What is the best kind of IO? The one you do not have to do

What is the best kind of IO? The one you do not have to do

data infrastructure server storage I/O trends

Updated 2/10/2018

What is the best kind of IO? If no IO (input/output) operation is the best IO, than the second best IO is the one that can be done as close to the application and processor with best locality of reference. Then the third best IO is the one that can be done in less time, or at least cost or impact to the requesting application which means moving further down the memory and storage stack (figure 1).

Storage and IO or I/O locality of reference and storage hirearchy
Figure 1 memory and storage hierarchy

The problem with IO is that they are basic operation to get data into and out of a computer or processor so they are required; however, they also have an impact on performance, response or wait time (latency). IO require CPU or processor time and memory to set up and then process the results as well as IO and networking resources to move data to their destination or retrieve from where stored. While IOs cannot be eliminated, their impact can be greatly improved or optimized by doing fewer of them via caching, grouped reads or writes (pre-fetch, write behind) among other techniques and technologies.

Think of it this way, instead of going on multiple errands, sometimes you can group multiple destinations together making for a shorter, more efficient trip; however, that optimization may also take longer. Hence sometimes it makes sense to go on a couple of quick, short low latency trips vs. one single larger one that takes half a day however accomplishes many things. Of course, how far you have to go on those trips (e.g. locality) makes a difference of how many you can do in a given amount of time.

What is locality of reference?

Locality of reference refers to how close (e.g location) data exists for where it is needed (being referenced) for use. For example, the best locality of reference in a computer would be registers in the processor core, then level 1 (L1), level 2 (L2) or level 3 (L3) onboard cache, followed by dynamic random access memory (DRAM). Then would come memory also known as storage on PCIe cards such as nand flash solid state device (SSD) or accessible via an adapter on a direct attached storage (DAS), SAN or NAS device. In the case of a PCIe nand flash SSD card, even though physically the nand flash SSD is closer to the processor, there is still the overhead of traversing the PCIe bus and associated drivers. To help offset that impact, PCIe cards use DRAM as cache or buffers for data along with Meta or control information to further optimize and improve locality of reference. In other words, help with cache hits, cache use and cache effectiveness vs. simply boosting cache utilization.

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

What can you do the cut the impact of IO

  • Establish baseline performance and availability metrics for comparison
  • Realize that IOs are a fact of IT virtual, physical and cloud life
  • Understand what is a bad IO along with its impact
  • Identify why an IO is bad, expensive or causing an impact
  • Find and fix the problem, either with software, application or database changes
  • Throw more software caching tools, hyper visors or hardware at the problem
  • Hardware includes faster processors with more DRAM and fast internal busses
  • Leveraging local PCIe flash SSD cards for caching or as targets
  • Utilize storage systems or appliances that have intelligent caching and storage optimization capabilities (performance, availability, capacity).
  • Compare changes and improvements to baseline, quantify improvement

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Summer 2011 StorageIO News Letter

StorageIO News Letter Image
Summer 2011 Newsletter

Welcome to the Summer 2011 edition of the Server and StorageIO Group (StorageIO) newsletter. This follows the Spring 2011 edition.

You can get access to this news letter via various social media venues (some are shown below) in addition to StorageIO web sites and subscriptions.

 

Click on the following links to view the Summer 2011 edition as an HTML or PDF or, to go to the newsletter page to view previous editions.

Follow via Goggle Feedburner here or via email subscription here.

You can also subscribe to the news letter by simply sending an email to newsletter@storageio.com

Enjoy this edition of the StorageIO newsletter, let me know your comments and feedback.

Nuff said for now

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2011 StorageIO and UnlimitedIO All Rights Reserved

SMB, SOHO and low end NAS gaining enterprise features

Here is a link to an interview that I did providing industry trends, perspectives and commentary on how Network Attached Storage (NAS) aka file and data sharing for the Small Medium Business (SMB), Small Office Home Office (SOHO) and consumer or low end offerings are gaining features and functionality traditionally associated with larger enterprise, however without the large price. In addition, here is a link to some tips for small business NAS storage and to another perspective on how choosing an SMB NAS is getting easier (and here for comments on unified storage).

Click on the image below to listen to a pod cast that I did with comments and perspectives involving SMB, SOHO, ROBO and low end NAS.

Listen to comments by Greg Schulz of StorageIO on SMB, SOHO, ROBO and lowend NAS

If your favorite or preferred product or vendor was not mentioned in the above links, dont worry, as with many media interviews there is a limited amount of time or narrow scope so those mentioned were among others in the space.

Speaking of others, there are many others in the broad and diverse SMB, SOHO, ROBO and consumer NAS and unified storage space. For example there are QNAP, SMC, Huawei, Buffalo, Synology and Starwind among many others. There is a lot of diversity in this NAS space. You’ve got Buffalo Technology, Cisco, Dlink, Dell, Data Robotic Drobo, EMC Iomega, Hewlett-Packard (HP) Co. via Microsoft, Intel, Overland Storage Snap Server, Seagate Black Armour, Western Digital Corp., and many others. Some of these vendors are household names that you would expect to see in the upper SMB, mid sized environments, and even into the enterprise.

For those who have other favorites or want to add another vendor to those already mentioned above, feel free to respond with a polite comment below. Oh and for disclosure, I bought my SMB or low end NAS from Amazon.com and it is an Iomega IX4.

Ok, nuff said for now.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2011 StorageIO and UnlimitedIO All Rights Reserved

As the Hard Disk Drive HDD continues to spin

As the Hard Disk Drive HDD continues to spin

server storage data infrastructure i/o iop hdd ssd trends

Updated 2/10/2018

Despite having been repeatedly declared dead at the hands of some new emerging technology over the past several decades, the Hard Disk Drive (HDD) continues to spin and evolve as it moves towards its 60th birthday.

More recently HDDs have been declared dead due to flash SSD that according to some predictions, should have caused the HDD to be extinct by now.

Meanwhile, having not yet died in addition to having qualified for its AARP membership a few years ago, the HDD continues to evolve in capacity, smaller form factor, performance, reliability, density along with cost improvements.

Back in 2006 I did an article titled Happy 50th, hard drive, but will you make it to 60?

IMHO it is safe to say that the HDD will be around for at least a few more years if not another decade (or more).

This is not to say that the HDD has outlived its usefulness or that there are not other tiered storage mediums to do specific jobs or tasks better (there are).

Instead, the HDD continues to evolve and is complimented by flash SSD in a way that HDDs are complimenting magnetic tape (another declared dead technology) each finding new roles to support more data being stored for longer periods of time.

After all, there is no such thing as a data or information recession!

What the importance of this is about technology tiering and resource alignment, matching the applicable technology to the task at hand.

Technology tiering (Servers, storage, networking, snow removal) is about aligning the applicable resource that is best suited to a particular need in a cost as well as productive manner. The HDD remains a viable tiered storage medium that continues to evolve while taking on new roles coexisting with SSD and tape along with cloud resources. These and other technologies have their place which ideally is finding or expanding into new markets instead of simply trying to cannibalize each other for market share.

Here is a link to a good story by Lucas Mearian on the history or evolution of the hard disk drive (HDD) including how a 1TB device that costs about $60 today would have cost about a trillion dollars back in the 1950s. FWIW, IMHO the 1 trillion dollars is low and should be more around 2 to 5 trillion for the one TByte if you apply common costs for management, people, care and feeding, power, cooling, backup, BC, DR and other functions.

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

IMHO, it is safe to say that the HDD is here to stay for at least a few more years (if not decades) or at least until someone decides to try a new creative marketing approach by declaring it dead (again).

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

What is DFR or Data Footprint Reduction?

What is DFR or Data Footprint Reduction?

What is DFR or Data Footprint Reduction?

Updated 10/9/2018

What is DFR or Data Footprint Reduction?

Data Footprint Reduction (DFR) is a collection of techniques, technologies, tools and best practices that are used to address data growth management challenges. Dedupe is currently the industry darling for DFR particularly in the scope or context of backup or other repetitive data.

However DFR expands the scope of expanding data footprints and their impact to cover primary, secondary along with offline data that ranges from high performance to inactive high capacity.

Consequently the focus of DFR is not just on reduction ratios, its also about meeting time or performance rates and data protection windows.

This means DFR is about using the right tool for the task at hand to effectively meet business needs, and cost objectives while meeting service requirements across all applications.

Examples of DFR technologies include Archiving, Compression, Dedupe, Data Management and Thin Provisioning among others.

Read more about DFR in Part I and Part II of a two part series found here and here.

Where to learn more

Learn more about data footprint reducton (DFR), data footprint overhead and related topics via the following links:

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

That is all for now, hope you find these ongoing series of current or emerging Industry Trends and Perspectives posts of interest.

Ok, nuff said, for now.

Cheers Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Clarifying Clustered Storage Confusion

Clustered storage can be iSCSI, Fibre Channel block based or NAS (NFS or CIFS or proprietary file system) file system based. Clustered storage can also be found in virtual tape library (VTL) including dedupe solutions along with other storage solutions such as those for archiving, cloud, medical or other specialized grids among others.

Recently in the IT and data storage specific industry, there has been a flurry of merger and acquisition (M&A) (Here and here), new product enhancement or announcement activity around clustered storage. For example, HP buying clustered file system vendor IBRIX complimenting their previous acquisition of another clustered file system vendor (PolyServe) a few years ago, or, of iSCSI block clustered storage software vendor LeftHand earlier this year. Another recent acquisition is that of LSI buying clustered NAS vendor ONstor, not to mention Dell buying iSCSI block clustered storage vendor EqualLogic about a year and half ago, not to mention other vendor acquisitions or announcements involving storage and clustering.

Where the confusion enters into play is the term cluster which means many things to different people, and even more so when clustered storage is combined with NAS or file based storage. For example, clustered NAS may infer a clustered file system when in reality a solution may only be multiple NAS filers, NAS heads, controllers or storage processors configured for availability or failover.

What this means is that a NFS or CIFS file system may only be active on one node at a time, however in the event of a failover, the file system shifts from one NAS hardware device (e.g. NAS head or filer) to another. On the other hand, a clustered file system enables a NFS or CIFS or other file system to be active on multiple nodes (e.g. NAS heads, controllers, etc.) concurrently. The concurrent access may be for small random reads and writes for example supporting a popular website or file serving application, or, it may be for parallel reads or writes to a large sequential file.

Clustered storage is no longer exclusive to the confines of high-performance sequential and parallel scientific computing or ultra large environments. Small files and I/O (read or write), including meta-data information, are also being supported by a new generation of multipurpose, flexible, clustered storage solutions that can be tailored to support different applications workloads.

There are many different types of clustered and bulk storage systems. Clustered storage solutions may be block (iSCSI or Fibre Channel), NAS or file serving, virtual tape library (VTL), or archiving and object-or content-addressable storage. Clustered storage in general is similar to using clustered servers, providing scale beyond the limits of a single traditional system—scale for performance, scale for availability, and scale for capacity and to enable growth in a modular fashion, adding performance and intelligence capabilities along with capacity.

For smaller environments, clustered storage enables modular pay-as-you-grow capabilities to address specific performance or capacity needs. For larger environments, clustered storage enables growth beyond the limits of a single storage system to meet performance, capacity, or availability needs.

Applications that lend themselves to clustered and bulk storage solutions include:

  • Unstructured data files, including spreadsheets, PDFs, slide decks, and other documents
  • Email systems, including Microsoft Exchange Personal (.PST) files stored on file servers
  • Users’ home directories and online file storage for documents and multimedia
  • Web-based managed service providers for online data storage, backup, and restore
  • Rich media data delivery, hosting, and social networking Internet sites
  • Media and entertainment creation, including animation rendering and post processing
  • High-performance databases such as Oracle with NFS direct I/O
  • Financial services and telecommunications, transportation, logistics, and manufacturing
  • Project-oriented development, simulation, and energy exploration
  • Low-cost, high-performance caching for transient and look-up or reference data
  • Real-time performance including fraud detection and electronic surveillance
  • Life sciences, chemical research, and computer-aided design

Clustered storage solutions go beyond meeting the basic requirements of supporting large sequential parallel or concurrent file access. Clustered storage systems can also support random access of small files for highly concurrent online and other applications. Scalable and flexible clustered file servers that leverage commonly deployed servers, networking, and storage technologies are well suited for new and emerging applications, including bulk storage of online unstructured data, cloud services, and multimedia, where extreme scaling of performance (IOPS or bandwidth), low latency, storage capacity, and flexibility at a low cost are needed.

The bandwidth-intensive and parallel-access performance characteristics associated with clustered storage are generally known; what is not so commonly known is the breakthrough to support small and random IOPS associated with database, email, general-purpose file serving, home directories, and meta-data look-up (Figure 1). Note that a clustered storage system, and in particular, a clustered NAS may or may not include a clustered file system.

Clustered Storage Model: Source The Green and Virtual Data Center (CRC)
Figure 1 – Generic clustered storage model (Courtesy “The Green and Virtual Data Center  (CRC)”

More nodes, ports, memory, and disks do not guarantee more performance for applications. Performance depends on how those resources are deployed and how the storage management software enables those resources to avoid bottlenecks. For some clustered NAS and storage systems, more nodes are required to compensate for overhead or performance congestion when processing diverse application workloads. Other things to consider include support for industry-standard interfaces, protocols, and technologies.

Scalable and flexible clustered file server and storage systems provide the potential to leverage the inherent processing capabilities of constantly improving underlying hardware platforms. For example, software-based clustered storage systems that do not rely on proprietary hardware can be deployed on industry-standard high-density servers and blade centers and utilizes third-party internal or external storage.

Clustered storage is no longer exclusive to niche applications or scientific and high-performance computing environments. Organizations of all sizes can benefit from ultra scalable, flexible, clustered NAS storage that supports application performance needs from small random I/O to meta-data lookup and large-stream sequential I/O that scales with stability to grow with business and application needs.

Additional considerations for clustered NAS storage solutions include the following.

  • Can memory, processors, and I/O devices be varied to meet application needs?
  • Is there support for large file systems supporting many small files as well as large files?
  • What is the performance for small random IOPS and bandwidth for large sequential I/O?
  • How is performance enabled across different application in the same cluster instance?
  • Are I/O requests, including meta-data look-up, funneled through a single node?
  • How does a solution scale as the number of nodes and storage devices is increased?
  • How disruptive and time-consuming is adding new or replacing existing storage?
  • Is proprietary hardware needed, or can industry-standard servers and storage be used?
  • What data management features, including load balancing and data protection, exists?
  • What storage interface can be used: SAS, SATA, iSCSI, or Fibre Channel?
  • What types of storage devices are supported: SSD, SAS, Fibre Channel, or SATA disks?

As with most storage systems, it is not the total number of hard disk drives (HDDs), the quantity and speed of tiered-access I/O connectivity, the types and speeds of the processors, or even the amount of cache memory that determines performance. The performance differentiator is how a manufacturer combines the various components to create a solution that delivers a given level of performance with lower power consumption.

To avoid performance surprises, be leery of performance claims based solely on speed and quantity of HDDs or the speed and number of ports, processors and memory. How the resources are deployed and how the storage management software enables those resources to avoid bottlenecks are more important. For some clustered NAS and storage systems, more nodes are required to compensate for overhead or performance congestion.

Learn more about clustered storage (block, file, VTL/dedupe, archive), clustered NAS, clustered file system, grids and cloud storage among other topics in the following links:

"The Many faces of NAS – Which is appropriate for you?"

Article: Clarifying Storage Cluster Confusion
Presentation: Clustered Storage: “From SMB, to Scientific, to File Serving, to Commercial, Social Networking and Web 2.0”
Video Interview: How to Scale Data Storage Systems with Clustering
Guidelines for controlling clustering
The benefits of clustered storage

Along with other material on the StorageIO Tips and Tools or portfolio archive or events pages.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Server Storage I/O Network Virtualization Whats Next?

Server Storage I/O Network Virtualization Whats Next?
Server Storage I/O Network Virtualization Whats Next?
Updated 9/28/18

There are many faces and thus functionalities of virtualization beyond the one most commonly discussed which is consolidation or aggregation. Other common forms of virtualization include emulation (which is part of enabling consolidation) which can be in the form of a virtual tape library for storage to bridge new disk technology to old software technology, processes, procedures and skill sets. Other forms of virtualization functionality for life beyond consolidation include abstraction for transparent movement of applications or operating systems on servers, or data on storage to support planned and un-planned maintenance, upgrades, BC/DR and other activities.

So the gist is that there are many forms of virtualization technologies and techniques for servers, storage and even I/O networks to address different issues including life beyond consolidation. However the next wave of consolidation could and should be that of reducing the number of logical images, or, the impact of the multiple operating systems and application images, along with their associated management costs.

This may be easier said than done, however, for those looking to cut costs even further than from what can be realized by reducing physical footprints (e.g. going from 10 to 1 or from 250 to 25 physical servers), there could be upside however it will come at a cost. The cost is like that of reducing data and storage footprint impacts with such as data management and archiving.

Savings can be realized by archiving and deleting data via data management however that is easier said than done given the cost in terms of people time and ability to decide what to archive, even for non-compliance data along with associated business rules and policies to be defined (for automation) along with hardware, software and services (managed services, consulting and/or cloud and SaaS).

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.