services (AWS) – AWS includes cloud and object storage in the form of S3. However, there is more to storage than object and S3 with AWS also having Elastic File Services (EFS), Elastic Block Storage (EBS), database, message queue and on-instance storage, among others. for traditional, emerging and storage for the Internet of Things (IoT).

It is difficult to think of AWS not being a major player in a decade unless they totally screw up their execution in the future. Granted, some of their competitors might be working overtime putting pins and needles into Voodoo Dolls (perhaps bought via Amazon.com) while wishing for the demise of Amazon Web Services, just saying.

Voodoo Dolls via Amazon.com
Voodoo Dolls and image via Amazon.com

Of course, Amazon and AWS could follow the likes of Sears (e.g. some may remember their catalog) and ignore the future ending up on the where are they now list. While talking about Amazon and AWS, one will have to wonder where Wall Mart will end up in a decade with or without a cloud of their own?

Microsoft – With Windows, Hyper-V and Azure (including Azure Stack), if there is any company in the industry outside of AWS or VMware that has quietly expanded its reach and positioning into storage, it is Microsoft, said Schulz.

Microsoft IMHO has many offerings and capabilities across different dimensions as well as playing fields. There is the installed base of Windows Servers (and desktops) that have the ability to leverage Software Defined Storage including Storage Spaces Direct (S2D), ReFS, cache and tiering among other features. In some ways I’m surprised by the number of people in the industry who are not aware of Microsoft’s capabilities from S2D and the ability to configure CI as well as HCI (Hyper Converged Infrastructure) deployments, or of Hyper-V abilities, Azure Stack to Azure among others. On the other hand, I run into Microsoft people who are not aware of the full portfolio offerings or are just focused on Azure. Needless to say, there is a lot in the Microsoft storage related portfolio as well as bigger broader data infrastructure offerings.

NetApp – Schulz thinks NetApp has the staying power to stay among the leading lights of data storage. Assuming it remains as a freestanding company and does not get acquired, he said, NetApp has the potential of expanding its portfolio with some new acquisitions. “NetApp can continue their transformation from a company with a strong focus on selling one or two products to learning how to sell the complete portfolio with diversity,” said Schulz.

NetApp has been around and survived up to now including via various acquisitions, some of which have had mixed results vs. others. However assuming NetApp can continue to reinvent themselves, focusing on selling the entire solution portfolio vs. focus on specific products, along with good execution and some more acquisitions, they have the potential for being a top player through the next decade.

Dell EMC – Dell EMC is another stalwart Schulz thinks will manage to stay on top. “Given their size and focus, Dell EMC should continue to grow, assuming execution goes well,” he said.

There are some who I hear are or have predicted the demise of Dell EMC, granted some of those predicted the demise of Dell and or EMC years ago as well. Top companies can and have faded away over time, and while it is possible Dell EMC could be added to the where are they now list in the future, my bet is that at least while Michael Dell is still involved, they will be a top player through the next decade, unless they mess up on execution.

Cloud and software defined storage data infrastructure
Various Data Infrastructures and Resources involving Data Storage

Huawei – Huawei is one of the emerging giants from China that are steadily gobbling up market share. It is now a top provider in many categories of storage, and its rapid ascendancy is unlikely to stop anytime soon. “Keep an eye on Huawei, particularly outside of the U.S. where they are starting to hit their stride,” said Schulz.

In the US, you have to look or pay attention to see or hear what Huawei is doing involving data storage, however that is different in other parts of the world. For example, I see and hear more about them in Europe than in the US. Will Huawei do more in the US in the future? Good question, keep an eye on them.

VMware – A decade ago, Storage Networking World (SNW) was by far the biggest event in data storage. Everyone who was anyone attended this twice yearly event. And then suddenly, it lost its luster. A new forum known as VMworld had emerged and took precedence. That was just one of the indicators of the disruption caused by VMware. And Schulz expects the company to continue to be a major force in storage. “VMware will remain a dominant player, expanding its role with software-defined storage,” said Schulz.

VMware has a dominant role in data storage not just because of the relationship with Dell EMC, or because of VSAN which continues to gain in popularity, or the soon to be released VMware on AWS solution options among others. Sure all of those matters, however, keep in mind that VMware solutions also tie into and work with other legacies as well as software-defined storage solution, services as well as tools spanning block, file, object for virtual machines as well as containers.

"Someday soon, people are going to wake up like they did with VMware and AWS," said Schulz. "That’s when they will be asking ‘When did Microsoft get into storage like this in such a big way.’"

What the above means is that some environments may not be paying attention to what AWS, Microsoft, VMware among others are doing, perhaps discounting them as the old or existing while focusing on new, emerging what ever is trendy in the news this week. On the other hand, some environments may see the solution offerings from those mentioned as not relevant to their specific needs, or capable of scaling to their requirements.

Keep in mind that it was not that long ago, just a few years that VMware entered the market with what by today’s standard (e.g. VSAN and others) was a relatively small virtual storage appliance offering, not to mention many people discounted and ignored VMware as a practical storage solution provider. Things and technology change, not to mention there are different needs and solution requirements for various environments. While a solution may not be applicable today, give it some time, keep an eye on them to avoid being surprised asking the question, how and when did a particular vendor get into storage in such a big way.

Is Future Data Storage World All Cloud?

Perhaps someday everything involving data storage will be in or part of the cloud.

Does this mean everything is going to the cloud, or at least in the next ten years? IMHO the simple answer is no, even though I see more workloads, applications, and data residing in the cloud, there will also be an increase in hybrid deployments.

Note that those hybrids will span local and on-premises or on-site if you prefer, as well as across different clouds or service providers. Granted some environments are or will become all in on clouds, while others are or will become a hybrid or some variation. Also when it comes to clouds, do not be scared, be prepared. Also keep an eye on what is going on with containers, orchestration, management among other related areas involving persistent storage, a good example is Dell EMCcode RexRay among others.

Server Storage I/O resources
Various data storage focus areas along with data infrastructures.

What About Other Vendors, Solutions or Services?

In addition to those mentioned above, there are plenty of other existing, new and emerging vendors, solutions, and services to keep an eye on, look into, test and conduct a proof of concept (PoC) trial as part of being an informed data infrastructure and data storage shopper (or seller).

Keep in mind that component suppliers some of whom like Cisco also provides turnkey solutions that are also part of other vendors offerings (e.g. Dell EMC VxBlock, NetApp FlexPod among others), Broadcom (which includes Avago/LSI, Brocade Fibre Channel, among others), Intel (servers, I/O adapters, memory and SSDs), Mellanox, Micron, Samsung, Seagate and many others.

E8, Excelero, Elastifile (software defined storage), Enmotus (micro-tiering, read Server StorageIOlab report here), Everspin (persistent and storage class memories including NVDIMM), Hedvig (software defined storage), NooBaa, Nutanix, Pivot3, Rozo (software defined storage), WekaIO (scale out elastic software defined storage, read Server StorageIO report here).

Some other software defined management tools, services, solutions and components I’m keeping an eye on, exploring, digging deeper into (or plan to) include Blue Medora, Datadog, Dell EMCcode and RexRay docker container storage volume management, Google, HPE, IBM Bluemix Cloud aka IBM Softlayer, Kubernetes, Mangstor, OpenStack, Oracle, Retrospect, Rubrix, Quest, Starwind, Solarwinds, Storpool, Turbonomic, Virtuozzo (software defined storage) among many others

What about those not mentioned? Good question, some of those I have mentioned in earlier Server StorageIO Update newsletters, as well as many others mentioned in my new book "Software Defined Data Infrastructure Essentials" (CRC Press). Then there are those that once I hear something interesting from on a regular basis will get more frequent mentions as well. Of course, there is also a list to be done someday that is basically where are they now, e.g. those that have disappeared, or never lived up to their full hype and marketing (or technology) promises, let’s leave that for another day.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Where To Learn More

Learn more about related technology, trends, tools, techniques, and tips with the following links.

Data Infrastructures and workloads
Data Infrastructures Resources (Servers, Storage, I/O Networks) enabling various services

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

It is safe to say that each new year will bring new trends, techniques, technologies, tools, features, functionality as well as solutions involving data storage as well as data infrastructures. This means a usual safe bet is to say that the current year is the most exciting and has the most new things than in the past when it comes to data infrastructures along with resources such as data storage. Keep in mind that there are many aspects to data infrastructures as well as storage all of which are evolving. Who Will Be At Top Of Storage World Next Decade? What say you?

Ok, nuff said (for now…).

Cheers
Gs

Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

New family of Intel Xeon Scalable Processors enable software defined data infrastructures (SDDI) and SDDC

Intel Xeon Scalable Processors SDDI and SDDC

server storage I/O data infrastructure trends

Today Intel announced a new family of Xeon Scalable Processors (aka Purely) that for some workloads Intel claims to be on average of 1.65x faster than their predecessors. Note your real improvement will vary based on workload, configuration, benchmark testing, type of processor, memory, and many other server storage I/O performance considerations.

Intel Scalable Xeon Processors
Image via Intel.com

In general the new Intel Xeon Scalable Processors enable legacy and software defined data infrastructures (SDDI), along with software defined data centers (SDDC), cloud and other environments to support expanding workloads more efficiently as well as effectively (e.g. boosting productivity).

Data Infrastructures and workloads

Some target application and environment workloads Intel is positioning these new processors for includes among others:

  • Machine Learning (ML), Artificial Intelligence (AI), advanced analytics, deep learning and big data
  • Networking including software defined network (SDN) and network function virtualization (NFV)
  • Cloud and Virtualization including Azure Stack, Docker and Kubernetes containers, Hyper-V, KVM, OpenStack VMware vSphere, KVM among others
  • High Performance Compute (HPC) and High Productivity Compute (e.g. the other HPC)
  • Storage including legacy and emerging software defined storage software deployed as appliances, systems or server less deployment modes.

Features of the new Intel Xeon Scalable Processors include:

  • New core micro architecture with interconnects and on die memory controllers
  • Sockets (processors) scalable up to 28 cores
  • Improved networking performance using Quick Assist and Data Plane Development Kit (DPDK)
  • Leverages Intel Quick Assist Technology for CPU offload of compute intensive functions including I/O networking, security, AI, ML, big data, analytics and storage functions. Functions that benefit from Quick Assist include cryptography, encryption, authentication, cipher operations, digital signatures, key exchange, loss less data compression and data footprint reduction along with data at rest encryption (DARE).
  • Optane Non-Volatile Dual Inline Memory Module (NVDIMM) for storage class memory (SCM) also referred to by some as Persistent Memory (PM), not to be confused with Physical Machine (PM).
  • Supports Advanced Vector Extensions 512  (AVX-512) for HPC and other workloads
  • Optional Omni-Path Fabrics in addition to 1/10Gb Ethernet among other I/O options
  • Six memory channels supporting up to 6TB of RDIMM with multi socket systems
  • From two to eight  sockets per node (system)
  • Systems support PCIe 3.x (some supporting x4 based M.2 interconnects)

Note that exact speeds, feeds, slots and watts will vary by specific server model and vendor options. Also note that some server system solutions have two or more nodes (e.g. two or more real servers) in a single package not to be confused with two or more sockets per node (system or motherboard). Refer to the where to learn more section below for links to Intel benchmarks and other resources.

Software Defined Data Infrastructures, SDDC, SDX and SDDI

What About Speeds and Feeds

Watch for and check out the various Intel partners who have or will be announcing their new server compute platforms based on Intel Xeon Scalable Processors. Each of the different vendors will have various speeds and feeds options that build on the fundamental Intel Xeon Scalable Processor capabilities.

For example Dell EMC announced their 14G server platforms at the May 2017 Dell EMC World event with details to follow (e.g. after the Intel announcements).

Some things to keep in mind include the amount of DDR4 DRAM (or Optane NVDIMM) will vary by vendors server platform configuration, motherboards, several sockets and DIMM slots. Also keep in mind the differences between registered (e.g. buffered RDIMM) that give good capacity and great performance, and load reduced DIMM (LRDIMM) that have great capacity and ok performance.

Various nvme options

What about NVMe

It’s there as these systems like previous Intel models support NVMe devices via PCIe 3.x slots, and some vendor solutions also supporting M.2 x4 physical interconnects as well.

server storageIO flash and SSD
Image via Software Defined Data Infrastructure Essentials (CRC)

Note that Broadcom formerly known as Avago and LSI recently announced PCIe based RAID and adapter cards that support NVMe attached devices in addition to SAS and SATA.

server storage data infrastructure sddi

What About Intel and Storage

In case you have not connected the dots yet, the Intel Xeon Scalable Processor based server (aka compute) systems are also a fundamental platform for storage systems, services, solutions, appliances along with tin-wrapped software.

What this means is that the Intel Xeon Scalable Processors based systems can be used for deploying legacy as well as new and emerging software-defined storage software solutions. This also means that the Intel platforms can be used to support SDDC, SDDI, SDX, SDI as well as other forms of legacy and software-defined data infrastructures along with cloud, virtual, container, server less among other modes of deployment.

Image Via Intel.com

Moving beyond server and compute platforms, there is another tie to storage as part of this recent as well as other Intel announcements. Just a few weeks ago Intel announced 64 layer triple level cell (TLC) 3D NAND solutions positioned for the client market (laptop, workstations, tablets, thin clients). Intel with that announcement increased the traditional aerial density (e.g. bits per square inch or cm) as well as boosting the number of layers (stacking more bits as well).

The net result is not only more bits per square inch, also more per cubic inch or cm. This is all part of a continued evolution of NAND flash including from 2D to 3D, MCL to TLC, 32 to 64 layer.  In other words, NAND flash-based Solid State Devices (SSDs) are very much still a relevant and continue to be enhanced technology even with the emerging 3D XPoint and Optane (also available via Amazon in M.2) in the wings.

server memory evolution
Via Intel and Micron (3D XPoint launch)

Keep in mind that NAND flash-based technologies were announced almost 20 years ago (1999), and are still evolving. 3D XPoint announced two years ago, along with other emerging storage class memories (SCM), non-volatile memory (NVM) and persistent memory (PM) devices are part of the future as is 3D NAND (among others). Speaking of 3D XPoint and Optane, Intel had announcements about that in the past as well.

Where To Learn More

Learn more about Intel Xeon Scalable Processors along with related technology, trends, tools, techniques and tips with the following links.

What This All Means

Some say the PC is dead and IMHO that depends on what you mean or define a PC as. For example if you refer to a PC generically to also include servers besides workstations or other devices, then they are alive. If however your view is that PCs are only workstations and client devices, then they are on the decline.

However if your view is that a PC is defined by the underlying processor such as Intel general purpose 64 bit x86 derivative (or descendent) then they are very much alive. Just as older generations of PCs leveraging general purpose Intel based x86 (and its predecessors) processors were deployed for many uses, so to are today’s line of Xeon (among others) processors.

Even with the increase of ARM, GPU and other specialized processors, as well as ASIC and FPGAs for offloads, the role of general purpose processors continues to increase, as does the technology evolution around. Even with so called server less architectures, they still need underlying compute server platforms for running software, which also includes software defined storage, software defined networks, SDDC, SDDI, SDX, IoT among others.

Overall this is a good set of announcements by Intel and what we can also expect to be a flood of enhancements from their partners who will use the new family of Intel Xeon Scalable Processors in their products to enable software defined data infrastructures (SDDI) and SDDC.

Ok, nuff said (for now…).

Cheers
Gs

Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

AWS S3 Storage Gateway Revisited (Part I)

server storage I/O trends

AWS S3 Storage Gateway Revisited (Part I)

This Amazon Web Service (AWS) Storage Gateway Revisited posts is a follow-up to the AWS Storage Gateway test drive and review I did a few years ago (thus why it’s called revisited). As part of a two-part series, the first post looks at what AWS Storage Gateway is, how it has improved since my last review of AWS Storage Gateway along with deployment options. The second post in the series looks at a sample test drive deployment and use.

If you need an AWS primer and overview of various services such as Elastic Cloud Compute (EC2), Elastic Block Storage (EBS), Elastic File Service (EFS), Simple Storage Service (S3), Availability Zones (AZ), Regions and other items check this multi-part series (Cloud conversations: AWS EBS, Glacier and S3 overview (Part I) ).

AWS

As a quick refresher, S3 is the AWS bulk, high-capacity unstructured and object storage service along with its companion deep cold (e.g. inactive) Glacier. There are various S3 storage service classes including standard, reduced redundancy storage (RRS) along with infrequent access (IA) that have different availability durability, performance, service level and cost attributes.

Note that S3 IA is not Glacier as your data always remains on-line accessible while Glacier data can be off-line. AWS S3 can be accessed via its API, as well as via HTTP rest calls, AWS tools along with those from third-party’s. Third party tools include NAS file access such as S3FS for Linux that I use for my Ubuntu systems to mount S3 buckets and use similar to other mount points. Other tools include Cloudberry, S3 Motion, S3 Browser as well as plug-ins available in most data protection (backup, snapshot, archive) software tools and storage systems today.

AWS S3 Storage Gateway and What’s New

The Storage Gateway is the AWS tool that you can use for accessing S3 buckets and objects via your block volume, NAS file or tape based applications. The Storage Gateway is intended to give S3 bucket and object access to on-premises applications and data infrastructures functions including data protection (backup/restore, business continuance (BC), business resiliency (BR), disaster recovery (DR) and archiving), along with storage tiering to cloud.

Some of the things that have evolved with the S3 Storage Gateway include:

  • Easier, streamlined download, installation, deployment
  • Enhanced Virtual Tape Library (VTL) and Virtual Tape support
  • File serving and sharing (not to be confused with Elastic File Services (EFS))
  • Ability to define your own bucket and associated parameters
  • Bucket options including Infrequent Access (IA) or standard
  • Options for AWS EC2 hosted, or on-premises VMware as well as Hyper-V gateways (file only supports VMware and EC2)

AWS Storage Gateway Three Functions

AWS Storage Gateway can be deployed for three basic functions:

    AWS Storage Gateway File Architecture via AWS.com

  • File Gateway (NFS NAS) – Files, folders, objects and other items are stored in AWS S3 with a local cache for low latency access to most recently used data. With this option, you can create folders and subdirectory similar to a regular file system or NAS device as well as configure various security, permissions, access control policies. Data is stored in S3 buckets that you specify policies such as standard or Infrequent Access (IA) among other options. AWS hosted via EC2 as well as VMware Virtual Machine (VM) for on-premises file gateway.

    Also, note that AWS cautions on multiple concurrent writers to S3 buckets with Storage Gateway so check the AWS FAQs which may have changed by the time you read this. Current file share limits (subject to change) include 1 file gateway share per S3 bucket (e.g. a one to one mapping between file share and a bucket). There can be 10 file shares per gateway (e.g. multiple shares each with its own bucket per gateway) and a maximum file size of 5TB (same as maximum S3 object size). Note that you might hear about object storage systems supporting unlimited size objects which some may do, however generally there are some constraints either on their API front-end, or what is currently tested. View current AWS Storage Gateway resource and specification limits here.

  • AWS Storage Gateway Non-Cached Volume Architecture via AWS.com

    AWS Storage Gateway Cached Volume Architecture via AWS.com

  • Volume Gateway (Block iSCSI) – Leverages S3 with a point in time backup as an AWS EBS snapshot. Two options exist including Cached volumes with low-latency access to most recently used data (e.g. data is stored in AWS, with a local cache copy on disk or SSD). The other option is Stored Volumes (e.g. non-cached) where primary copy is local and periodic snapshot backups are sent to AWS. AWS provides EC2 hosted, as well as VMs for VMware and various Hyper-V Windows Server based VMs.

    Current Storage Gateway volume limits (subject to change) include maximum size of a cached volume 32TB, maximum size of a stored volume 16TB. Note that snapshots of cached volumes larger than 16TB can only be restored to a storage gateway volume, they can not be restored as an EBS volume (via EC2). There are a maximum of 32 volumes for a gateway with total size of all volumes for a gateway (cached) of 1,024TB (e.g. 1PB). The total size of all volumes for a gateway (stored volume) is 512TB. View current AWS Storage Gateway resource and specification limits here.

  • AWS Storage Gateway VTL Architecture via AWS.com

  • Virtual Tape Library Gateway (VTL) – Supports saving your data for backup/BC/DR/archiving into S3 and Glacier storage tiers. Being a Virtual Tape Library (e.g. VTL) you can specify emulation of tapes for compatibility with your existing backup, archiving and data protection software, management tools and processes.

    Storage Gateway limits for tape include minimum size of a virtual tape 100GB, maximum size of a virtual tape 2.5TB, maximum number of virtual tapes for a VTL is 1,500 and total size of all tapes in a VTL is 1PB. Note that the maximum number of virtual tapes in an archive is unlimited and total size of all tapes in an archive is also unlimited. View current AWS Storage Gateway resource and specification limits here.

    AWS

Where To Learn More

What This All Means

As to which gateway function and mode (cached or non-cached for Volumes) depends on what it is that you are trying to do. Likewise choosing between EC2 (cloud hosted) or on-premises Hyper-V and VMware VMs depends on what your data infrastructure support requirements are. Overall I like the progress that AWS has put into evolving the Storage Gateway, granted it might not be applicable for all usage cases. Continue reading more and view images from the AWS Storage Gateway Revisited test drive in part two located here.

Ok, nuff said (for now…).

Cheers
Gs

Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

May 2017 Server StorageIO Data Infrastructures Update Newsletter

Volume 17, Issue V

Hello and welcome to the May 2017 issue of the Server StorageIO update newsletter.

Summer officially here in the northern hemisphere is still a few weeks away, however for all practical purposes it has arrived. What this means is that in addition to normal workplace activities and projects, there are plenty of outdoor things (as well as distractions) to attend to.

Over the past several months I have mentioned a new book that is due out this summer and which means it’s getting close to announcement time. The new book title is Software Defined Data Infrastructure Essentials – Cloud, Converged, and Virtual Fundamental Server Storage I/O Tradecraft (CRC PRess/Taylor Francis/Auerbach) that you can learn more about here (with more details being added soon). A common question is will there be electronic versions of the book and the answer is yes (more on this in future newsletter).

Data Infrastructures

Another common question is what is it about, what is a data infrastructure (see this post) and what is tradecraft (see this post). Software-Defined Data Infrastructures Essentials provides fundamental coverage of physical, cloud, converged, and virtual server storage I/O networking technologies, trends, tools, techniques, and tradecraft skills.

Software-Defined Data Infrastructures Essentials provides fundamental coverage of physical, cloud, converged, and virtual server storage I/O networking technologies, trends, tools, techniques, and tradecraft skills. From webscale, software-defined, containers, database, key-value store, cloud, and enterprise to small or medium-size business, the book is filled with techniques, and tips to help develop or refine your server storage I/O hardware, software, and services skills. Whether you are new to data infrastructures or a seasoned pro, you will find this comprehensive reference indispensable for gaining as well as expanding experience with technologies, tools, techniques, and trends.

Software-Defined Data Infrastructure Essentials SDDI SDDC
ISBN-13: 978-1498738156
ISBN-10: 149873815X
Hardcover: 672 pages
Publisher: Auerbach Publications; 1 edition (June 2017)
Language: English

Watch for more news and insight about my new book Software-Defined Data Infrastructure Essentials soon. In the meantime, check out the various items below in this edition of the Server StorageIO Update.

In This Issue

Enjoy this edition of the Server StorageIO update newsletter.

Cheers GS

Data Infrastructure and IT Industry Activity Trends

Some recent Industry Activities, Trends, News and Announcements include:

Flackbox.com has some new independent (non NetApp produced) learning resources including NetApp simulator eBook and MetroCluster tutorial. Over in the Microsoft world, Thomas Maurer has a good piece about Windows Server build 2017 and all about containers. Microsoft also announced SQL Server 2017 CTP 2.1 is now available. Meanwhile here are some my experiences and thoughts from test driving Microsoft Azure Stack.

Speaking of NetApp among other announcements they released a new version of their StorageGrid object storage software. NVMe activity in the industry (and at customer sites) continues to increase with Cavium Qlogic NVMe over Fabric news, along with Broadcom recent NVMe RAID announcements. Keep in mind that if the answer is NVMe, than what are the questions.

Here is a good summary of the recent OpenStack Boston Summit. Storpool did a momentum announcement which for those of you into software defined storage, add Storpool to your watch list. On the VMware front, check out this vSAN 6.6 demo (video) of stretched cluster via Yellow Bricks.

Check out other industry news, comments, trends perspectives here.

Server StorageIOblog Posts

Recent and popular Server StorageIOblog posts include:

View other recent as well as past StorageIOblog posts here

Server StorageIO Commentary in the news

Recent Server StorageIO industry trends perspectives commentary in the news.

Via EnterpriseStorageForum: What to Do with Legacy Assets in a Flash Storage World
There is still a place for hybrid arrays. A hybrid array is the home run when it comes to leveraging your existing non-flash, non-SSD based assets today.

Via EnterpriseStorageForum: Where All-Flash Storage Makes No Sense
A bit of flash in the right place can go a long way, and everybody can benefit from at least a some of flash somewhere. Some might say the more, the better. But where you have budget constraints that simply prevent you from having more flash for things such as cold, inactive, or seldom access data, you should explore other options.

Via Bitpipe: Changing With the Times – Protecting VMs(PDF)

Via FedTech: Storage Strategies: Agencies Optimize Data Centers by Focusing on Storage

Via SearchCloudStorage: Dell EMC cloud storage strategy needs to cut through fog

Via SearchStorage: Microsemi upgrades controllers based on HPE technology

Via EnterpriseStorageForum: 8 Data Machine Learning and AI Storage Tips

Via SiliconAngle: Dell EMC announces hybrid cloud platform for Azure Stack

View more Server, Storage and I/O trends and perspectives comments here

Events and Activities

Recent and upcoming event activities.

Sep. 13-15, 2017 – Fujifilm IT Executive Summit – Seattle WA

August 28-30, 2017 – VMworld – Las Vegas

Jully 22, 2017 – TBA

June 22, 2017 – Webinar – GDPR and Microsoft Environments

May 11, 2017 – Webinar – Email Archiving, Compliance and Ransomware

See more webinars and activities on the Server StorageIO Events page here.

Server StorageIO Industry Resources and Links

Useful links and pages:
Microsoft TechNet – Various Microsoft related from Azure to Docker to Windows
storageio.com/links – Various industry links (over 1,000 with more to be added soon)
objectstoragecenter.com – Cloud and object storage topics, tips and news items
OpenStack.org – Various OpenStack related items
storageio.com/protect – Various data protection items and topics
thenvmeplace.com – Focus on NVMe trends and technologies
thessdplace.com – NVM and Solid State Disk topics, tips and techniques
storageio.com/converge – Various CI, HCI and related SDS topics
storageio.com/performance – Various server, storage and I/O benchmark and tools
VMware Technical Network – Various VMware related items

Ok, nuff said, for now.

Cheers
Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book “Software-Defined Data Infrastructure Essentials” (CRC Press).

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

Dell EMC World 2017 Day One news announcement summary

server storage I/O trends

Dell EMC World 2017 Day One news announcement summary

This is the first day of the first combined Dell EMC World 2017 being held in Las Vegas Nevada. Last year’s event in Las Vegas was the end of the EMC World, while this being the first of the combined Dell EMC World events that succeeded its predecessors.

What this means is an expanded focus because of the new Dell EMC that has added servers among other items to the event focus. Granted, EMC had been doing servers via its VCE and converged divisions, however with the Dell EMC integration completed as of last fall, the Dell Server group is now part of the Dell EMC organization.

The central theme of this Dell EMC world is REALIZE with a focus on four pillars:

  • Digital Transformation (Pivotal focus) of applications
  • IT Transformation (Dell EMC, Virtustream, VMware) data center modernization
  • Workforce transformation (Dell Client Solutions) devices from mobile to IoT
  • Information Security (RSA and Secureworks)

software defined data infrastructures SDDI and SDDC

What Did Dell EMC Announce Today

Note that while there are focus areas of the different Dell Technologies business units aligned to the pillars, there is also leveraging across those areas and groups. For example, VMware NSX spans into security, and  PowerEdge servers span into other pillars as a core data infrastructure building block.

What Dell EMC and Dell Technologies announced today.

  • Wave of Innovations to help customers realize digital transformation
  • New 14th generation PowerEdge Servers that are core building blocks for data infrastructures
  • Flexible consumption models (financing and more) from desktop to data center
  • Hyper-Converged Infrastructure (HCI), Converged (CI) and Cloud like systems
  • New All-Flash (ADA) SSD Storage Systems (VMAX, XtremIO X2, Unity, SC, Isilon)
  • Integrated Data Protection Appliance (IDPA) and Cloud Protection solutions
  • Using Gen14 servers several Software Defined Storage (SDS) enhancements
  • Open Networking and software-defined networks (SDN) with 25G
  • Last week Dell EMC announced Microsoft Azure Stack hybrid cloud solutions

New 14th generation PowerEdge Servers that are core building blocks for data infrastructures

Dell EMC has announced the 14th generation of Intel-powered Dell EMC PowerEdge server portfolio systems. These includes servers that get defined with software for software-defined data centers (SDDC), software-defined data infrastructures (SDDI) for the cloud, virtual, the container as well as storage among other applications. Target application workloads and environments range from high-performance compute (HPC), and high-productivity (or profitability) compute (the other HPC), super compute (SC), little data and big data analytics, legacy and emerging business applications as well as cloud and beyond. Enhancements besides new Intel processor technology includes enhanced iDRAC, OpenManage, REST interface, QuickSync, Secure Boot among other management, automation, security, performance, and capacity updates.

Other Dell EMC enhancements with Gen14 include support for various NVDIMM to enable persistent memory also known as storage class memories such as 3D Xpoint among others. Note at this time, Dell EMC is not saying much about speeds, feeds and other details, stay tuned for more information on these in the weeks and months to come.

Dell EMC has also been leaders with deploying NVMe from PCIe flash cards to 8639 U.2 devices such as 2.5” drives. Thus it makes sense to see continued adoption and deployment of those devices along with SAS, SATA support. Note that Broadcom (formerly known as Avago) recently announced the release of their PCIe SAS, SATA and NVMe based adapters.

The reason this is worth mentioning is that in the past Dell has OEM sourced Avago (formerly known as LSI) based adapters. Given Dell EMC use of NVMe drives, it only makes sense to put two and two together.

Let’s wait a few months to see what the speeds, feeds, and specifications are to put the rest of the puzzle together. Speaking of NVMe, also look for Dell EMC to also supporting PCIe AIC and U.2 (8639) NVMe devices, also leverage M.2 Next Generation Form Factor (NGFF) aka Gum sticks as boot devices.

While these are all Intel focused, I would expect Dell EMC not to sit back, instead, watch for what they do with other processors and servers including ARMs among others.

Increased support for more GPUs to support VDI and other graphic intensive workloads such as video rendering, imaging among others. Part of enhanced GPU support is improvements (multi-vector cooling) to power and cooling including sensing the type of PCIe card, and then adjusting cooling fans and subsequent power draw accordingly. The benefit should be more proper cooling to reduce power to support more work and productivity.

Flexible consumption models (financing and more) from desktop to data center

Dell Technologies has announced several financing, procurement, and consumption models with cloud-like flexible options for different IT and data center, along with mobile device technologies. These range from licensing to deployment as a service, consumption and other options via Dell Financial Services (DFS).

Highlights include:

  • DFS Flex on Demand is available now in select countries globally.
  • DFS Cloud Flex for HCI is available now for Dell EMC VxRail and Dell EMC XC Series and has planned availability for Q3 2017 in Dell EMC VxRack Systems.
  • PC as a Service is available now in select countries globally.
  • Dell EMC VDI Complete Solutions are available now in select countries globally.
  • DFS Flex on Demand is available now in select countries globally.
  • DFS Cloud Flex for HCI is available now for Dell EMC VxRail and Dell EMC XC Series and has planned VxRack systems in Q3 2017.
  • PC as a Service solution is available now in select countries globally.
  • Dell EMC VDI Complete Solutions are available now in select countries.
  • Dell Technologies transformation license agreement (TLA) is available now in select countries

Hyper-Converged Infrastructure (HCI), Converged (CI) and Cloud like systems

Enhancements to VxRail system, VxRACK Systems, and XC Series leveraging Del EMC Gen14 PowerEdge servers along with other improvements. Note that this also includes continued support for VMware, Microsoft as well as Nutanix software-defined solutions.

New All-Flash (ADA) SSD Storage Systems (VMAX, XtremIO X2, Unity, SC, Isilon)

Storage system enhancements include from high-end (VMAX and XtremIO) to mid-range (Unity and SC) along with scale-out NAS (Isilon)

Highlights of the announcements include:

  • New VMAX 950F all flash array (AFA)
  • New XtremIO X2 with enhanced software, more powerful hardware
  • New Unity AFA systems
  • New SC5020 midrange hybrid storage
  • New generation of Isilon storage with improved performance, capacity, density

Integrated Data Protection Appliance (IDPA) and Cloud Protection solutions

Data protection enhancement highlights include:

  • New Turnkey Integrated Data Protection Appliance (IDPA) with four models (DP5300, DP5800, DP8300, and DP8800) starting at 34 TB usable scaling up to 1PB usable. Data services including encryption, data footprint reduction such as dedupe, remote monitoring, Maintenance service dispatch, along with application integration. Application integration includes MongoDB, Hadoop, MySQL.

  • Enhanced cloud capabilities powered by Data Domain virtual edition (DD VE 3.1) along with data protection suite enable data to be protected too, and restored from Amazon Web Services (AWS) Simple Storage Service (S3) as well as Microsoft Azure.

Open Networking and software-defined networks (SDN) with 25G

Dell EMC Open Networking highlights include:

  • Dell EMCs first 25GbE open networking top of rack (TOR) switch including S5100-ON series (With OS10 enterprise edition software) complimenting new PowerEdge Gen14 servers with native 25GbE support. Switches support 100GbE uplinks fabric connectivity for east-west (management) network traffic. Also announced is the S4100-ON series and N1100-ON series that are in addition to recently announce N3100-ON and N2100-ON switches.

  • Dell EMCs first optimized Open Networking platform for unified storage network switching including support for 16Gb/32GB Fibre Channel

  • New Network Function Virtualization (NFV) and IoT advisory consulting services

Note that Dell EMC is announcing the availability of these networking solutions in Dell Technologies 2018 fiscal year which occurs before the traditional calendar year.

Using Gen14 servers, several Software Defined Storage (SDS) enhancements

Dell EMC announced enhancements to their Software Defined Storage (SDS) portfolio that leveraging the PowerEdge 14th generation server portfolio. These improvements include ScaleIO, Elastic Cloud Storage (ECS), IsilonSD Edge and Preview of Project Nautilus.

Where to learn more

What this all means

This is a summary of what has been announced so far on the first morning of the first day of the first new Dell EMC world. Needless to say, there is more detail to look at for the above announcements from speeds, feeds, functionality and related topics that will get addressed in subsequent posts. Overall this is a good set of announcements expanding capabilities of the combined Dell EMC while enhancing existing systems as well as well as solutions.

Ok, nuff said (for now…)

Cheers
Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

Azure Stack Technical Preview 3 (TP3) Overview Preview Review

server storage I/O trends

Azure Stack Technical Preview 3 (TP3) Overview Preview Review

Perhaps you are aware or use Microsoft Azure, how about Azure Stack?

This is part one of a two-part series looking at Microsoft Azure Stack providing an overview, preview and review. Read part two here that looks at my experiences installing Microsoft Azure Stack Technical Preview 3 (TP3).

For those who are not aware, Azure Stack is a private on-premises extension of the Azure public cloud environment. Azure Stack now in technical preview three (e.g. TP3), or what you might also refer to as a beta (get the bits here).

In addition to being available via download as a preview, Microsoft is also working with vendors such as Cisco, Dell EMC, HPE, Lenovo and others who have announced Azure Stack support. Vendors such as Dell EMC have also made proof of concept kits available that you can buy including server with storage and software. Microsoft has also indicated that once launched for production versions scaling from a few to many nodes, that a single node proof of concept or development system will also remain available.

software defined data infrastructure SDDI and SDDC
Software-Defined Data Infrastructures (SDDI) aka Software-defined Data Centers, Cloud, Virtual and Legacy

Besides being an on-premises, private cloud variant, Azure Stack is also hybrid capable being able to work with public cloud Azure. In addition to working with public cloud Azure, Azure Stack services and in particular workloads can also work with traditional Microsoft, Linux and others. You can use pre built solutions from the Azure marketplace, in addition to developing your applications using Azure services and DevOps tools. Azure Stack enables hybrid deployment into public or private cloud to balance flexibility, control and your needs.

Azure Stack Overview

Microsoft Azure Stack is an on premise (e.g. in your own data center) private (or hybrid when connected to Azure) cloud platform. Currently Azure Stack is in Technical Preview 3 (e.g. TP3) and available as a proof of concept (POC) download from Microsoft. You can use Azure Stack TP3 as a POC for learning, demonstrating and trying features among other activities. Here is link to a Microsoft Video providing an overview of Azure Stack, and here is a good summary of roadmap, licensing and related items.

In summary, Microsoft Azure Stack is:

  • A onsite, on premise, in your data center extension of Microsoft Azure public cloud
  • Enabling private and hybrid cloud with strong integration along with common experiences with Azure
  • Adopt, deploy, leverage cloud on your terms and timeline choosing what works best for you
  • Common processes, tools, interfaces, management and user experiences
  • Leverage speed of deployment and configuration with a purpose-built integrate solution
  • Support existing and cloud native Windows, Linux, Container and other services
  • Available as a public preview via software download, as well as vendors offering solutions

What is Azure Stack Technical Preview 3 (TP3)

This version of Azure Stack is a single node running on a lone physical machine (PM) aka bare metal (BM). However can also be installed into a virtual machine (VM) using nesting. For example I have Azure Stack TP3 running nested on a VMware vSphere ESXi 6.5 systems with a Windows Server 2016 VM as its base operating system.

Microsoft Azure Stack architecture
Click here or on the above image to view list of VMs and other services (Image via Microsoft.com)

The TP3 POC Azure Stack is not intended for production environments, only for testing, evaluation, learning and demonstrations as part of its terms of use. This version of Azure Stack is associated with a single node identity such as Azure Active Directory (AAD) integrated with Azure, or Active Directory Federation Services (ADFS) for standalone modes. Note that since this is a single server deployment, it is not intended for performance, rather, for evaluating functionality, features, APIs and other activities. Learn more about Azure Stack TP3 details here (or click on image) including names of various virtual machines (VMs) as well as their roles.

Where to learn more

The following provide more information and insight about Azure, Azure Stack, Microsoft and Windows among related topics.

  • Azure Stack Technical Preview 3 (TP3) Overview Preview Review
  • Azure Stack TP3 Overview Preview Review Part II
  • Azure Stack Technical Preview (get the bits aka software download here)
  • Azure Stack deployment prerequisites (Microsoft)
  • Microsoft Azure Stack troubleshooting (Microsoft Docs)
  • Azure Stack TP3 refresh tips (Azure Stack)
  • Here is a good post with a tip about not applying certain Windows updates to Azure stack TP3 installs.
  • Configure Azure stack TP3 to be available on your own network (Azure Stack)
  • Azure Stack TP3 Marketplace syndication (Azure Stack)
  • Azure Stack TP3 deployment experiences (Azure Stack)
  • Frequently asked questions for Azure Stack (Microsoft)
  • Deploy Azure Stack (Microsoft)
  • Connect to Azure Stack (Microsoft)
  • Azure Active Directory (AAD) and Active Directory Federation Services (ADFS)
  • Azure Stack TP2 deployment experiences by Niklas Akerlund (@vNiklas) useful for tips for TP3
  • Deployment Checker for Azure Stack Technical Preview (Microsoft Technet)
  • Azure stack and other tools (Github)
  • How to enable nested virtualization on Hyper-V Windows Server 2016
  • Dell EMC announce Microsoft Hybrid Cloud Azure Stack (Dell EMC)
  • Dell EMC Cloud for Microsoft Azure Stack (Dell EMC)
  • Dell EMC Cloud for Microsoft Azure Stack Data Sheet (Dell EMC PDF)
  • Dell EMC Cloud Chats (Dell EMC Blog)
  • Microsoft Azure stack forum
  • Dell EMC Microsoft Azure Stack solution
  • Gaining Server Storage I/O Insight into Microsoft Windows Server 2016
  • Overview Review of Microsoft ReFS (Reliable File System) and resource links
  • Via WServerNews.com Cloud (Microsoft Azure) storage considerations
  • Via CloudComputingAdmin.com Cloud Storage Decision Making: Using Microsoft Azure for cloud storage
  • www.thenvmeplace.com, www.thessdplace.com, www.objectstoragecenter.com and www.storageio.com/converge
  • What this all means

    A common question is if there is demand for private and hybrid cloud, in fact, some industry expert pundits have even said private, or hybrid are dead which is interesting, how can something be dead if it is just getting started. Likewise, it is early to tell if Azure Stack will gain traction with various organizations, some of whom may have tried or struggled with OpenStack among others.

    Given a large number of Microsoft Windows-based servers on VMware, OpenStack, Public cloud services as well as other platforms, along with continued growing popularity of Azure, having a solution such as Azure Stack provides an attractive option for many environments. That leads to the question of if Azure Stack is essentially a replacement for Windows Servers or Hyper-V and if only for Windows guest operating systems. At this point indeed, Windows would be an attractive and comfortable option, however, given a large number of Linux-based guests running on Hyper-V as well as Azure Public, those are also primary candidates as are containers and other services.

    Continue reading more in part two of this two-part series here including installing Microsoft Azure Stack TP3.

    Ok, nuff said (for now…).

    Cheers
    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.