Seagate provides proof of life: Enterprise HDD enhancements

Storage I/O trends

Proof of life: Enterprise Hard Disk Drives (HDD’s) are enhanced

Last week while hard disk drive (HDD) competitor Western Digital (WD) was announcing yet another (Velobit) in a string of acquisitions ( e.g. earlier included Stec, Arkeia) and investments (Skyera), Seagate announced new enterprise class HDD’s to their portfolio. Note that it was only two years ago that WD acquired Hitachi Global Storage Technologies (HGST) the disk drive manufacturing business of Hitachi Ltd. (not to be confused with HDS).

Seagate

Similar to WD expanding their presence in the growing nand flash SSD market, Seagate also in May of this year extended their existing enterprise class SSD portfolio. These enhancements included new drives with 12Gbs SAS interface, along with a partnership (and investment) with PCIe flash card startup vendor Virident. Other PCIe flash SSD card vendors (manufacturers and OEMs) include Cisco, Dell, EMC, FusionIO, HP, IBM, LSI, Micron, NetApp and Oracle among others.

These new Seagate enterprise class HDD’s are designed for use in cloud and traditional data center servers and storage systems. A month or two ago Seagate also announced new ultra-thin (5mm) client (aka desktop) class HDD’s along with a 3.5 inch 4TB video optimized HDD. The video optimized HDD’s are intended for Digital Video Recorders (DVR’s), Set Top Boxes (STB’s) or other similar applications.

What was announced?

Specifically what Seagate announced were two enterprise class drives, one for performance (e.g. 1.2TB 10K) and the other for space capacity (e.g. 4TB).

 

Enterprise High Performance 10K.7 (aka formerly known as Savio)

Enterprise Terascale (aka formerly known as constellation)

Class/category

Enterprise / High Performance

Enterprise High Capacity

Form factor

2.5” Small Form Factor (SFF)

3.5”

Interface

6Gbs SAS

6Gbs SATA

Space capacity

1,200GB (1.2TB)

4TB

RPM speed

10,000

5,900

Average seek

2.9 ms

12 ms

DRAM cache

64MB

64MB

Power idle / operating

4.8 watts

5.49 / 6.49 watts

Intelligent Power Management (IPM)

Yes – Seagate PowerChoice

Yes – Seagate PowerChoice

Warranty

Limited 5 years

Limited 3 years

Instant Secure Erase (ISE)

Yes

Optional

Other features

RAID Rebuild assist, Self-Encrypting Device (SED)

Advanced Format (AF) 4K block in addition to standard 512 byte sectors

Use cases

Replace earlier generation 3.5” 15K SAS and Fibre Channel HDD’s for higher performance applications including file systems, databases where SSD are not practical fit.

Backup and data protection, replication, copy operations for erasure coding and data dispersal, active in dormant archives, unstructured NAS, big data, data warehouse, cloud and object storage.

Note the Seagate Terascale has a disk rotation speed of 5,900 (5.9K RPM) which is not a typo given the more traditional 5.4K RPM drives. This slight increase in performance from 5.4K to 5.9K should give when combined with other enhancements (e.g. firmware, electronics) to boost performance for higher capacity workloads.

Let us watch for some performance numbers to be published by Seagate or others. Note that I have not had a chance to try these new drives yet, however look forward to getting my hands on them (among others) sometime in the future for a test drive to add to the growing list found here (hey Seagate and WD, that’s a hint ;) ).

What this all means?

Storage I/O trends

Wait, weren’t HDD’s supposed to be dead or dying?

Some people just like new and emerging things and thus will declare anything existing or that they have lost interest in (or their jobs need it) as old, boring or dead.

For example if you listen to some, they may say nand flash SSD are also dead or dying. For what it is worth, imho nand flash-based SSDs still have a bright future in front of them even with new technologies emerging as they will take time to mature (read more here or listen here).

However, the reality is that for at least the next decade, like them or not, HDD’s will continue to play a role that is also evolving. Thus, these and other improvements with HDD’s will be needed until current nand flash or emerging PCM (Phase Change Memory) among other forms of SSD are capable of picking up all the storage workloads in a cost-effective way.

Btw, yes, I am also a fan and user of nand flash-based SSD’s, in addition to HDD’s and see roles for both as being viable complementing each other for traditional, virtual and cloud environments.

In short, HDD’s will keep spinning (pun intended) for some time granted their roles and usage will also evolve similar to that of tape summit resources.

Storage I/O trends

With this announcement by Seagate along with other enhancements from WD show that the HDD will not only see its 60th birthday, (and here), it will probably also easily see its 70th and not from the comfort of a computer museum. The reason is that there is yet another wave of HDD improvements just around the corner including Shingled Magnetic Recording (SMR) (more info here) along with Heat Assisted Magnetic Recording (HAMR) among others. Watch for more on HAMR and SMR in future posts. With these and other enhancements, we should be able to see a return to the rapid density improvements with HDD’s observed during the mid to late 2000 era when Perpendicular recording became available.

What is up with this ISE stuff is that the same as what Xiotech (e.g. XIO) had?

Is this the same technology that Xiotech (now Xio) referred to the ISE the answer is no. This Seagate ISE is for fast secure erase of data on disk. The benefit of Instant Secure Erase (ISE) is to cut from hours or days the time required to erase a drive for secure disposal to seconds (or less). For those environments that already factor drives erase time as part of those overall costs, this can increase the useful time in service to help improve TCO and ROI.

Wait a minute, aren’t slower RPM’s supposed to be lower performance?

Some of you might be wondering or asking the question of wait, how can a 10,000 revolution per minute (10K RPM) HDD be considered fast vs. a 15K HDD, let alone SSD?

Storage I/O trends

There is a trend occurring with HDD’s that the old rules of IOPS or performance being tied directly to the size and rotational speed (RPM’s) of drives, along with their interfaces. This comes down to being careful to judge a book or in this case a drive by its cover. While RPM’s do have an impact on performance, new generation drives at 10K such as some 2.5” models are delivering performance equal to or better than earlier generation 3.5” 15K device’s.

Likewise, there are similar improvements with 5.4K devices vs. previous generation 7.2K models. As you will see in some of the results found here, not all the old rules of thumbs when it comes to drive performance are still valid. Likewise, keep those metrics that matter in the proper context.


Click on above image to see various performance results

For example as seen in the results (above), the more DRAM or DDR cache on the drives has a positive impact on sequential reads which can be good news if that is what your applications need. Thus, do your homework and avoid judging a device simply by its RPM, interface or form factor.

Other considerations, temperature and vibration

Another consideration is that with increased density of more drives being placed in a given amount of space, some of which may not have the best climate controls, humidity and vibration are concerns. Thus, the importance of drives having vibration dampening or safeguards to keep up performance are important. Likewise, even though drive heads and platters are sealed, there are also considerations that need to be taken care of for humidity in data center or cloud service providers in hot environments near the equator.

If this is not connecting with you, think about how close parts of Southeast Asia and the India subcontinent are to the equator along with the rapid growth and low-cost focus occurring there. Your data center might be temperature and humidity controlled, however others who very focused on cost cutting may not be as concerned with normal facilities best practices.

What type of drives should be used for cloud, virtual and traditional storage?

Good question and one where the answer should be it depends upon what you are trying or need to do (e.g. see previous posts here or here and here (via Seagate)).For example here are some tips for big data storage and storage making decisions in general.

Disclosure

Seagate recently invited me along with several other industry analysts to their cloud storage analyst summit in San Francisco where they covered roundtrip coach airfare, lodging, airport transfers and a nice dinner at the Epic Roast house.

hdd image

I also have received in the past a couple of Momentus XT HHDD (aka SSHD) from Seagate. These are in addition to those that I bought including various Seagate, WD along with HGST, Fujitsu, Toshiba and Samsung (SSD and HDD’s) that I use for various things.

Ok, nuff said (for now).

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Can we get a side of context with them IOPS server storage metrics?

Can we get a side of context with them server storage metrics?

Storage I/O trends

Updated 2/10/2018

Whats the best server storage I/O network metric or benchmark? It depends as there needs to be some context with them IOPS and other server storage I/O metrics that matter.

There is an old saying that the best I/O (Input/Output) is the one that you do not have to do.

In the meantime, let’s get a side of some context with them IOPS from vendors, marketers and their pundits who are tossing them around for server, storage and IO metrics that matter.

Expanding the conversation, the need for more context

The good news is that people are beginning to discuss storage beyond space capacity and cost per GByte, TByte or PByte for both DRAM or nand flash Solid State Devices (SSD), Hard Disk Drives (HDD) along with Hybrid HDD (HHDD) and Solid State Hybrid Drive (SSHD) based solutions. This applies to traditional enterprise or SMB IT data center with physical, virtual or cloud based infrastructures.

hdd and ssd iops

This is good because it expands the conversation beyond just cost for space capacity into other aspects including performance (IOPS, latency, bandwidth) for various workload scenarios along with availability, energy effective and management.

Adding a side of context

The catch is that IOPS while part of the equation are just one aspect of performance and by themselves without context, may have little meaning if not misleading in some situations.

Granted it can be entertaining, fun to talk about or simply make good press copy for a million IOPS. IOPS vary in size depending on the type of work being done, not to mention reads or writes, random and sequential which also have a bearing on data throughout or bandwidth (Mbytes per second) along with response time.

However, are those million IOP’s applicable to your environment or needs?

Likewise, what do those million or more IOPS represent about type of work being done? For example, are they small 64 byte or large 64 Kbyte sized, random or sequential, cached reads or lazy writes (deferred or buffered) on a SSD or HDD?

How about the response time or latency for achieving them IOPS?

In other words, what is the context of those metrics and why do they matter?

storage i/o iops
Click on image to view more metrics that matter including IOP’s for HDD and SSD’s

Metrics that matter give context for example IO sizes closer to what your real needs are, reads and writes, mixed workloads, random or sequential, sustained or bursty, in other words, real world reflective.

As with any benchmark take them with a grain (or more) of salt, they key is use them as an indicator then align to your needs. The tool or technology should work for you, not the other way around.

Here are some examples of context that can be added to help make IOP’s and other metrics matter:

  • What is the IOP size, are they 512 byte (or smaller) vs. 4K bytes (or larger)?
  • Are they reads, writes, random, sequential or mixed and what percentage?
  • How was the storage configured including RAID, replication, erasure or dispersal codes?
  • Then there is the latency or response time and IO queue depths for the given number of IOPS.
  • Let us not forget if the storage systems (and servers) were busy with other work or not.
  • If there is a cost per IOP, is that list price or discount (hint, if discount start negotiations from there)
  • What was the number of threads or workers, along with how many servers?
  • What tool was used, its configuration, as well as raw or cooked (aka file system) IO?
  • Was the IOP’s number with one worker or multiple workers on a single or multiple servers?
  • Did the IOP’s number come from a single storage system or total of multiple systems?
  • Fast storage needs fast serves and networks, what was their configuration?
  • Was the performance a short burst, or long sustained period?
  • What was the size of the test data used; did it all fit into cache?
  • Were short stroking for IOPS or long stroking for bandwidth techniques used?
  • Data footprint reduction (DFR) techniques (thin provisioned, compression or dedupe) used?
  • Were write data committed synchronously to storage, or deferred (aka lazy writes used)?

The above are just a sampling and not all may be relevant to your particular needs, however they help to put IOP’s into more contexts. Another consideration around IOPS are the configuration of the environment, from an actual running application using some measurement tool, or are they generated from a workload tool such as IOmeter, IOrate, VDbench among others.

Sure, there are more contexts and information that would be interesting as well, however learning to walk before running will help prevent falling down.

Storage I/O trends

Does size or age of vendors make a difference when it comes to context?

Some vendors are doing a good job of going for out of this world record-setting marketing hero numbers.

Meanwhile other vendors are doing a good job of adding context to their IOP or response time or bandwidth among other metrics that matter. There is a mix of startup and established that give context with their IOP’s or other metrics, likewise size or age does not seem to matter for those who lack context.

Some vendors may not offer metrics or information publicly, so fine, go under NDA to learn more and see if the results are applicable to your environments.

Likewise, if they do not want to provide the context, then ask some tough yet fair questions to decide if their solution is applicable for your needs.

Storage I/O trends

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

What this means is let us start putting and asking for metrics that matter such as IOP’s with context.

If you have a great IOP metric, if you want it to matter than include some context such as what size (e.g. 4K, 8K, 16K, 32K, etc.), percentage of reads vs. writes, latency or response time, random or sequential.

IMHO the most interesting or applicable metrics that matter are those relevant to your environment and application. For example if your main application that needs SSD does about 75% reads (random) and 25% writes (sequential) with an average size of 32K, while fun to hear about, how relevant is a million 64 byte read IOPS? Likewise when looking at IOPS, pay attention to the latency, particular if SSD or performance is your main concern.

Get in the habit of asking or telling vendors or their surrogates to provide some context with them metrics if you want them to matter.

So how about some context around them IOP’s (or latency and bandwidth or availability for that matter)?

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Part II: How many IOPS can a HDD HHDD SSD do with VMware?

How many IOPS can a HDD HHDD SSD do with VMware?

server storage data infrastructure i/o iop hdd ssd trends

Updated 2/10/2018

This is the second post of a two-part series looking at storage performance, specifically in the context of drive or device (e.g. mediums) characteristics of How many IOPS can a HDD HHDD SSD do with VMware. In the first post the focus was around putting some context around drive or device performance with the second part looking at some workload characteristics (e.g. benchmarks).

A common question is how many IOPS (IO Operations Per Second) can a storage device or system do?

The answer is or should be it depends.

Here are some examples to give you some more insight.

For example, the following shows how IOPS vary by changing the percent of reads, writes, random and sequential for a 4K (4,096 bytes or 4 KBytes) IO size with each test step (4 minutes each).

IO Size for test
Workload Pattern of test
Avg. Resp (R+W) ms
Avg. IOP Sec (R+W)
Bandwidth KB Sec (R+W)
4KB
100% Seq 100% Read
0.0
29,736
118,944
4KB
60% Seq 100% Read
4.2
236
947
4KB
30% Seq 100% Read
7.1
140
563
4KB
0% Seq 100% Read
10.0
100
400
4KB
100% Seq 60% Read
3.4
293
1,174
4KB
60% Seq 60% Read
7.2
138
554
4KB
30% Seq 60% Read
9.1
109
439
4KB
0% Seq 60% Read
10.9
91
366
4KB
100% Seq 30% Read
5.9
168
675
4KB
60% Seq 30% Read
9.1
109
439
4KB
30% Seq 30% Read
10.7
93
373
4KB
0% Seq 30% Read
11.5
86
346
4KB
100% Seq 0% Read
8.4
118
474
4KB
60% Seq 0% Read
13.0
76
307
4KB
30% Seq 0% Read
11.6
86
344
4KB
0% Seq 0% Read
12.1
82
330

Dell/Western Digital (WD) 1TB 7200 RPM SATA HDD (Raw IO) thread count 1 4K IO size

In the above example the drive is a 1TB 7200 RPM 3.5 inch Dell (Western Digital) 3Gb SATA device doing raw (non file system) IO. Note the high IOP rate with 100 percent sequential reads and a small IO size which might be a result of locality of reference due to drive level cache or buffering.

Some drives have larger buffers than others from a couple to 16MB (or more) of DRAM that can be used for read ahead caching. Note that this level of cache is independent of a storage system, RAID adapter or controller or other forms and levels of buffering.

Does this mean you can expect or plan on getting those levels of performance?

I would not make that assumption, and thus this serves as an example of using metrics like these in the proper context.

Building off of the previous example, the following is using the same drive however with a 16K IO size.

IO Size for test
Workload Pattern of test
Avg. Resp (R+W) ms
Avg. IOP Sec (R+W)
Bandwidth KB Sec (R+W)
16KB
100% Seq 100% Read
0.1
7,658
122,537
16KB
60% Seq 100% Read
4.7
210
3,370
16KB
30% Seq 100% Read
7.7
130
2,080
16KB
0% Seq 100% Read
10.1
98
1,580
16KB
100% Seq 60% Read
3.5
282
4,522
16KB
60% Seq 60% Read
7.7
130
2,090
16KB
30% Seq 60% Read
9.3
107
1,715
16KB
0% Seq 60% Read
11.1
90
1,443
16KB
100% Seq 30% Read
6.0
165
2,644
16KB
60% Seq 30% Read
9.2
109
1,745
16KB
30% Seq 30% Read
11.0
90
1,450
16KB
0% Seq 30% Read
11.7
85
1,364
16KB
100% Seq 0% Read
8.5
117
1,874
16KB
60% Seq 0% Read
10.9
92
1,472
16KB
30% Seq 0% Read
11.8
84
1,353
16KB
0% Seq 0% Read
12.2
81
1,310

Dell/Western Digital (WD) 1TB 7200 RPM SATA HDD (Raw IO) thread count 1 16K IO size

The previous two examples are excerpts of a series of workload simulation tests (ok, you can call them benchmarks) that I have done to collect information, as well as try some different things out.

The following is an example of the summary for each test output that includes the IO size, workload pattern (reads, writes, random, sequential), duration for each workload step, totals for reads and writes, along with averages including IOP’s, bandwidth and latency or response time.

disk iops

Want to see more numbers, speeds and feeds, check out the following table which will be updated with extra results as they become available.

Device
Vendor
Make

Model

Form Factor
Capacity
Interface
RPM Speed
Raw
Test Result
HDD
HGST
Desktop
HK250-160
2.5
160GB
SATA
5.4K
HDD
Seagate
Mobile
ST2000LM003
2.5
2TB
SATA
5.4K
HDD
Fujitsu
Desktop
MHWZ160BH
2.5
160GB
SATA
7.2K
HDD
Seagate
Momentus
ST9160823AS
2.5
160GB
SATA
7.2K
HDD
Seagate
MomentusXT
ST95005620AS
2.5
500GB
SATA
7.2K(1)
HDD
Seagate
Barracuda
ST3500320AS
3.5
500GB
SATA
7.2K
HDD
WD/Dell
Enterprise
WD1003FBYX
3.5
1TB
SATA
7.2K
HDD
Seagate
Barracuda
ST3000DM01
3.5
3TB
SATA
7.2K
HDD
Seagate
Desktop
ST4000DM000
3.5
4TB
SATA
HDD
HDD
Seagate
Capacity
ST6000NM00
3.5
6TB
SATA
HDD
HDD
Seagate
Capacity
ST6000NM00
3.5
6TB
12GSAS
HDD
HDD
Seagate
Savio 10K.3
ST9300603SS
2.5
300GB
SAS
10K
HDD
Seagate
Cheetah
ST3146855SS
3.5
146GB
SAS
15K
HDD
Seagate
Savio 15K.2
ST9146852SS
2.5
146GB
SAS
15K
HDD
Seagate
Ent. 15K
ST600MP0003
2.5
600GB
SAS
15K
SSHD
Seagate
Ent. Turbo
ST600MX0004
2.5
600GB
SAS
SSHD
SSD
Samsung
840 PRo
MZ-7PD256
2.5
256GB
SATA
SSD
HDD
Seagate
600 SSD
ST480HM000
2.5
480GB
SATA
SSD
SSD
Seagate
1200 SSD
ST400FM0073
2.5
400GB
12GSAS
SSD

Performance characteristics 1 worker (thread count) for RAW IO (non-file system)

Note: (1) Seagate Momentus XT is a Hybrid Hard Disk Drive (HHDD) based on a 7.2K 2.5 HDD with SLC nand flash integrated for read buffer in addition to normal DRAM buffer. This model is a XT I (4GB SLC nand flash), may add an XT II (8GB SLC nand flash) at some future time.

As a starting point, these results are raw IO with file system based information to be added soon along with more devices. These results are for tests with one worker or thread count, other results will be added with such as 16 workers or thread counts to show how those differ.

The above results include all reads, all writes, mix of reads and writes, along with all random, sequential and mixed for each IO size. IO sizes include 4K, 8K, 16K, 32K, 64K, 128K, 256K, 512K, 1024K and 2048K. As with any workload simulation, benchmark or comparison test, take these results with a grain of salt as your mileage can and will vary. For example you will see some what I consider very high IO rates with sequential reads even without file system buffering. These results might be due to locality of reference of IO’s being resolved out of the drives DRAM cache (read ahead) which vary in size for different devices. Use the vendor model numbers in the table above to check the manufactures specs on drive DRAM and other attributes.

If you are used to seeing 4K or 8K and wonder why anybody would be interested in some of the larger sizes take a look at big fast data or cloud and object storage. For some of those applications 2048K may not seem all that big. Likewise if you are used to the larger sizes, there are still applications doing smaller sizes. Sorry for those who like 512 byte or smaller IO’s as they are not included. Note that for all of these unless indicated a 512 byte standard sector or drive format is used as opposed to emerging Advanced Format (AF) 4KB sector or block size. Watch for some more drive and device types to be added to the above, along with results for more workers or thread counts, along with file system and other scenarios.

Using VMware as part of a Server, Storage and IO (aka StorageIO) test platform

vmware vexpert

The above performance results were generated on Ubuntu 12.04 (since upgraded to 14.04 which was hosted on a VMware vSphere 5.1 (upgraded to 5.5U2) purchased version (you can get the ESXi free version here) with vCenter enabled system. I also have VMware workstation installed on some of my Windows-based laptops for doing preliminary testing of scripts and other activity prior to running them on the larger server-based VMware environment. Other VMware tools include vCenter Converter, vSphere Client and CLI. Note that other guest virtual machines (VMs) were idle during the tests (e.g. other guest VMs were quiet). You may experience different results if you ran Ubuntu native on a physical machine or with different adapters, processors and device configurations among many other variables (that was a disclaimer btw ;) ).

Storage I/O trends

All of the devices (HDD, HHDD, SSD’s including those not shown or published yet) were Raw Device Mapped (RDM) to the Ubuntu VM bypassing VMware file system.

Example of creating an RDM for local SAS or SATA direct attached device.

vmkfstools -z /vmfs/devices/disks/naa.600605b0005f125018e923064cc17e7c /vmfs/volumes/dat1/RDM_ST1500Z110S6M5.vmdk

The above uses the drives address (find by doing a ls -l /dev/disks via VMware shell command line) to then create a vmdk container stored in a dat. Note that the RDM being created does not actually store data in the .vmdk, it’s there for VMware management operations.

If you are not familiar with how to create a RDM of a local SAS or SATA device, check out this post to learn how.This is important to note in that while VMware was used as a platform to support the guest operating systems (e.g. Ubuntu or Windows), the real devices are not being mapped through or via VMware virtual drives.

vmware iops

The above shows examples of RDM SAS and SATA devices along with other VMware devices and dats. In the next figure is an example of a workload being run in the test environment.

vmware iops

One of the advantages of using VMware (or other hypervisor) with RDM’s is that I can quickly define via software commands where a device gets attached to different operating systems (e.g. the other aspect of software defined storage). This means that after a test run, I can quickly simply shutdown Ubuntu, remove the RDM device from that guests settings, move the device just tested to a Windows guest if needed and restart those VMs. All of that from where ever I happen to be working from without physically changing things or dealing with multi-boot or cabling issues.

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

So how many IOPs can a device do?

That depends, however have a look at the above information and results.

Check back from time to time here to see what is new or has been added including more drives, devices and other related themes.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

How many I/O iops can flash SSD or HDD do?

How many i/o iops can flash ssd or hdd do with vmware?

sddc data infrastructure Storage I/O ssd trends

Updated 2/10/2018

A common question I run across is how many I/O iopsS can flash SSD or HDD storage device or system do or give.

The answer is or should be it depends.

This is the first of a two-part series looking at storage performance, and in context specifically around drive or device (e.g. mediums) characteristics across HDD, HHDD and SSD that can be found in cloud, virtual, and legacy environments. In this first part the focus is around putting some context around drive or device performance with the second part looking at some workload characteristics (e.g. benchmarks).

What about cloud, tape summit resources, storage systems or appliance?

Lets leave those for a different discussion at another time.

Getting started

Part of my interest in tools, metrics that matter, measurements, analyst, forecasting ties back to having been a server, storage and IO performance and capacity planning analyst when I worked in IT. Another aspect ties back to also having been a sys admin as well as business applications developer when on the IT customer side of things. This was followed by switching over to the vendor world involved with among other things competitive positioning, customer design configuration, validation, simulation and benchmarking HDD and SSD based solutions (e.g. life before becoming an analyst and advisory consultant).

Btw, if you happen to be interested in learn more about server, storage and IO performance and capacity planning, check out my first book Resilient Storage Networks (Elsevier) that has a bit of information on it. There is also coverage of metrics and planning in my two other books The Green and Virtual Data Center (CRC Press) and Cloud and Virtual Data Storage Networking (CRC Press). I have some copies of Resilient Storage Networks available at a special reader or viewer rate (essentially shipping and handling). If interested drop me a note and can fill you in on the details.

There are many rules of thumb (RUT) when it comes to metrics that matter such as IOPS, some that are older while others may be guess or measured in different ways. However the answer is that it depends on many things ranging from if a standalone hard disk drive (HDD), Hybrid HDD (HHDD), Solid State Device (SSD) or if attached to a storage system, appliance, or RAID adapter card among others.

Taking a step back, the big picture

hdd image
Various HDD, HHDD and SSD’s

Server, storage and I/O performance and benchmark fundamentals

Even if just looking at a HDD, there are many variables ranging from the rotational speed or Revolutions Per Minute (RPM), interface including 1.5Gb, 3.0Gb, 6Gb or 12Gb SAS or SATA or 4Gb Fibre Channel. If simply using a RUT or number based on RPM can cause issues particular with 2.5 vs. 3.5 or enterprise and desktop. For example, some current generation 10K 2.5 HDD can deliver the same or better performance than an older generation 3.5 15K. Other drive factors (see this link for HDD fundamentals) including physical size such as 3.5 inch or 2.5 inch small form factor (SFF), enterprise or desktop or consumer, amount of drive level cache (DRAM). Space capacity of a drive can also have an impact such as if all or just a portion of a large or small capacity devices is used. Not to mention what the drive is attached to ranging from in internal SAS or SATA drive bay, USB port, or a HBA or RAID adapter card or in a storage system.

disk iops
HDD fundamentals

How about benchmark and performance for marketing or comparison tricks including delayed, deferred or asynchronous writes vs. synchronous or actually committed data to devices? Lets not forget about short stroking (only using a portion of a drive for better IOP’s) or even long stroking (to get better bandwidth leveraging spiral transfers) among others.

Almost forgot, there are also thick, standard, thin and ultra thin drives in 2.5 and 3.5 inch form factors. What’s the difference? The number of platters and read write heads. Look at the following image showing various thickness 2.5 inch drives that have various numbers of platters to increase space capacity in a given density. Want to take a wild guess as to which one has the most space capacity in a given footprint? Also want to guess which type I use for removable disk based archives along with for onsite disk based backup targets (compliments my offsite cloud backups)?

types of disks
Thick, thin and ultra thin devices

Beyond physical and configuration items, then there are logical configuration including the type of workload, large or small IOPS, random, sequential, reads, writes or mixed (various random, sequential, read, write, large and small IO). Other considerations include file system or raw device, number of workers or concurrent IO threads, size of the target storage space area to decide impact of any locality of reference or buffering. Some other items include how long the test or workload simulation ran for, was the device new or worn in before use among other items.

Tools and the performance toolbox

Then there are the various tools for generating IO’s or workloads along with recording metrics such as reads, writes, response time and other information. Some examples (mix of free or for fee) include Bonnie, Iometer, Iorate, IOzone, Vdbench, TPC, SPC, Microsoft ESRP, SPEC and netmist, Swifttest, Vmark, DVDstore and PCmark 7 among many others. Some are focused just on the storage system and IO path while others are application specific thus exercising servers, storage and IO paths.

performance tools
Server, storage and IO performance toolbox

Having used Iometer since the late 90s, it has its place and is popular given its ease of use. Iometer is also long in the tooth and has its limits including not much if any new development, never the less, I have it in the toolbox. I also have Futremark PCmark 7 (full version) which turns out has some interesting abilities to do more than exercise an entire Windows PC. For example PCmark can use a secondary drive for doing IO to.

PCmark can be handy for spinning up with VMware (or other tools) lots of virtual Windows systems pointing to a NAS or other shared storage device doing real world type activity. Something that could be handy for testing or stressing virtual desktop infrastructures (VDI) along with other storage systems, servers and solutions. I also have Vdbench among others tools in the toolbox including Iorate which was used to drive the workloads shown below.

What I look for in a tool are how extensible are the scripting capabilities to define various workloads along with capabilities of the test engine. A nice GUI is handy which makes Iometer popular and yes there are script capabilities with Iometer. That is also where Iometer is long in the tooth compared to some of the newer generation of tools that have more emphasis on extensibility vs. ease of use interfaces. This also assumes knowing what workloads to generate vs. simply kicking off some IOPs using default settings to see what happens.

Another handy tool is for recording what’s going on with a running system including IO’s, reads, writes, bandwidth or transfers, random and sequential among other things. This is where when needed I turn to something like HiMon from HyperIO, if you have not tried it, get in touch with Tom West over at HyperIO and tell him StorageIO sent you to get a demo or trial. HiMon is what I used for doing start, stop and boot among other testing being able to see IO’s at the Windows file system level (or below) including very early in the boot or shutdown phase.

Here is a link to some other things I did awhile back with HiMon to profile some Windows and VDI activity test profiling.

What’s the best tool or benchmark or workload generator?

The one that meets your needs, usually your applications or something as close as possible to it.

disk iops
Various 2.5 and 3.5 inch HDD, HHDD, SSD with different performance

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

That depends, however continue reading part II of this series to see some results for various types of drives and workloads.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

XtremIO, XtremSW and XtremSF EMC flash ssd portfolio redefined

EMC (@EMCflash) today announced some new, enhanced, renamed and a rebrand flash solid-state device (SSD) storage portfolio around theme of XtremIO. XtremIO was the startup company with a new all flash SSD storage array that EMC announced they were buying in May 2012. Since that announcement, Project “X” has been used when referring to the product now known as XtremIO (e.g. all flash new storage array).

Synopsis of announcement

  • Product rollout and selective availability of the new all flash SSD array XtremIO
  • Rename server-side PCIe ssd flash cards from VFCache to XtremSF
  • New XtremSF models including enhanced multi-level cell (eMLC) with larger capacities
  • Rename VFCache caching software to XtremSW (enables cache mode vs. target mode)

What was previously announced:

  • Buying the company XtremeIO
  • Productizing  the new all flash array as part of Project “X”
  • It would formally announce the new product in 2013 (which is now)
  • VFCache and later enhancements during 2012.

Storage I/O industry trends and perspectives

Overall, I give an Atta boy and Atta girl to the EMC crew for a Product Defined Announcement (PDA) extending their flash portfolio to complement their different customers and prospects various environment needs. Now let us sit back and watch EMC, NetApp and others step up their flash dance moves to see who will out flash the others in the eXtreme flash games, including software defined storage, software defined data centers, software defined flash, and software defined cache.

Related items about nand flash and metrics related themes:

Read more about XtremIO, XtremSF, XtremSW and flash related items here in part II of this post.

Ok, nuff said (for now).

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

NetApp EF540, something familiar, something new

StorageIO Industry trends and perspectives image

NetApp announced the other day a new all nand flash solid-state devices (SSD) storage system called the EF540 that is available now. The EF540 has something’s new and cool, along with some things familiar, tried, true and proven.

What is new is that the EF540 is an all nand flash multi-level cell (MLC) SSD storage system. What is old is that the EF540 is based on the NetApp E-Series (read more here and here) and SANtricity software with hundreds of thousands installed systems. As a refresher, the E-Series are the storage system technologies and solutions obtained via the Engenio acquisition from LSI in 2011.

Image of NetApp EF540 via ntapgeek.com
Image via www.ntapgeek.com

The EF540 expands the NetApp SSD flash portfolio which includes products such as FlashCache (read cache aka PAM) for controllers in ONTAP based storage systems. Other NetApp items in the NetApp flash portfolio include FlashPool SSD drives for persistent read and write storage in ONTAP based systems. Complimenting FlashCache and FlashPool is the server-side PCIe caching card and software FlashAccel. NetApp is claiming to have revenue shipped 36PB of flash complimenting over 3 Exabytes (EB) of storage while continuing to ship a large amount of SAS and SATA HDD’s.

NetApp also previewed its future FlashRay storage system that should appear in beta later in 2013 and general availability in 2014.

In addition to SSD and flash related announcements, NetApp also announced enhancements to its ONTAP FAS/V6200 series including the FAS/V6220, FAS/V6250 and FAS/V6290.

Some characteristics of the NetApp EF540 and SANtricity include:

  • Two models with 12 or 24 x 6Gbs SAS 800GB MLC SSD devices
  • Up to 9.6TB or 19.2TB physical storage in a 2U (3.5 inch) tall enclosure
  • Dual controllers for redundancy, load-balancing and availability
  • IOP performance of over 300,000 4Kbyte random 100% reads under 1ms
  • 6GByte/sec performance of 512Kbyte sequential reads, 5.5Gbyte/sec random reads
  • Multiple RAID levels (0, 1, 10, 3, 5, 6) and flexible group sizes
  • 12GB of DRAM cache memory in each controller (mirrored)
  • 4 x 8GFC host server-side ports per controller
  • Optional expansion host ports (6Gb SAS, 8GFC, 10Gb iSCSI, 40Gb IBA/SRP)
  • Snapshots and replication (synchronous and asynchronous) including to HDD systems
  • Can be used for traditional IOP intensive little-data, or bandwidth for big-data
  • Proactive SSD wear monitoring and notification alerts
  • Utilizes SANtricity version 10.84

Poll, Are large storage arrays day’s numbered?

EMC and NetApp (along with other vendors) continue to sell large numbers of HDD’s as well as large amounts of SSD. Both EMC and NetApp are taking similar approaches of leveraging PCIe flash cards as cache adding software functionality to compliment underlying storage systems. The benefit is that the cache approach is less disruptive for many environments while allowing improved return on investment (ROI) of existing assets.

EMC

NetApp

Storage systems with HDD and SSD

VMAX, VNX

FAS/V, E-Series

Storage systems with SSD cache

FastCache,

FlashCache

All SSD based storage

VMAX, VNX

EF540

All new SSD system in development

Project X

FlashRay

Server side PCIe SSD cache

VFCache

FlashAcell

Partner ecosystems

Yes

Yes

The best IO is the one that you do not have to do, however the next best are those that have the least cost or affect which is where SSD comes into play. SSD is like real estate in that location matters in terms of providing benefit, as well as how much space or capacity is needed.

What does this all mean?
The NetApp EF540 based on the E-Series storage system architecture is like one of its primary competitors (e.g. EMC VNX also available as an all-flash model). The similarity is that both have been competitors, as well as have been around for over a decade with hundreds of thousands of installed systems. The similarities are also that both continue to evolve their code base leveraging new hardware and software functionality. These improvements have resulted in improved performance, availability, capacity, energy effectiveness and cost reduction.

Whats your take on RAID still being relevant?

From a performance perspective, there are plenty of public workloads and benchmarks including Microsoft ESRP and SPC among others to confirm its performance. Watch for NetApp to release EF540 SPC results given their history of doing so with other E-Series based systems. With those or other results, compare and contrast to other solutions looking not just at IOPS or MB/sec (bandwidth), also latency, functionality and cost.

What does the EF540 compete with?
The EF540 competes with all flash-based SSD solutions (Violin, Solidfire, Purestorage, Whiptail, Kaminario, IBM/TMS, up-coming EMC Project “X” (aka XtremeIO)) among others. Some of those systems use general-purpose servers combined SSD drives, PCIe cards along with management software where others leverage customized platforms with software. To a lesser extent, competition will also be mixed mode SSD and HDD solutions along with some PCIe target SSD cards for some situations.

What to watch and look for:
It will be interesting to view and contrast public price performance results using SPC or Microsoft ESRP among others to see how the EF540 compares. In addition, it will be interesting to compare other storage based, as well as SSD systems beyond the number of IOPS. What will be interesting is to keep an eye on latency, as well as bandwidth, feature functionality and associated costs.

Given that the NetApp E-Series are OEM or sold by third parties, let’s see if something looking similar or identical to the EF540 appear at any of those or new partners. This includes traditional general purpose and little-data environments, along with cloud, managed service provider, high performance compute and high productivity compute (HPC), super computer (SC), big data and big bandwidth among others.

Poll, Have SSD been successful in traditional storage systems and arrays

The EF540 could also appear as a storage or IO accelerator for large-scale out, clustered, grid and object storage systems for meta data, indices, key value stores among other uses either direct attached to servers, or via shared iSCSI, SAS, FC and InfiniBand (IBA) SCSI Remote Protocol (SRP).

Keep an eye on how the startups that have been primarily Just a Bunch Of SSD (JBOS) in a box start talking about adding new features and functionality such as snapshots, replication or price reductions. Also, keep an eye and ear open to what EMC does with project “X” along with NetApp FlashRay among other improvements.

For NetApp customers, prospects, partners, E-Series OEMs and their customers with the need for IO consolidation, or performance optimization for big-data, little-data and related applications the EF540 opens up new opportunities and should be good news. For EMC competitors, they now have new competition which also signals an expanding market with new opportunities in adjacent areas for growth. This also further signals the need for diverse ssd portfolios and product options to meet different customer application needs, along with increased functionality vs. lowest cost for high capacity fast nand SSD storage.

Some related reading:

Disclosure: NetApp, Engenio (when LSI), EMC and TMS (now IBM) have been clients of StorageIO.

Ok, nuff said

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Storage comments from the field and customers in the trenches

StorageIO industry trends cloud, virtualization and big data

When I was in Europe presenting some sessions at conferences and doing some seminars last month I meet and spoke with one of the attendees at the StorageExpo Holland event. The persons name (Han Breemer) came up to visit with me after one of my presentations that include SSD is in your future: When, where, with what and how, and Cloud and Virtual Data Storage Networking industry trends and perspectives. Note you can find additional material from various conferences and events on the backup, restore, BC, DR and archiving accessible via the resources menu on the StorageIO web site.

As I always do, I invite attendees to feel free and follow-up via email, twitter, Linked In, Google+ or other venue with questions, comments, discussions and what they are seeing or running into in their environments.

Some of the many different items discussed during my StorageExpo presentations included:

Recently Hans followed up and sent me some comments and asked if I would be willing to share them with others such as who ever happens to read this. I also suggested to Hans that he also start a blog (here is link to his new blog), and that I would be happy to post his comments for others to see and join in the conversation which are shown below.

Hans Breemer wrote:

Hi Greg,

we met each other recently at the Dutch Storage Expo after one of your sessions. We briefly discussed the current trends in the storage market, and the “risks” or “threats” (read: challenges) it means to “us”, the storage guys. Often neglected by the sales guys…

Please allow me a few lines to elaborate a bit more and share some thoughts from the field. :-)

1. Bigger is not better?

Each iteration in the new disk technologies (SATA or SAS) means we get less IOPS for the bucks. Pound for pound that is. Of course the absolute amount of IOPS we can get from a HDD increases all the time. where 175 IOPS was top speed a few years ago, we sometimes see figures close to 220 IOPS per physical drive now. This looks good in the brochure, just as the increased capacity does. However, what the brochure doesn’t tell us that if we look at the IOPS/capacity ratio, we’re walking backwards. a few years ago we could easily sell over 1000 IOPS/TB. Currently we can’t anymore. We’re happy to reach 500 IOPS/TB. I know this has always been like that. However with the introduction of SATA in the enterprise storage world, I feel things have gotten even worse.

2. But how about SSD’s then?

True and agree. In the world of HDD’s growing bigger and bigger, we actually need SSD’s, and this technology is the way forward in an IOPS perspective. SSD’s have a great future ahead of them (despite being with us already for some time). I do doubt that at the moment SSD’s already have the economical ability to fill the gap though. They offer many of thousands of IOPS, and for dedicated high-end solutions they offer what we weren’t able to deliver for decades. More IOPS than you need! But what about the “1000 IOPS/TB” market? Let’s call it the middle market.

3. SSD’s as a lubricant?

You must have heard every vendor about Adaptive Storage Tiering, Auto Tiering etc. All based on the theorem that most of our IO’s come from a relative small disk section. Thus we can improve the total performance of our array by only adding a few percent of SSD. Smart technology identifies the hot tracks on our disks, and promotes these to SSD’s. We can even demote cold tracks to big SATA drives. Think green, think ecological footprint, etc. For many applications this works well. Regular Windows server, file servers, VMWare ESX server actually seems to like adaptive storage tiering ,and I think I know why, a positive tradeoff of using VMDK’s. (I might share a few lines about FAST VP do’s and dont’s next time if you don’t mind)

4. How about the middle market them you might ask? or, SSD’s as a band-aid?

For the middle market, the above developments is sort of disaster. Think SAP running on Sun Solaris, think the average Microsoft SQL Server, think Oracle databases. These are the typical applications that need “middle market” IOPS. Many of these applications have a freakish IO pattern. OLTP during daytime, backup in the evening and batch jobs at night. Not to mention end of month runs, DTA (Dev-Test-Acceptance) streets that sleep for two weeks or are constantly upgraded or restored. These applications hardly benefit from “smart technologies”. The IO behavior is too random, too unpredictable leading to saturated SATA pools, and EFD’s that are hardly doing more IO’s than the FC drives they’re supposed to relief. Add more SSD’s we’re told. Use less SATA we’re told. but it hardly works. Recently we acquired a few new Vmax arrays without EFD or FASTVP, for the sole purpose of hosting these typical middle market applications. Affordable, predictable performance. But then again, our existing Vmax 20k had full size 600GB 15rpm drives, with the Vmax 40k we’re “encouraged” to use small form factor 600GB 10krpm drives. Again a small step backwards?

5. The storage tiering debacle.

Last but not least, some words I’d like to share with you about storage tiering. We’re encouraged (again) to sell storage in different tiers. Makes sense. To some extent it does yes. Host you most IO eager application on expensive, SSD based storage. And host your DTA or other less business critical application on FC or SATA quality HDD’s. But what if the less business critical application needs to be backed up in the evening, and while doing so completely saturates your SATA pool? Or what if the Dev server creates just as many IO’s as the Prod environment does? People don’t seem to care it seems. To have people realize how much IO’s they actually need and use, we are reporting IO graphs for all servers in our environment. Our tiering model is based on IOPS/TB and IO response time.

Tier X would be expensive, offering 800 IOPS/TB @ avg 10ms
Tier Y would be the cheaper option offering 400 IOPS/TB @ avg 15 ms

The next step will be to implement front end controls an actually limit a host to some ceiling. for instance, 2 times the limit described in the tier description. thus allowing for peak loads and backups.

Do we need to? I think so…

Greg, this small message is slowly turning into a plea. And that is actually what it is, a plea to our storage vendors, and to our evangelists. If they want us to deliver, I feel they should talk to us, and listen to us (and you!).

Cheers,

Hans Breemer 

ps, I love my job, this world and my role to translate promises and demands into solutions that work for my customers. I do take care though not to create solution that will not work, despite what the brochure said.

pps, please feel free to share the above if needed.

Here is my response to Hans:

Hello Hans good to hear from you and thanks for the comments.

Great perspectives and in the course of talking with your peers around the world, you are not alone in your thinking.

Often I see disconnects between customers and vendors. Vendors (often driven by their market research) they know what the customer needs and issues are, and many actually do. However I often see a reliance on market research data with many degrees of separation as opposed to direct and candied insight. Likewise some vendors spend more time talking about how they listen to the customer vs. how time they actually do so.

On the other hand, I routinely see customers fall into the trap of communicating wants (nice to haves) instead of articulating needs (what is required). Then there is confusing industry adoption with customer deployment, not to mention concerns over vendor, technology or services lock-in.

Hope all else is well.

Cheers
gs

Check out Hans new blog and feel free to leave your comments and perspectives here or via other venues.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

Trick or treat and vendor fun games

Server StorageIO data infrastructure industry trends Trick or treat and vendor fun games
Trick or treat and vendor fun games
Updated 6/26/18

In the spirit of Halloween and zombies season, a couple of thoughts come to mind about vendor tricks and treats. This is an industry trends and perspectives post, part of an ongoing series looking at various technology and fun topics.

The first trick or treat game pertains to the blame game; you know either when something breaks, or at the other extreme, before you have even made a decision to buy something. The trick or treat game for decision-making goes something like this.

StorageIO industry trends cloud, virtualization and big data

Vendor “A” says products succeed with their solution while failure results with a solution from “B” when doing “X”. Otoh, vendor “B” claims that “X” will fail when using a solution from vendor “A”. In fact, you can pick what you want to substitute for “X”, perhaps VDI, Big Data, Little Data, Backup, Archive, Analytics, Private Cloud, Public Cloud, Hybrid Cloud, eDiscovery you name it.

This is not complicated math or big data problem requiring a high-performance computing (HPC) platform. A HPC Zetta-Flop processing ability using 512 bit addressing of 9.9 (e.g. 1 nine) PettaBytes of battery-backed DRAM and an IO capability of 9.99999 (e.g. 5 9’s) trillion 8 bit IOPS to do table pivots or runge kutta numerical analysis, map reduce, SAS or another modeling with optional iProduct or Android interface are not needed.

image of StorageIO big data HPC cloud storageimage of StorageIO big data HPC cloud storage
StorageIO images of touring Texas Advanced Computing (e.g. HPC) Center

Can you solve this equation? Hint it does not need a PhD or any other advanced degree. Another hint, if you have ever been at any side of the technology product and services decision-making table, regardless of the costume you wore, you should know the answer.

Of course the question of would “X” fail regardless of who or what “A” or “B” let alone a “C”, “D” or “F”? In other words, it is not the solution, technology, vendor or provider, rather the problem or perhaps even lack thereof that is the issue. Or is it a case where there is a solution from “A”, “B” or any others that is looking for a problem, and if it is the wrong problem, there can be a wrong solution thus failure?

StorageIO industry trends cloud, virtualization and big data

Another trick or treat game is vendors public relations (PR) or analyst relations (AR) people to ask for one thing and delivery or ask another. For example, some vendor, service provider, their marketing AR and PR people or surrogates make contact wanting to tell of various success and failure story. Of course, this is usually their success and somebody else’s failure, or their victory over something or someone who sometimes can be interesting. Of course, there are also the treats to get you to listen to the above, such as tempt you with a project if you meet with their subject, which may be a trick of a disappearing treat (e.g. magic, poof it is gone after the discussion).

There are another AR and PR trick and treat where they offer on behalf of their representative organization or client to a perspective or exclusive insight on their competitor. Of course, the treat from their perspective is that they will generously expose all that is wrong with what a competitor is saying about their own (e.g. the competitors) product.

StorageIO industry trends cloud, virtualization and big data

Let me get this straight, I am not supposed to believe what somebody says about his or her own product, however, supposed to believe what a competitor says is wrong with the competition’s product, and what is right with his or her own product.

Hmm, ok, so let me get this straight, a competitor say “A” wants to tell me what somebody say from “B” has told me is wrong and I should schedule a visit with a truth squad member from “A” to get the record set straight about “B”?

Does that mean then that I go to “B” for a rebuttal, as well as an update about “A” from “B”, assuming that what “A” has told me is also false about themselves, and perhaps about “B” or any other?

Too be fair, depending on your level of trust and confidence in either a vendor, their personal or surrogates, you might tend to believe more from them vs. others, or at least until you been tricked after given treats. There may be some that have been tricked, or they tried applying to many treats to present a story that behind the costume might be a bit scary.

StorageIO industry trends cloud, virtualization and big data

Having been through enough of these, and I candidly believe that sometimes “A” or “B” or any other party actually do believe that they have more or better info about their competitor and that they can convince somebody about what their competitor is doing better than the competitor can. I also believe that there are people out there who will go to “A” or “B” and believe what they are told by based on their preference, bias or interests.

When I hear from vendors, VARs, solution or service providers and others, it’s interesting hearing point, counterpoint and so forth, however if time is limited, I’am more interested in hearing from such as “A” about them, what they are doing, where success, where challenges, where going and if applicable, under NDA go into more detail.

StorageIO industry trends cloud, virtualization and big data

Customer success stories are good, however again, if interested in what works, what kind of works, or what does not work, chances are when looking for G2 vs. GQ, a non-scripted customer conversation or perspective of the good, the bad and the ugly is preferred, even if under NDA. Again, if time is limited which it usually is, focus on what is being done with your solution, where it is going and if compelled send follow-up material that can of course include MUD and FUD about others if that is your preference.

Then there is when during a 30 minute briefing, the vendor or solution provider is still talking about trends, customer pain points, what competitors are doing at 21 minutes into the call with no sign of an announcement, update or news in site

Lets not forget about the trick where the vendor marketing or PR person reaches out and says that the CEO, CMO, CTO or some other CxO or Chief Jailable Officer (CJO) wants to talk with you. Part of the trick is when the CxO actually makes it to the briefing and is not ready, does not know why the call is occurring, or, thinks that a request for an audience has been made with them for an interview or something else.

StorageIO industry trends cloud, virtualization and big data

A treat is when 3 to 4 minutes into a briefing, the vendor or solution provider has already framed up what and why they are doing something. This means getting to what they are announcing or planning on doing and getting into a conversation to discuss what they are doing and making good follow-up content and resources available.

StorageIO industry trends cloud, virtualization and big data

Sometimes a treat is when a briefer goes on autopilot nailing their script for 29 of a 30 minute session then use the last-minute to ask if there are any questions. The reason autopilot briefings can be a treat is when they are going over what is in the slide deck, webex, or press release thus affording an opportunity to get caught up on other things while talk at you. Hmm, perhaps need to consider playing some tricks in reward for those kind of treats? ;)

StorageIO industry trends cloud, virtualization and big data

Do not be scared, not everybody is out to trick you with treats, and not all treats have tricks attached to them. Be prepared, figure out who is playing tricks with treats, and who has treats without tricks.

Oh, and as a former IT customer, vendor and analyst, one of my favorites is contact information of my dogs to vendors who require registration on their websites for basic things such as data sheets. Another is supplying contact information of competing vendors sales reps to vendors who also require registration for basic data sheets or what should otherwise be generally available information as opposed to more premium treats. Of course there are many more fun tricks, however lets leave those alone for now.

Note: Zombie voting rules apply which means vote early, vote often, and of course vote for those who cannot include those that are dead (real or virtual).

Where To Learn More

View additiona related material via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Watch out for tricks and treats, have a safe and fun Zombie (aka Halloween) season. See you while out and about this fall and don’t forget to take part in the ongoing zombie technology poll. Oh, and be safe with trick or treat and vendor fun games

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Amazon cloud storage options enhanced with Glacier

StorageIO industry trend for storage IO

In case you missed it, Amazon Web Services (AWS) has enhanced their cloud services (Elastic Cloud Compute or EC2) along with storage offerings. These include Relational Database Service (RDS), DynamoDB, Elastic Block Store (EBS), and Simple Storage Service (S3). Enhancements include new functionality along with availability or reliability in the wake of recent events (outages or service disruptions). Earlier this year AWS announced their Cloud Storage Gateway solution that you can read an analysis here. More recently AWS announced provisioned IOPS among other enhancements (see AWS whats new page here).

Amazon Web Services logo

Before announcing Glacier, options for Amazon storage services relied on general purpose S3, or EBS with other Amazon services. S3 has provided users the ability to select different availability zones (e.g. geographical regions where data is stored) along with level of reliability for different price points for their applications or services being offered.

Note that AWS S3 flexibility lends itself to individuals or organizations using it for various purposes. This ranges from storing backup or file sharing data to being used as a target for other cloud services. S3 pricing options vary depending on which availability zones you select as well as if standard or reduced redundancy. As its name implies, reduced redundancy trades lower availability recovery time objective (RTO) in exchange for lower cost per given amount of space capacity.

AWS has now announced a new class or tier of storage service called Glacier, which as its name implies moves very slow and capable of supporting large amounts of data. In other words, targeting inactive or seldom accessed data where emphasis is on ultra-low cost in exchange for a longer RTO. In exchange for an RTO that AWS is stating that it can be measured in hours, your monthly storage cost can be as low as 1 cent per GByte or about 12 cents per year per GByte plus any extra fees (See here).

Here is a note that I received from the Amazon Web Services (AWS) team:

Dear Amazon Web Services Customer,
We are excited to announce the immediate availability of Amazon Glacier – a secure, reliable and extremely low cost storage service designed for data archiving and backup. Amazon Glacier is designed for data that is infrequently accessed, yet still important to keep for future reference. Examples include digital media archives, financial and healthcare records, raw genomic sequence data, long-term database backups, and data that must be retained for regulatory compliance. With Amazon Glacier, customers can reliably and durably store large or small amounts of data for as little as $0.01/GB/month. As with all Amazon Web Services, you pay only for what you use, and there are no up-front expenses or long-term commitments.

Amazon Glacier is:

  • Low cost– Amazon Glacier is an extremely low-cost, pay-as-you-go storage service that can cost as little as $0.01 per gigabyte per month, irrespective of how much data you store.
  • Secure – Amazon Glacier supports secure transfer of your data over Secure Sockets Layer (SSL) and automatically stores data encrypted at rest using Advanced Encryption Standard (AES) 256, a secure symmetrix-key encryption standard using 256-bit encryption keys.
  • Durable– Amazon Glacier is designed to give average annual durability of 99.999999999% for each item stored.
  • Flexible -Amazon Glacier scales to meet your growing and often unpredictable storage requirements. There is no limit to the amount of data you can store in the service.
  • Simple– Amazon Glacier allows you to offload the administrative burdens of operating and scaling archival storage to AWS, and makes long term data archiving especially simple. You no longer need to worry about capacity planning, hardware provisioning, data replication, hardware failure detection and repair, or time-consuming hardware migrations.
  • Designed for use with other Amazon Web Services – You can use AWS Import/Export to accelerate moving large amounts of data into Amazon Glacier using portable storage devices for transport. In the coming months, Amazon Simple Storage Service (Amazon S3) plans to introduce an option that will allow you to seamlessly move data between Amazon S3 and Amazon Glacier using data lifecycle policies.

Amazon Glacier is currently available in the US-East (N. Virginia), US-West (N. California), US-West (Oregon), EU-West (Ireland), and Asia Pacific (Japan) Regions.

A few clicks in the AWS Management Console are all it takes to setup Amazon Glacier. You can learn more by visiting the Amazon Glacier detail page, reading Jeff Barrs blog post, or joining our September 19th webinar.
Sincerely,
The Amazon Web Services Team

StorageIO industry trend for storage IO

What is AWS Glacier?

Glacier is low-cost for lower performance (e.g. access time) storage suited to data applications including archiving, inactive or idle data that you are not in a hurry to retrieve. Pay as you go pricing that can be as low as $0.01 USD per GByte per month (and other optional fees may apply, see here) depending on availability zone. Availability zone or regions include US West coast (Oregon or Northern California), US East Coast (Northern Virginia), Europe (Ireland) and Asia (Tokyo).

Amazon Web Services logo

Now what is understood should have to be discussed, however just to be safe, pity the fool who complains about signing up for AWS Glacier due to its penny per month per GByte cost and it being too slow for their iTunes or videos as you know its going to happen. Likewise, you know that some creative vendor or their surrogate is going to try to show a miss-match of AWS Glacier vs. their faster service that caters to a different usage model; it is just a matter of time.

StorageIO industry trend for storage IO

Lets be clear, Glacier is designed for low-cost, high-capacity, slow access of infrequently accessed data such as an archive or other items. This means that you will be more than disappointed if you try to stream a video, or access a document or photo from Glacier as you would from S3 or EBS or any other cloud service. The reason being is that Glacier is designed with the premise of low-cost, high-capacity, high availability at the cost of slow access time or performance. How slow? AWS states that you may have to wait several hours to reach your data when needed, however that is the tradeoff. If you need faster access, pay more or find a different class and tier of storage service to meet that need, perhaps for those with the real need for speed, AWS SSD capabilities ;).

Here is a link to a good post over at Planforcloud.com comparing Glacier vs. S3, which is like comparing apples and oranges; however, it helps to put things into context.

Amazon Web Services logo

In terms of functionality, Glacier security includes secure socket layer (SSL), advanced encryption standard (AES) 256 (256-bit encryption keys) data at rest encryption along with AWS identify and access management (IAM) policies.

Persistent storage designed for 99.999999999% durability with data automatically placed in different facilities on multiple devices for redundancy when data is ingested or uploaded. Self-healing is accomplished with automatic background data integrity checks and repair.

Scale and flexibility are bound by the size of your budget or credit card spending limit along with what availability zones and other options you choose. Integration with other AWS services including Import/Export where you can ship large amounts of data to Amazon using different media and mediums. Note that AWS has also made a statement of direction (SOD) that S3 will be enhanced to seamless move data in and out of Glacier using data policies.

Part of stretching budgets for organizations of all size is to avoid treating all data and applications the same (key theme of data protection modernization). This means classifying and addressing how and where different applications and data are placed on various types of servers, storage along with revisiting modernizing data protection.

While the low-cost of Amazon Glacier is an attention getter, I am looking for more than just the lowest cost, which means I am also looking for reliability, security among other things to gain and keep confidence in my cloud storage services providers. As an example, a few years ago I switched from one cloud backup provider to another not based on cost, rather functionality and ability to leverage the service more extensively. In fact, I could switch back to the other provider and save money on the monthly bills; however I would end up paying more in lost time, productivity and other costs.

StorageIO industry trend for storage IO

What do I see as the barrier to AWS Glacier adoption?

Simple, getting vendors and other service providers to enhance their products or services to leverage the new AWS Glacier storage category. This means backup/restore, BC and DR vendors ranging from Amazon (e.g. releasing S3 to Glacier automated policy based migration), Commvault, Dell (via their acquisitions of Appassure and Quest), EMC (Avamar, Networker and other tools), HP, IBM/Tivoli, Jungledisk/Rackspace, NetApp, Symantec and others, not to mention cloud gateway providers will need to add support for this new capabilities, along with those from other providers.

As an Amazon EC2 and S3 customer, it is great to see Amazon continue to expand their cloud compute, storage, networking and application service offerings. I look forward to actually trying out Amazon Glacier for storing encrypted archive or inactive data to compliment what I am doing. Since I am not using the Amazon Cloud Storage Gateway, I am looking into how I can use Rackspace Jungledisk to manage an Amazon Glacier repository similar to how it manages my S3 stores.

Some more related reading:
Only you can prevent cloud data loss
Data protection modernization, more than swapping out media
Amazon Web Services (AWS) and the NetFlix Fix?
AWS (Amazon) storage gateway, first, second and third impressions

As of now, it looks like I will have to wait for either Jungledisk adds native support as they do today for managing my S3 storage pool today, or, the automated policy based movement between S3 and Glacier is transparently enabled.

Ok, nuff said for now

Cheers Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

Give HP storage some love and short strokin

Server and StorageIO industry trends and perspective DAS

Following up from my last post over at InfoStor about metrics that matter, here is a link to a new piece that I did on storage vendors benchmarking and related topics. This new post looked at an storage performance council (SPC1) benchmark that HP did with their P10000 (e.g. 3PAR) storage system under assertions by some in the industry that they were short stroking to meet better performance.

Amazon Web Services (AWS)

I’m surprised some creative technical marketer, blogger or prankster has yet to rework Clarence Carters (e.g. Dr. CC) iconic song into something about storage performance and capacity short strokin.


Ok, nuff said before I get a visit from the HP truth squads, in the meantime, give HP a hug and some love if so inclined.

Cheers Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

Why FC and FCoE vendors get beat up over bandwidth?

Storage I/O Industry Trends and Perspectives

Have you noticed how Fibre Channel (FC) and FC over Ethernet (FCoE) switch and adapter vendors and their followers focus around bandwidth vs. response time, latency or other performance activity? For example, 8Gb FC (e.g. 8GFC), or 10Gb as opposed to latency and response time, or IOPS and other activity indicators.

When you look at your own environment, or that of a customers or prospects or hear of a conversation involving storage networks, is the focus on bandwidth, or lack of it, or perhaps throughput being a non-issue? For example, a customer says why go to 16GFC when they are barely using 8Gb with their current FC environment.

This is not a new phenomenon and is something I saw when working for a storage-networking vendor who had SAN, MAN and WAN solutions (E.g. INRANGE). Those with networking backgrounds tended to focus on bandwidth when discussing storage networks while those with storage, server or applications background also look at latency or IO completion time (response time), queuing, message size, IOPs or frames and packets per second. Thus there are different storage and networking metrics that matter that are also discussed further in my first book Resilient Storage Networks: Designing Flexible Scalable Data Infrastructures.

When I hear a storage networking vendor talk about their latest 16GFC based product I like to ask them what is the biggest benefit vs. 8GFC and not surprisingly, the usual response is like twice the bandwidth. When I ask them about what that means in terms of more IOPS in a given amount of time, or reduced IO completion time, lower latency, sometimes I often get the response along the lines of Yeah, that too, however it has twice the bandwidth.

Ok, I get it, yes, bandwidth is important for some applications, however so too are activity measured in IOPS, transactions, packets, frames, pages, sequences and exchanges among other units of measure along with response time and latency (e.g. different storage and networking metrics that matter).

What many storage networking vendors actually get, however they don’t talk about it for various reasons, perhaps because they are not be asked about it, or engaged in the conversation is that there is an improvement in response time in going from such as 8GFC to 16GFC. Likewise, there can be improvements in response time in addition to the more commonly discussed bandwidth.

If you are a storage networking switch, adapter or other component vendor, var or channel partner expand your conversation to include activity and response time as part of your value proposition. Likewise, if you are a customer, ask your technology providers to expand on the conversation of how new technologies help in areas other than bandwidth.

Ok, nuff said for now

Cheers Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

What is the best kind of IO? The one you do not have to do

What is the best kind of IO? The one you do not have to do

data infrastructure server storage I/O trends

Updated 2/10/2018

What is the best kind of IO? If no IO (input/output) operation is the best IO, than the second best IO is the one that can be done as close to the application and processor with best locality of reference. Then the third best IO is the one that can be done in less time, or at least cost or impact to the requesting application which means moving further down the memory and storage stack (figure 1).

Storage and IO or I/O locality of reference and storage hirearchy
Figure 1 memory and storage hierarchy

The problem with IO is that they are basic operation to get data into and out of a computer or processor so they are required; however, they also have an impact on performance, response or wait time (latency). IO require CPU or processor time and memory to set up and then process the results as well as IO and networking resources to move data to their destination or retrieve from where stored. While IOs cannot be eliminated, their impact can be greatly improved or optimized by doing fewer of them via caching, grouped reads or writes (pre-fetch, write behind) among other techniques and technologies.

Think of it this way, instead of going on multiple errands, sometimes you can group multiple destinations together making for a shorter, more efficient trip; however, that optimization may also take longer. Hence sometimes it makes sense to go on a couple of quick, short low latency trips vs. one single larger one that takes half a day however accomplishes many things. Of course, how far you have to go on those trips (e.g. locality) makes a difference of how many you can do in a given amount of time.

What is locality of reference?

Locality of reference refers to how close (e.g location) data exists for where it is needed (being referenced) for use. For example, the best locality of reference in a computer would be registers in the processor core, then level 1 (L1), level 2 (L2) or level 3 (L3) onboard cache, followed by dynamic random access memory (DRAM). Then would come memory also known as storage on PCIe cards such as nand flash solid state device (SSD) or accessible via an adapter on a direct attached storage (DAS), SAN or NAS device. In the case of a PCIe nand flash SSD card, even though physically the nand flash SSD is closer to the processor, there is still the overhead of traversing the PCIe bus and associated drivers. To help offset that impact, PCIe cards use DRAM as cache or buffers for data along with Meta or control information to further optimize and improve locality of reference. In other words, help with cache hits, cache use and cache effectiveness vs. simply boosting cache utilization.

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

What can you do the cut the impact of IO

  • Establish baseline performance and availability metrics for comparison
  • Realize that IOs are a fact of IT virtual, physical and cloud life
  • Understand what is a bad IO along with its impact
  • Identify why an IO is bad, expensive or causing an impact
  • Find and fix the problem, either with software, application or database changes
  • Throw more software caching tools, hyper visors or hardware at the problem
  • Hardware includes faster processors with more DRAM and fast internal busses
  • Leveraging local PCIe flash SSD cards for caching or as targets
  • Utilize storage systems or appliances that have intelligent caching and storage optimization capabilities (performance, availability, capacity).
  • Compare changes and improvements to baseline, quantify improvement

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

EMC VFCache respinning SSD and intelligent caching (Part II)

This is the second of a two part series pertaining to EMC VFCache, you can read the first part here.

In this part of the series, lets look at some common questions along with comments and perspectives.

Common questions, answers, comments and perspectives:

Why would EMC not just go into the same market space and mode as FusionIO, a model that many other vendors seam eager to follow? IMHO many vendors are following or chasing FusionIO thus most are selling in the same way perhaps to the same customers. Some of those vendors can very easily if they were not already also make a quick change to their playbook adding some new moves to reach broader audience. Another smart move here is that by taking a companion or complimentary approach is that EMC can continue selling existing storage systems to customers, keep those investments while also supporting competitors products. In addition, for those customers who are slow to adopt the SSD based techniques, this is a relatively easy and low risk way to gain confidence. Granted the disk drive was declared dead several years (and yes also several decades) ago, however it is and will stay alive for many years due to SSD helping to close the IO storage and performance gap.

Storage IO performance and capacity gap
Data center and storage IO performance capacity gap (Courtesy of Cloud and Virtual Data Storage Networking (CRC Press))

Has this been done before? There have been other vendors who have done LUN caching appliances in the past going back over a decade. Likewise there are PCIe RAID cards that support flash SSD as well as DRAM based caching. Even NetApp has had similar products and functionality with their PAM cards.

Does VFCache work with other PCIe SSD cards such as FusionIO? No, VFCache is a combination of software IO intercept and intelligent cache driver along with a PCIe SSD flash card (which could be supplied as EMC has indicated from different manufactures). Thus VFCache to be VFCache requires the EMC IO intercept and intelligent cache software driver.

Does VFCache work with other vendors storage? Yes, Refer to the EMC support matrix, however the product has been architected and designed to install and coexist into a customers existing environment which means supporting different EMC block storage systems as well as those from other vendors. Keep in mind that a main theme of VFCache is to compliment, coexist, enhance and protect customers investments in storage systems to improve their effectiveness and productivity as opposed to replacing them.

Does VFCache introduce a new point of vendor lockin or stickiness? Some will see or place this as a new form of vendor lockin, others assuming that EMC supports different vendors storage systems downstream as well as offer options for different PCIe flash cards and keeps the solution affordable will assert it is no more lockin that other solutions. In fact by supporting third party storage systems as opposed to replacing them, smart sales people and marketeers will place VFCache as being more open and interoperable than some other PCIe flash card vendors approach. Keep in mind that avoiding vendor lockin is a shared responsibility (read more here).

Does VFCache work with NAS? VFCache does not work with NAS (NFS or CIFS) attached storage.

Does VFCache work with databases? Yes, VFCache is well suited for little data (e.g. database) and traditional OLTP or general business application process that may not be covered or supported by other so called big data focused or optimized solutions. Refer to this EMC document (and this document here) for more information.

Does VFCache only work with little data? While VFCache is well suited for little data (e.g. databases, share point, file and web servers, traditional business systems) it also able to work with other forms of unstructured data.

Does VFCache need VMware? No, While VFCache works with VMware vSphere including a vCenter plug in, however it does not need a hypervisor and is practical in a physical machine (PM) as it is in a virtual machine (VM).

Does VFCache work with Microsoft Windows? Yes, Refer to the EMC support matrix for specific server operating systems and hypervisor version support.

Does VFCache work with other unix platforms? Refer to the EMC support matrix for specific server operating systems and hypervisor version support.

How are reads handled with VFCache? The VFCache software (driver if you prefer) intercepts IO requests to LUNs that are being cached performing a quick lookup to see if there is a valid cache entry in the physical VFCache PCIe card. If there is a cache hit the IO is resolved from the closer or local PCIe card cache making for a lower latency or faster response time IO. In the case of a cache miss, the VFCache driver simply passes the IO request onto the normal SCSI or block (e.g. iSCSI, SAS, FC, FCoE) stack for processing by the downstream storage system (or appliance). Note that when the requested data is retrieved from the storage system, the VFCache driver will based on caching algorithms determinations place a copy of the data in the PCIe read cache. Thus the real power of the VFCache is the software implementing the cache lookup and cache management functions to leverage the PCIe card that complements the underlying block storage systems.

How are writes handled with VFCache? Unless put into a write cache mode which is not the default, VFCache software simply passes the IO operation onto the IO stack for downstream processing by the storage system or appliance attached via a block interface (e.g. iSCSI, SAS, FC, FCoE). Note that as part of the caching algorithms, the VFCache software will make determinations of what to keep in cache based on IO activity requests similar to how cache management results in better cache effectiveness in a storage system. Given EMCs long history of working with intelligent cache algorithms, one would expect some of that DNA exists or will be leveraged further in future versions of the software. Ironically this is where other vendors with long cache effectiveness histories such as IBM, HDS and NetApp among others should also be scratching their collective heads saying wow, we can or should be doing that as well (or better).

Can VFCache be used as a write cache? Yes, while its default mode is to be used as a persistent read cache to compliment server and application buffers in DRAM along with enhance effectiveness of downstream storage system (or appliances) caches, VFCache can also be configured as a persistent write cache.

Does VFCache include FAST automated tiering between different storage systems? The first version is only a caching tool, however think about it a bit, where the software sits, what storage systems it can work with, ability to learn and understand IO paths and patterns and you can get an idea of where EMC could evolve it to, similar to what they have done with recoverpoint among other tools.

Changing data access patterns and lifecycles
Evolving data access patterns and life cycles (more retention and reads)

Does VFCache mean all or nothing approach with EMC? While the complete VFCache solution comes from EMC (e.g. PCIe card and software), the solution will work with other block attached storage as well as existing EMC storage systems for investment protection.

Does VFCache support NAS based storage systems? The first release of VFCache only supports block based access, however the server that VFCache is installed in could certainly be functioning as a general purpose NAS (NFS or CIFS) server (see supported operating systems in EMC interoperability notes) in addition to being a database or other other application server.

Does VFCache require that all LUNs be cached? No, you can select which LUNs are cached and which ones are not.

Does VFCache run in an active / active mode? In the first release it is active passive, refer to EMC release notes for details.

Can VFCache be installed in multiple physical servers accessing the same shared storage system? Yes, however refer to EMC release notes on details about active / active vs. active / passive configuration rules for ensuring data integrity.

Who else is doing things like this? There are caching appliance vendors as well as others such as NetApp and IBM who have used SSD flash caching cards in their storage systems or virtualization appliances. However keep in mind that VFCache is placing the caching function closer to the application that is accessing it there by improving on the locality of reference (e.g. storage and IO effectiveness).

Does VFCache work with SSD drives installed in EMC or other storage systems? Check the EMC product support matrix for specific tested and certified solutions, however in general if the SSD drive is installed in a storage system that is supported as a block LUN (e.g. iSCSI, SAS, FC, FCoE) in theory it should be possible to work with VFCache. Emphasis, visit the EMC support matrix.
What type of flash is being used?

What type of nand flash SSD memory is EMC using in the PCIe card? The first release of VFCache is leveraging enterprise class SLC (Single Level Cell) nand flash which has been used in other EMC products for its endurance, long duty cycle to minnimize or eliminate concerns of wear and tear while meeting read and write performance. EMC has indicated that they will also as part of an industry trend leverage MLC along with Enterprise MLC (EMLC) technologies on a go forward basis.

Doesnt nand ssd flash cache wear out? While nand flash SSD can wear out over time due to extensive write use, the VFCache approach mitigates this by being primarily a read cache reducing the number or program / erase cycles (P/E cycles) that occur with write operations as well as initially leveraging longer duty cycle SLC flash. EMC also has several years experience from implementing wear leveling algorithms into the storage systems controllers to increase duty cycle and reduce wear on SLC flash which will play forward as MLC or Enterprise MLC (EMLC) techniques are leveraged. This differs from vendors who are positioning their SLC or MLC based flash PCIe SSD cards for mainly write operations which will cause more P/E cycles to occur at a faster rate reducing the duty or useful life of the device.

How much capacity does the VFCache PCIe card contain? The first release supports a 300GB card and EMC has indicated that added capacity and configuration options are in their plans.

Does this mean disks are dead? Contrary to popular industry folk lore (or wish) the hard disk drive (HDD) has plenty of life left part of which has been increased by being complimented by VFCache.

Various options and locations for SSD along with different usage scenarios
Various SSD locations, types, packaging and usage scenario options

Can VFCache work in blade servers? The VFCache software is transparent to blade, rack mount, tower or other types of servers. The hardware part of VFCache is a PCIe card which means that the blade server or system will need to be able to accommodate a PCIe card to compliment the PCIe based mezzaine IO card (e.g. iSCSI, SAS, FC, FCOE) used for accessing storage. What this means is that for blade systems or server vendors such as IBM who have a PCIe expansion module for their H series blade systems (it consumes a slot normally used by a server blade), PCIe cache cards like those being initially released by IBM could work, however check with the EMC interoperability matrix, as well as your specific blade server vendor for PCIe expansion capabilities. Given that EMC leverages Cisco UCS for their vBlocks, one would assume that those systems will also see VFCache modules in those systems. NetApp partners with Cisco using UCS in their FlexPods so you see where that could go as well along with potential other server vendors support including Dell, HP, IBM and Oracle among others.

What about benchmarks? EMC has released some technical documents that show performance improvements in Oracle environments such as this here. Hopefully we will see EMC also release other workloads for different applications including Microsoft Exchange Solutions Proven (ESRP) along with SPC similar to what IBM recently did with their systems among others.

How do the first EMC supplied workload simulations compare vs. other PCIe cards? This is tough to gauge as many SSD solutions and in particular PCIe cards are doing apples to oranges comparisons. For example to generate a high IOPs rating for marketing purposes, most SSD solutions are stress performance tested at 512 bytes or 1/2 of a KByte or at least 1/8 of a small 4Kbyte IO. Note that operating systems such as Windows are moving to 4Kbyte page allocation size to align with growing IO sizes with databases moving from the old average of 4Kbytes to 8Kbytes and larger. What is important to consider is what is the average IO size and activity profile (e.g. reads vs. writes, random vs. sequential) for your applications. If your application is doing ultra small 1/2 Kbyte IOs, or even smaller 64 byte IOs (which should be handled by better application or file system caching in DRAM), then the smaller IO size and record setting examples will apply. However if your applications are more mainstream or larger, then those smaller IO size tests should be taken with a grain of salt. Also keep latency in mind that many target or oppourtunity applications for VFCache are response time sensitive or can benefit by the improved productivity they enable.

What is locality of reference? Locality of reference refers to how close data is to where it is being requested or accessed from. The closer the data to the application requesting the faster the response time or quick the work gets done. For example in the figure below L1/L2/L3 on board processor caches are the fastest, yet smallest while closest to the application running on the server. At the other extreme further down the stack, storage becomes large capacity, lower cost, however lower performing.

Locality of reference data and storage memory

What does cache effectiveness vs. cache utilization mean? Cache utilization is an indicator of how much the available cache capacity is being used however it does not give an indicator of if the cache is being well used or not. For example, cache could be 100 percent used, however there could be a low hit rate. Thus cache effectiveness is a gauge of how well the available cache is being used to improve performance in terms of more work being done (IOPS or bandwidth) or lower of latency and response time.

Isnt more cache better? More cache is not better, it is how the cache is being used, this is a message that I would be disappointed in HDS if they were not to bring up as a point of messaging (or rebuttal) given their history of emphasis cache effectiveness vs. size or quantity (Hu, that is a hint btw ;).

What is the performance impact of VFCache on the host server? EMC is saying greatest of 5 percent or less CPU consumption which they claim is several times less than the competitions worst scenario, as well as claiming 512MB to 1GB of DRM on the server vs. several times that of their competitors. The difference could be expected to be via more off load functioning including flash translation layer (FTL), wear leveling and other optimization being handled by the PCIe card vs. being handled in the servers memory and using host server CPU cycles.

How does this compare to what NetApp or IBM does? NetApp, IBM and others have done caching with SSD in their storage systems, or leveraging third party PCIe SSD cards from different vendors to be installed in servers to be used as a storage target. Some vendors such as LSI have done caching on the PCIe cards (e.g. CacheCaid which in theory has a similar software caching concept to VFCache) to improve performance and effectiveness across JBOD and SAS devices.

What about stale (old or invalid) reads, how does VFCache handle or protect against those? Stale reads are handled via the VFCache management software tool or driver which leverages caching algorithms to decide what is valid or invalid data.

How much does VFCache cost? Refer to EMC announcement pricing, however EMC has indicated that they will be competitive with the market (supply and demand).

If a server shutdowns or reboots, what happens to the data in the VFCache? Being that the data is in non volatile SLC nand flash memory, information is not lost when the server reboots or loses power in the case of a shutdown, thus it is persistent. While exact details are not know as of this time, it is expected that the VFCache driver and software do some form of cache coherency and validity check to guard against stale reads or discard any other invalid cache entries.

Industry trends and perspectives

What will EMC do with VFCache in the future and on a larger scale such as an appliance? EMC via its own internal development and via acquisitions has demonstrated ability to use various clustered techniques such as RapidIO for VMAX nodes, InfiniBand for connecting Isilon  nodes. Given an industry trend with several startups using PCIe flash cards installed in a server that then functions as a IO storage system, it seems likely given EMCs history and experience with different storage systems, caching, and interconnects that they could do something interesting. Perhaps Oracle Exadata III (Exadata I was HP, Exadata II was Sun/Oracle) could be an EMC based appliance (That is pure speculation btw)?

EMC has already shown how it can use SSD drives as a cache extension in VNX and CLARiiON servers ( FAST CACHE ) in addition to as a target or storage tier combined with Fast for tiering. Given their history with caching algorithms, it would not be surprising to see other instantiations of the technology deployed in complimentary ways.

Finally, EMC is showing that it can use nand flash SSD in different ways, various packaging forms to apply to diverse applications or customer environments. The companion or complimentary approach EMC is currently taking contrasts with some other vendors who are taking an all or nothing, its all SSD as disk is dead approach. Given the large installed base of disk based systems EMC as well as other vendors have in place, not to mention the investment by those customers, it makes sense to allow those customers the option of when, where and how they can leverage SSD technologies to coexist and complement their environments. Thus with VFCache, EMC is using SSD as a cache enabler to discuss the decades old and growing storage IO to capacity performance gap in a force multiplier model that spreads the cost over more TBytes, PBytes or EBytes while increasing the overall benefit, in other words effectiveness and productivity.

Additional related material:
Part I: EMC VFCache respinning SSD and intelligent caching
IT and storage economics 101, supply and demand
2012 industry trends perspectives and commentary (predictions)
Speaking of speeding up business with SSD storage
New Seagate Momentus XT Hybrid drive (SSD and HDD)
Are Hard Disk Drives (HDDs) getting too big?
Unified storage systems showdown: NetApp FAS vs. EMC VNX
Industry adoption vs. industry deployment, is there a difference?
Two companies on parallel tracks moving like trains offset by time: EMC and NetApp
Data Center I/O Bottlenecks Performance Issues and Impacts
From bits to bytes: Decoding Encoding
Who is responsible for vendor lockin
EMC VPLEX: Virtual Storage Redefined or Respun?
EMC interoperabity support matrix

Ok, nuff said for now, I think I see some storm clouds rolling in

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

EMC VFCache respinning SSD and intelligent caching (Part I)

This is the first part of a two part series covering EMC VFCache, you can read the second part here.

EMC formerly announced VFCache (aka Project Lightning) an IO accelerator product that comprises a PCIe nand flash card (aka Solid State Device or SSD) and intelligent cache management software. In addition EMC is also talking about the next phase of the flash business unit and project Thunder. The approach EMC is taking with vFCache should not be a surprise given their history of starting out with memory and SSD evolving it into an intelligent cache optimized storage solution.

Storage IO performance and capacity gap
Data center and storage IO performance capacity gap (Courtesy of Cloud and Virtual Data Storage Networking (CRC Press))

Could we see the future of where EMC will take VFCache along with other possible solutions already being hinted at by the EMC flash business unit by looking where they have been already?

Likewise by looking at the past can we see the future or how VFCache and sibling product solutions could evolve?

After all, EMC is no stranger to caching with both nand flash SSD (e.g. FLASH CACHE, FAST and SSD drives) along with DRAM based across their product portfolio not too mention being a core part of their company founding products that evolved into HDDs and more recent nand flash SSDs among others.

Industry trends and perspectives

Unlike others who also offer PCIe SSD cards such as FusionIO with a focus on eliminating SANs or other storage (read their marketing), EMC not surprisingly is marching to a different beat. The beat EMC is marching too or perhaps leading by example for others to follow is that of going mainstream and using PCIe SSD cards as a cache to compliment theirs as well as other vendors storage systems vs. replacing them. This is similar to what EMC and other mainstream storage vendors have done in the past such as with SSD drives being used as flash cache extension on CLARiiON or VNX based systems as well as target or storage tier.

Various options and locations for SSD along with different usage scenarios
Various SSD locations, types, packaging and usage scenario options

Other vendors including IBM, NetApp and Oracle among others have also leveraged various packaging options of Single Level Cell (SLC) or Multi Level Cell (MLC) flash as caches in the past. A different example of SSD being used as a cache is the Seagate Momentus XT which is a desktop, workstation consumer type device. Seagate has shipped over a million of the Momentus XT which use SLC flash as a cache to compliment and enhance the integrated HDD performance (a 750GB with 8GB SLC memory is in the laptop Im using to type this with).

One of the premises of solutions such as those mentioned above for caching is to discuss changing data access patterns and life cycles shown in the figure below.

Changing data access patterns and lifecycles
Evolving data access patterns and life cycles (more retention and reads)

Put a different way, instead of focusing on just big data or corner case (granted some of those are quite large) or ultra large cloud scale out solutions, EMC with VFCache is also addressing their core business which includes little data. What will be interesting to watch and listen too is how some vendors will start to jump up and down saying that they have done or enabling what EMC is announcing for some time. In some cases those vendors will be rightfully doing and making noise on something that they should have made noise about before.

EMC is bringing the SSD message to the mainstream business and storage marketplace showing how it is a compliment to, vs. a replacement of existing storage systems. By doing so, they will show how to spread the cost of SSD out across a larger storage capacity footprint boosting the effectiveness and productive of those systems. This means that customers who install the VFCache product can accelerate the performance of both their existing EMC as well as storage systems from other vendors preserving their technology along with people skills investment.

 

Key points of VFCache

  • Combines PCIe SLC nand flash card (300GB) with intelligent caching management software driver for use in virtualized and traditional servers

  • Making SSD complimentary to existing installed block based disk (and or SSD) storage systems to increase their effectiveness

  • Providing investment protection while boosting productivity of existing EMC and third party storage in customer sites

  • Brings caching closer to the application where the data is accessed while leverage larger scale direct attached and SAN block storage

  • Focusing message for SSD back on to little data as well as big data for mainstream broad customer adoption scenarios

  • Leveraging benefit and strength of SSD as a read cache and scalable of underlying downstream disk for data storage

  • Reducing concerns around SSD endurance or duty cycle wear and tear by using as a read cache

  • Off loads underlying storage systems from some read requests enabling them to do more work for other servers

Additional related material:
Part II: EMC VFCache respinning SSD and intelligent caching
IT and storage economics 101, supply and demand
2012 industry trends perspectives and commentary (predictions)
Speaking of speeding up business with SSD storage
New Seagate Momentus XT Hybrid drive (SSD and HDD)
Are Hard Disk Drives (HDDs) getting too big?
Unified storage systems showdown: NetApp FAS vs. EMC VNX
Industry adoption vs. industry deployment, is there a difference?
Two companies on parallel tracks moving like trains offset by time: EMC and NetApp
Data Center I/O Bottlenecks Performance Issues and Impacts
From bits to bytes: Decoding Encoding
Who is responsible for vendor lockin
EMC VPLEX: Virtual Storage Redefined or Respun?
EMC interoperabity support matrix

Ok, nuff said for now, I think I see some storm clouds rolling in

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved