August 2017 Server StorageIO Data Infrastructure Update Newsletter



Server StorageIO August 2017 Data Infrastructure Update Newsletter

Volume 17, Issue VII (Pre VMworld 2017)

Hello and welcome to the August 2017 issue of the Server StorageIO update newsletter.

Its end of summer season here in north america which means wrapping up holidays, vacations, back to school shopping (and going to school), as well as the start of the fall IT technology conference season. VMworld 2017 USA is this week in Las Vegas and there will be several announcements coming out of that event. Given all of the activity so far this month, I’m going to cover the VMworld and related topics in a special early September issue of this newsletter.

Speaking of VMworld 2017, if you are going to be there in Las Vegas, stop by the book store located in the community village area on Tuesday at 1PM I will be doing a book signing, meet and greet, stop by and say hello.

Thanks to all who participated in the recent thevPad top 100 vBloggers event, I am honored to have StorageIOblog listed in the top 100 vBlogs. Also congratulations to new and returning fellow Microsoft MVPs and VMware vExperts. There is a lot going on in the industry, lets get to it in this Server StorageIO Data Infrastructure Update Newsletter.

In This Issue

Enjoy this edition of the Server StorageIO update newsletter (pre VMworld edition).

Cheers GS

Data Infrastructure and IT Industry Activity Trends

Acronis announced True Image 2018 for home based data protection (backup), while Crashplan aka code42 announced they were getting out of the consumer, small office home office (SOHO) backup and data protection space to focus on the enterprise.

Cisco bought software defined storage converged infrastructure software vendor Springpath for about $320M USD. Cisco and Swiftstack (object storage software) also announced interoperability news with the UCS S32600 storage server platform.

GPU vendor NVIDIA announced Quadro Virtual Data Center workstation technology.

Meanwhile ioFABRIC announced their new Vicinity 3.0 software defined management solution.

Microsemi (remember PMC Sierra) announced release of its Flashtec PCIe controllers to help speed adoption deployment of SSDs including NVMe based.

Microsoft bought Cycle Computing to enhance Azure services, while also making Azure Blob storage tiering available as part of an ongoing public preview. For those not aware, Azure Blob is similar to what other services call objects. Get in on the public preview here. For those who live in a hybrid world where your environment and experience include both Windows and Linux, check out Windows Services for Linux here. With this service which can install onto an Windows 10 system along side Win32 (e.g. it co-exists, its not a virtual machine), you can choose from the Windows Store which Linux distro you want (e.g. Centos, Ubuntu, etc).

Need to learn, refresh or simply gain a better understanding of Microsoft PowerShell for software defined management of Windows, Azure and other environments? Check out this great post from Microsoft Blogs.

For those who work in a Windows or Azure environment, here are some useful icons for Powerpoint, Visio, PNG and SVG from Microsoft. With Microsoft Ignite coming up in September, watch for some interesting update enhancements to Windows Server from a server storage I/O perspective.

NextPlatform.com has an interesting article on Exascale Timeline for Storage and I/O systems worth a read. Panzura global name space and scale out software defined storage management software announced mobile client file sharing. After dropping their own cloud business, Verizon is now a virtual network services partner with Amazon.

Over at all flash array (AFA) SSD vendor Pure, revenues are growing closer to an annual $1B USD rate despite loss per share, Pure also announced a change in leadership with current CEO Scott Dietzen stepping aside for Charles Giancarlo to take the lead spot.

VMware has been talking about the continued increase in customer adoption and deployment of VSAN now they are showing they eat their own dog food. Check out this post here from VMware that shows how many and what size VSAN clusters they are using for various internal operations. Also on the VMware storage front, learn more about enhancements for large and small file allocation blocks with vSphere VMFS6.

With all of the pre and post VMworld related announcements, remember to check out the tools available over at the VMware flings site including vSphere HTML5 Web Client, HCIBench, vRealize Operations Export, VisualEsxtop, ESXi Embedded Host Client, VMware OS Optimization Tool and many others. Watch for VMworld coverage in the September newsletter along with posts at www.storageioblog.com

Check out other industry news, comments, trends perspectives here.

Server StorageIO Commentary in the news

Recent Server StorageIO industry trends perspectives commentary in the news.

Via EnterpriseStorageForum: Comments on Who Will Rule the Storage World?
Via InfoGoto: Comments on Google Cloud Platform Gaining Data Storage Momentum
Via InfoGoto: Comments on Singapore High Rise Data Centers
Via InfoGoto: Comments on New Tape Storage Capacity

View more Server, Storage and I/O trends and perspectives comments here

Server StorageIOblog Posts

Recent and popular Server StorageIOblog posts include:

In Case You Missed It #ICYMI

View other recent as well as past StorageIOblog posts here

Server StorageIO Data Infrastructure Tips and Articles

Recent Server StorageIO industry trends perspectives commentary in the news.

Via NetworkWorld: Do you have an IT trade craft skills gap?

View more Server, Storage and I/O trends and perspectives comments here

Events and Activities

Recent and upcoming event activities.

Sep. 21, 2017 – MSP CMG – Minneapolis MN
Sep. 20, 2017 – Redmond Data Protection and Backup – Webinar
Sep. 14, 2017 – Fujifilm IT Executive Summit – Seattle WA
Sep. 12, 2017 – SNIA Software Developers Conference (SDC) – Santa Clara CA
Sep. 7, 2017 – WiPro – Planning Your Software Defined Journey – New York City
August 29, 2017 – VMworld – Las Vegas

See more webinars and activities on the Server StorageIO Events page here.

Server StorageIO Industry Resources and Links

Useful links and pages:
Microsoft TechNet – Various Microsoft related from Azure to Docker to Windows
storageio.com/links – Various industry links (over 1,000 with more to be added soon)
objectstoragecenter.com – Cloud and object storage topics, tips and news items
OpenStack.org – Various OpenStack related items
storageio.com/protect – Various data protection items and topics
thenvmeplace.com – Focus on NVMe trends and technologies
thessdplace.com – NVM and Solid State Disk topics, tips and techniques
storageio.com/converge – Various CI, HCI and related SDS topics
storageio.com/performance – Various server, storage and I/O benchmark and tools
VMware Technical Network – Various VMware related items

Ok, nuff said, for now.

Cheers
Gs

Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

AWS S3 Storage Gateway Revisited (Part I)

server storage I/O trends

AWS S3 Storage Gateway Revisited (Part I)

This Amazon Web Service (AWS) Storage Gateway Revisited posts is a follow-up to the AWS Storage Gateway test drive and review I did a few years ago (thus why it’s called revisited). As part of a two-part series, the first post looks at what AWS Storage Gateway is, how it has improved since my last review of AWS Storage Gateway along with deployment options. The second post in the series looks at a sample test drive deployment and use.

If you need an AWS primer and overview of various services such as Elastic Cloud Compute (EC2), Elastic Block Storage (EBS), Elastic File Service (EFS), Simple Storage Service (S3), Availability Zones (AZ), Regions and other items check this multi-part series (Cloud conversations: AWS EBS, Glacier and S3 overview (Part I) ).

AWS

As a quick refresher, S3 is the AWS bulk, high-capacity unstructured and object storage service along with its companion deep cold (e.g. inactive) Glacier. There are various S3 storage service classes including standard, reduced redundancy storage (RRS) along with infrequent access (IA) that have different availability durability, performance, service level and cost attributes.

Note that S3 IA is not Glacier as your data always remains on-line accessible while Glacier data can be off-line. AWS S3 can be accessed via its API, as well as via HTTP rest calls, AWS tools along with those from third-party’s. Third party tools include NAS file access such as S3FS for Linux that I use for my Ubuntu systems to mount S3 buckets and use similar to other mount points. Other tools include Cloudberry, S3 Motion, S3 Browser as well as plug-ins available in most data protection (backup, snapshot, archive) software tools and storage systems today.

AWS S3 Storage Gateway and What’s New

The Storage Gateway is the AWS tool that you can use for accessing S3 buckets and objects via your block volume, NAS file or tape based applications. The Storage Gateway is intended to give S3 bucket and object access to on-premises applications and data infrastructures functions including data protection (backup/restore, business continuance (BC), business resiliency (BR), disaster recovery (DR) and archiving), along with storage tiering to cloud.

Some of the things that have evolved with the S3 Storage Gateway include:

  • Easier, streamlined download, installation, deployment
  • Enhanced Virtual Tape Library (VTL) and Virtual Tape support
  • File serving and sharing (not to be confused with Elastic File Services (EFS))
  • Ability to define your own bucket and associated parameters
  • Bucket options including Infrequent Access (IA) or standard
  • Options for AWS EC2 hosted, or on-premises VMware as well as Hyper-V gateways (file only supports VMware and EC2)

AWS Storage Gateway Three Functions

AWS Storage Gateway can be deployed for three basic functions:

    AWS Storage Gateway File Architecture via AWS.com

  • File Gateway (NFS NAS) – Files, folders, objects and other items are stored in AWS S3 with a local cache for low latency access to most recently used data. With this option, you can create folders and subdirectory similar to a regular file system or NAS device as well as configure various security, permissions, access control policies. Data is stored in S3 buckets that you specify policies such as standard or Infrequent Access (IA) among other options. AWS hosted via EC2 as well as VMware Virtual Machine (VM) for on-premises file gateway.

    Also, note that AWS cautions on multiple concurrent writers to S3 buckets with Storage Gateway so check the AWS FAQs which may have changed by the time you read this. Current file share limits (subject to change) include 1 file gateway share per S3 bucket (e.g. a one to one mapping between file share and a bucket). There can be 10 file shares per gateway (e.g. multiple shares each with its own bucket per gateway) and a maximum file size of 5TB (same as maximum S3 object size). Note that you might hear about object storage systems supporting unlimited size objects which some may do, however generally there are some constraints either on their API front-end, or what is currently tested. View current AWS Storage Gateway resource and specification limits here.

  • AWS Storage Gateway Non-Cached Volume Architecture via AWS.com

    AWS Storage Gateway Cached Volume Architecture via AWS.com

  • Volume Gateway (Block iSCSI) – Leverages S3 with a point in time backup as an AWS EBS snapshot. Two options exist including Cached volumes with low-latency access to most recently used data (e.g. data is stored in AWS, with a local cache copy on disk or SSD). The other option is Stored Volumes (e.g. non-cached) where primary copy is local and periodic snapshot backups are sent to AWS. AWS provides EC2 hosted, as well as VMs for VMware and various Hyper-V Windows Server based VMs.

    Current Storage Gateway volume limits (subject to change) include maximum size of a cached volume 32TB, maximum size of a stored volume 16TB. Note that snapshots of cached volumes larger than 16TB can only be restored to a storage gateway volume, they can not be restored as an EBS volume (via EC2). There are a maximum of 32 volumes for a gateway with total size of all volumes for a gateway (cached) of 1,024TB (e.g. 1PB). The total size of all volumes for a gateway (stored volume) is 512TB. View current AWS Storage Gateway resource and specification limits here.

  • AWS Storage Gateway VTL Architecture via AWS.com

  • Virtual Tape Library Gateway (VTL) – Supports saving your data for backup/BC/DR/archiving into S3 and Glacier storage tiers. Being a Virtual Tape Library (e.g. VTL) you can specify emulation of tapes for compatibility with your existing backup, archiving and data protection software, management tools and processes.

    Storage Gateway limits for tape include minimum size of a virtual tape 100GB, maximum size of a virtual tape 2.5TB, maximum number of virtual tapes for a VTL is 1,500 and total size of all tapes in a VTL is 1PB. Note that the maximum number of virtual tapes in an archive is unlimited and total size of all tapes in an archive is also unlimited. View current AWS Storage Gateway resource and specification limits here.

    AWS

Where To Learn More

What This All Means

As to which gateway function and mode (cached or non-cached for Volumes) depends on what it is that you are trying to do. Likewise choosing between EC2 (cloud hosted) or on-premises Hyper-V and VMware VMs depends on what your data infrastructure support requirements are. Overall I like the progress that AWS has put into evolving the Storage Gateway, granted it might not be applicable for all usage cases. Continue reading more and view images from the AWS Storage Gateway Revisited test drive in part two located here.

Ok, nuff said (for now…).

Cheers
Gs

Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

Part II Revisting AWS S3 Storage Gateway (Test Drive Deployment)

server storage I/O trends

Part II Revisiting AWS S3 Storage Gateway (Test Drive Deployment)

This Amazon Web Service (AWS) Storage Gateway Revisited posts is a follow-up to the AWS Storage Gateway test drive and review I did a few years ago (thus why it’s called revisited). As part of a two-part series, the first post looks at what AWS Storage Gateway is, how it has improved since my last review of AWS Storage Gateway along with deployment options. The second post in the series looks at a sample test drive deployment and use.

What About Storage Gateway Costs?

Costs vary by region, type of storage being used (files stored in S3, Volume Storage, EBS Snapshots, Virtual Tape storage, Virtual Tape storage archive), as well as type of gateway host, along with how access and used. Request pricing varies including data written to AWS storage by gateway (up to maximum of $125.00 per month), snapshot/volume delete, virtual tape delete, (prorate fee for deletes within 90 days of being archived), virtual tape archival, virtual tape retrieval. Note that there are also various data transfer fees that also vary by region and gateway host. Learn more about pricing here.

What Are Some Storage Gateway Alternatives

AWS and S3 storage gateway access alternatives include those from various third-party (including that are in the AWS marketplace), as well as via data protection tools (e.g. backup/restore, archive, snapshot, replication) and more commonly storage systems. Some tools include Cloudberry, S3FS, S3 motion, S3 Browser among many others.

Tip is when a vendor says they support S3, ask them if that is for their back-end (e.g. they can access and store data in S3), or front-end (e.g. they can be accessed by applications that speak S3 API). Also explore what format the application, tool or storage system stores data in AWS storage, for example, are files mapped one to one to S3 objects along with corresponding directory hierarchy, or are they stored in a save set or other entity.

AWS Storage Gateway Deployment and Management Tips

Once you have created your AWS account (if you did not already have one) and logging into the AWS console (note the link defaults to US East 1 Region), go to the AWS Services Dashboard and select Storage Gateway (or click here which goes to US East 1). You will be presented with three options (File, Volume or VTL) modes.

What Does Storage Gateway and Install Look Like

The following is what installing a AWS Storage Gateway for file and then volume looks like. First, access the AWS Storage Gateway main landing page (it might change by time you read this) to get started. Scroll down and click on the Get Started with AWS Storage Gateway button or click here.

AWS Storage Gateway Landing Page

Select type of gateway to create, in the following example File is chosen.

Select type of AWS storage gateway

Next select the type of file gateway host (EC2 cloud hosted, or on-premises VMware). If you choose VMware, an OVA will be downloaded (follow the onscreen instructions) that you deploy on your ESXi system or with vCenter. Note that there is a different VMware VM gateway OAV for File Gateway and another for Volume Gateway. In the following example VMware ESXi OVA is selected and downloaded, then accessed via VMware tools such as vSphere Web Client for deployment.

AWS Storage Gateway select download

Once your VMware OVA file is downloaded from AWS, install using your preferred VMware tool, in this case I used the vSphere Web Client.

AWS Storage Gateway VM deploy

Once you have deployed the VMware VM for File Storage Gateway, it is time to connect to the gateway using the IP address assigned (static or DHCP) for the VM. Note that you may need to allocate some extra VMware storage to the VM if prompted (this mainly applies to Volume Gateway). Also follow directions about setting NTP time, using paravirtual adapters, thick vs. thin provisioning along with IP settings. Also double-check to make sure your VM and host are set for high-performance power setting. Note that the default username is sguser and password is sgpassword for the gateway.

AWS Storage Gateway Connect

Once you successfully connect to the gateway, next step will be to configure file share settings.

AWS Storage Gateway Configure File Share

Configure file share by selecting which gateway to use (in case you have more than one), name of an S3 bucket name to create, type of storage (S3 Standard or IA), along with Access Management security controls.

AWS Storage Gateway Create Share

Next step is to complete file share creation, not the commands provided for Linux and Windows for accessing the file share.

AWS Storage Gateway Review Share Settings

Review file share settings

AWS Storage Gateway access from Windows

Now lets use the file share by accessing and mounting to a Windows system, then copy some files to the file share.

AWS Storage Gateway verify Bucket Items

Now let’s go to the AWS console (or in our example use S3 Browser or your favorite tool) and look at the S3 bucket for the file share and see what is there. Note that each file is an object, and the objects simply appear as a file. If there were sub-directory those would also exist. Note that there are other buckets that I have masked out as we are only interested in the one named awsgwydemo that is configured using S3 Standard storage.

AWS Storage Gateway Volume

Now lets look at using the S3 Storage Gateway for Volumes. Similar to deploying for File Gateway, start out at the AWS Storage Gateway page and select Volume Gateway, then select what type of host (EC2 cloud, VMware or Hyper-V (2008 R2 or 2012) for on-premises deployment). Lets use the VMware Gateway, however as mentioned above, this is a different OVA/OVF than the File Gateway.

AWS Storage Gateway Configure Volume

Download the VMware OVA/OVF from AWS, and then install using your preferred VMware tools making sure to configure the gateway per instructions. Note that the Volume Gateway needs a couple of storage devices allocated to it. This means you will need to make sure that a SCSI adapter exists (or add one) to the VM, along with the disks (HDD or SSD) for local storage. Refer to AWS documentation about how to size, for my deployment I added a couple of small 80GB drives (you can choose to put on HDD or SSD including NVMe). Note that when connecting to the gateway if you get an error similar to below, make sure that you are in fact using the Volume Gateway and not mistakenly using the File Gateway OVA (VM). Note that the default username is sguser and password is sgpassword for the gateway.

AWS Storage Gateway Connect To Volume

Now connect to the local Volume Storage Gateway and notice the two local disks allocated to it.

AWS Storage Gateway Cached Volume Deploy

Next its time to create the Gateway which are deploying a Volume Cached below.

AWS Storage Gateway Volume Create

Next up is creating a volume, along with its security and access information.

AWS Storage Gateway Volume Settings

Volume configuration continued.

AWS Storage Gateway Volume CHAP

And now some additional configuration of the volume including iSCSI CHAP security.

AWS Storage Gateway Windows Access

Which leads us up to some Windows related volume access and configuration.

AWS Storage Gateway Using iSCSI Volume

Now lets use the new iSCSI based AWS Storage Gateway Volume. On the left you can see various WIndows command line activity, along with corresponding configuration information on the right.

AWS Storage Gateway Being Used by Windows

And there you have it, a quick tour of AWS Storage Gateway, granted there are more options that you can try yourself.

AWS

Where To Learn More

What This All Means

Overall I like the improvements that AWS has made to the Storage Gateway along with the different options it provides. Something to keep in mind is that if you are planning to use the AWS Storage Gateway File serving sharing mode that there are caveats to multiple concurrent writers to the same bucket. I would not be surprised if some other gateway or software based tool vendors tried to throw some fud towards the Storage Gateway, however ask them then how they coordinate multiple concurrent updates to a bucket while preserving data integrity.

Which Storage Gateway variant from AWS to use (e.g. File, Volume, VTL) depends on what your needs are, same with where the gateway is placed (Cloud hosted or on-premises with VMware or Hyper-V). Keep an eye on your costs, and more than just the storage space capacity. This means pay attention to your access and requests fees, as well as different service levels, along with data transfer fees.

You might wonder what about EFS and why you would want to use AWS Storage Gateway? Good question, at the time of this post EFS has evolved from being internal (e.g. within AWS and across regions) to having an external facing end-point however there is a catch. That catch which might have changed by time you read this is that the end-point can only be accessed from AWS Direct Connect locations.

This means that if your servers are not in a AWS Direct Connect location, without some creative configuration, EFS is not an option. Thus Storage Gateway File mode might be an option in place of EFS as well as using AWS storage access tools from others. For example I have some of my S3 buckets mounted on Linux systems using S3FS for doing rsync or other operations from local to cloud. In addition to S3FS, I also have various backup tools that place data into S3 buckets for backup, BC and DR as well as archiving.

Check out AWS Storage Gateway yourself and see what it can do or if it is a fit for your environment.

Ok, nuff said (for now…).

Cheers
Gs

Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

Dell EMC World 2017 Day One news announcement summary

server storage I/O trends

Dell EMC World 2017 Day One news announcement summary

This is the first day of the first combined Dell EMC World 2017 being held in Las Vegas Nevada. Last year’s event in Las Vegas was the end of the EMC World, while this being the first of the combined Dell EMC World events that succeeded its predecessors.

What this means is an expanded focus because of the new Dell EMC that has added servers among other items to the event focus. Granted, EMC had been doing servers via its VCE and converged divisions, however with the Dell EMC integration completed as of last fall, the Dell Server group is now part of the Dell EMC organization.

The central theme of this Dell EMC world is REALIZE with a focus on four pillars:

  • Digital Transformation (Pivotal focus) of applications
  • IT Transformation (Dell EMC, Virtustream, VMware) data center modernization
  • Workforce transformation (Dell Client Solutions) devices from mobile to IoT
  • Information Security (RSA and Secureworks)

software defined data infrastructures SDDI and SDDC

What Did Dell EMC Announce Today

Note that while there are focus areas of the different Dell Technologies business units aligned to the pillars, there is also leveraging across those areas and groups. For example, VMware NSX spans into security, and  PowerEdge servers span into other pillars as a core data infrastructure building block.

What Dell EMC and Dell Technologies announced today.

  • Wave of Innovations to help customers realize digital transformation
  • New 14th generation PowerEdge Servers that are core building blocks for data infrastructures
  • Flexible consumption models (financing and more) from desktop to data center
  • Hyper-Converged Infrastructure (HCI), Converged (CI) and Cloud like systems
  • New All-Flash (ADA) SSD Storage Systems (VMAX, XtremIO X2, Unity, SC, Isilon)
  • Integrated Data Protection Appliance (IDPA) and Cloud Protection solutions
  • Using Gen14 servers several Software Defined Storage (SDS) enhancements
  • Open Networking and software-defined networks (SDN) with 25G
  • Last week Dell EMC announced Microsoft Azure Stack hybrid cloud solutions

New 14th generation PowerEdge Servers that are core building blocks for data infrastructures

Dell EMC has announced the 14th generation of Intel-powered Dell EMC PowerEdge server portfolio systems. These includes servers that get defined with software for software-defined data centers (SDDC), software-defined data infrastructures (SDDI) for the cloud, virtual, the container as well as storage among other applications. Target application workloads and environments range from high-performance compute (HPC), and high-productivity (or profitability) compute (the other HPC), super compute (SC), little data and big data analytics, legacy and emerging business applications as well as cloud and beyond. Enhancements besides new Intel processor technology includes enhanced iDRAC, OpenManage, REST interface, QuickSync, Secure Boot among other management, automation, security, performance, and capacity updates.

Other Dell EMC enhancements with Gen14 include support for various NVDIMM to enable persistent memory also known as storage class memories such as 3D Xpoint among others. Note at this time, Dell EMC is not saying much about speeds, feeds and other details, stay tuned for more information on these in the weeks and months to come.

Dell EMC has also been leaders with deploying NVMe from PCIe flash cards to 8639 U.2 devices such as 2.5” drives. Thus it makes sense to see continued adoption and deployment of those devices along with SAS, SATA support. Note that Broadcom (formerly known as Avago) recently announced the release of their PCIe SAS, SATA and NVMe based adapters.

The reason this is worth mentioning is that in the past Dell has OEM sourced Avago (formerly known as LSI) based adapters. Given Dell EMC use of NVMe drives, it only makes sense to put two and two together.

Let’s wait a few months to see what the speeds, feeds, and specifications are to put the rest of the puzzle together. Speaking of NVMe, also look for Dell EMC to also supporting PCIe AIC and U.2 (8639) NVMe devices, also leverage M.2 Next Generation Form Factor (NGFF) aka Gum sticks as boot devices.

While these are all Intel focused, I would expect Dell EMC not to sit back, instead, watch for what they do with other processors and servers including ARMs among others.

Increased support for more GPUs to support VDI and other graphic intensive workloads such as video rendering, imaging among others. Part of enhanced GPU support is improvements (multi-vector cooling) to power and cooling including sensing the type of PCIe card, and then adjusting cooling fans and subsequent power draw accordingly. The benefit should be more proper cooling to reduce power to support more work and productivity.

Flexible consumption models (financing and more) from desktop to data center

Dell Technologies has announced several financing, procurement, and consumption models with cloud-like flexible options for different IT and data center, along with mobile device technologies. These range from licensing to deployment as a service, consumption and other options via Dell Financial Services (DFS).

Highlights include:

  • DFS Flex on Demand is available now in select countries globally.
  • DFS Cloud Flex for HCI is available now for Dell EMC VxRail and Dell EMC XC Series and has planned availability for Q3 2017 in Dell EMC VxRack Systems.
  • PC as a Service is available now in select countries globally.
  • Dell EMC VDI Complete Solutions are available now in select countries globally.
  • DFS Flex on Demand is available now in select countries globally.
  • DFS Cloud Flex for HCI is available now for Dell EMC VxRail and Dell EMC XC Series and has planned VxRack systems in Q3 2017.
  • PC as a Service solution is available now in select countries globally.
  • Dell EMC VDI Complete Solutions are available now in select countries.
  • Dell Technologies transformation license agreement (TLA) is available now in select countries

Hyper-Converged Infrastructure (HCI), Converged (CI) and Cloud like systems

Enhancements to VxRail system, VxRACK Systems, and XC Series leveraging Del EMC Gen14 PowerEdge servers along with other improvements. Note that this also includes continued support for VMware, Microsoft as well as Nutanix software-defined solutions.

New All-Flash (ADA) SSD Storage Systems (VMAX, XtremIO X2, Unity, SC, Isilon)

Storage system enhancements include from high-end (VMAX and XtremIO) to mid-range (Unity and SC) along with scale-out NAS (Isilon)

Highlights of the announcements include:

  • New VMAX 950F all flash array (AFA)
  • New XtremIO X2 with enhanced software, more powerful hardware
  • New Unity AFA systems
  • New SC5020 midrange hybrid storage
  • New generation of Isilon storage with improved performance, capacity, density

Integrated Data Protection Appliance (IDPA) and Cloud Protection solutions

Data protection enhancement highlights include:

  • New Turnkey Integrated Data Protection Appliance (IDPA) with four models (DP5300, DP5800, DP8300, and DP8800) starting at 34 TB usable scaling up to 1PB usable. Data services including encryption, data footprint reduction such as dedupe, remote monitoring, Maintenance service dispatch, along with application integration. Application integration includes MongoDB, Hadoop, MySQL.

  • Enhanced cloud capabilities powered by Data Domain virtual edition (DD VE 3.1) along with data protection suite enable data to be protected too, and restored from Amazon Web Services (AWS) Simple Storage Service (S3) as well as Microsoft Azure.

Open Networking and software-defined networks (SDN) with 25G

Dell EMC Open Networking highlights include:

  • Dell EMCs first 25GbE open networking top of rack (TOR) switch including S5100-ON series (With OS10 enterprise edition software) complimenting new PowerEdge Gen14 servers with native 25GbE support. Switches support 100GbE uplinks fabric connectivity for east-west (management) network traffic. Also announced is the S4100-ON series and N1100-ON series that are in addition to recently announce N3100-ON and N2100-ON switches.

  • Dell EMCs first optimized Open Networking platform for unified storage network switching including support for 16Gb/32GB Fibre Channel

  • New Network Function Virtualization (NFV) and IoT advisory consulting services

Note that Dell EMC is announcing the availability of these networking solutions in Dell Technologies 2018 fiscal year which occurs before the traditional calendar year.

Using Gen14 servers, several Software Defined Storage (SDS) enhancements

Dell EMC announced enhancements to their Software Defined Storage (SDS) portfolio that leveraging the PowerEdge 14th generation server portfolio. These improvements include ScaleIO, Elastic Cloud Storage (ECS), IsilonSD Edge and Preview of Project Nautilus.

Where to learn more

What this all means

This is a summary of what has been announced so far on the first morning of the first day of the first new Dell EMC world. Needless to say, there is more detail to look at for the above announcements from speeds, feeds, functionality and related topics that will get addressed in subsequent posts. Overall this is a good set of announcements expanding capabilities of the combined Dell EMC while enhancing existing systems as well as well as solutions.

Ok, nuff said (for now…)

Cheers
Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

Azure Stack Technical Preview 3 (TP3) Overview Preview Review

server storage I/O trends

Azure Stack Technical Preview 3 (TP3) Overview Preview Review

Perhaps you are aware or use Microsoft Azure, how about Azure Stack?

This is part one of a two-part series looking at Microsoft Azure Stack providing an overview, preview and review. Read part two here that looks at my experiences installing Microsoft Azure Stack Technical Preview 3 (TP3).

For those who are not aware, Azure Stack is a private on-premises extension of the Azure public cloud environment. Azure Stack now in technical preview three (e.g. TP3), or what you might also refer to as a beta (get the bits here).

In addition to being available via download as a preview, Microsoft is also working with vendors such as Cisco, Dell EMC, HPE, Lenovo and others who have announced Azure Stack support. Vendors such as Dell EMC have also made proof of concept kits available that you can buy including server with storage and software. Microsoft has also indicated that once launched for production versions scaling from a few to many nodes, that a single node proof of concept or development system will also remain available.

software defined data infrastructure SDDI and SDDC
Software-Defined Data Infrastructures (SDDI) aka Software-defined Data Centers, Cloud, Virtual and Legacy

Besides being an on-premises, private cloud variant, Azure Stack is also hybrid capable being able to work with public cloud Azure. In addition to working with public cloud Azure, Azure Stack services and in particular workloads can also work with traditional Microsoft, Linux and others. You can use pre built solutions from the Azure marketplace, in addition to developing your applications using Azure services and DevOps tools. Azure Stack enables hybrid deployment into public or private cloud to balance flexibility, control and your needs.

Azure Stack Overview

Microsoft Azure Stack is an on premise (e.g. in your own data center) private (or hybrid when connected to Azure) cloud platform. Currently Azure Stack is in Technical Preview 3 (e.g. TP3) and available as a proof of concept (POC) download from Microsoft. You can use Azure Stack TP3 as a POC for learning, demonstrating and trying features among other activities. Here is link to a Microsoft Video providing an overview of Azure Stack, and here is a good summary of roadmap, licensing and related items.

In summary, Microsoft Azure Stack is:

  • A onsite, on premise, in your data center extension of Microsoft Azure public cloud
  • Enabling private and hybrid cloud with strong integration along with common experiences with Azure
  • Adopt, deploy, leverage cloud on your terms and timeline choosing what works best for you
  • Common processes, tools, interfaces, management and user experiences
  • Leverage speed of deployment and configuration with a purpose-built integrate solution
  • Support existing and cloud native Windows, Linux, Container and other services
  • Available as a public preview via software download, as well as vendors offering solutions

What is Azure Stack Technical Preview 3 (TP3)

This version of Azure Stack is a single node running on a lone physical machine (PM) aka bare metal (BM). However can also be installed into a virtual machine (VM) using nesting. For example I have Azure Stack TP3 running nested on a VMware vSphere ESXi 6.5 systems with a Windows Server 2016 VM as its base operating system.

Microsoft Azure Stack architecture
Click here or on the above image to view list of VMs and other services (Image via Microsoft.com)

The TP3 POC Azure Stack is not intended for production environments, only for testing, evaluation, learning and demonstrations as part of its terms of use. This version of Azure Stack is associated with a single node identity such as Azure Active Directory (AAD) integrated with Azure, or Active Directory Federation Services (ADFS) for standalone modes. Note that since this is a single server deployment, it is not intended for performance, rather, for evaluating functionality, features, APIs and other activities. Learn more about Azure Stack TP3 details here (or click on image) including names of various virtual machines (VMs) as well as their roles.

Where to learn more

The following provide more information and insight about Azure, Azure Stack, Microsoft and Windows among related topics.

  • Azure Stack Technical Preview 3 (TP3) Overview Preview Review
  • Azure Stack TP3 Overview Preview Review Part II
  • Azure Stack Technical Preview (get the bits aka software download here)
  • Azure Stack deployment prerequisites (Microsoft)
  • Microsoft Azure Stack troubleshooting (Microsoft Docs)
  • Azure Stack TP3 refresh tips (Azure Stack)
  • Here is a good post with a tip about not applying certain Windows updates to Azure stack TP3 installs.
  • Configure Azure stack TP3 to be available on your own network (Azure Stack)
  • Azure Stack TP3 Marketplace syndication (Azure Stack)
  • Azure Stack TP3 deployment experiences (Azure Stack)
  • Frequently asked questions for Azure Stack (Microsoft)
  • Deploy Azure Stack (Microsoft)
  • Connect to Azure Stack (Microsoft)
  • Azure Active Directory (AAD) and Active Directory Federation Services (ADFS)
  • Azure Stack TP2 deployment experiences by Niklas Akerlund (@vNiklas) useful for tips for TP3
  • Deployment Checker for Azure Stack Technical Preview (Microsoft Technet)
  • Azure stack and other tools (Github)
  • How to enable nested virtualization on Hyper-V Windows Server 2016
  • Dell EMC announce Microsoft Hybrid Cloud Azure Stack (Dell EMC)
  • Dell EMC Cloud for Microsoft Azure Stack (Dell EMC)
  • Dell EMC Cloud for Microsoft Azure Stack Data Sheet (Dell EMC PDF)
  • Dell EMC Cloud Chats (Dell EMC Blog)
  • Microsoft Azure stack forum
  • Dell EMC Microsoft Azure Stack solution
  • Gaining Server Storage I/O Insight into Microsoft Windows Server 2016
  • Overview Review of Microsoft ReFS (Reliable File System) and resource links
  • Via WServerNews.com Cloud (Microsoft Azure) storage considerations
  • Via CloudComputingAdmin.com Cloud Storage Decision Making: Using Microsoft Azure for cloud storage
  • www.thenvmeplace.com, www.thessdplace.com, www.objectstoragecenter.com and www.storageio.com/converge
  • What this all means

    A common question is if there is demand for private and hybrid cloud, in fact, some industry expert pundits have even said private, or hybrid are dead which is interesting, how can something be dead if it is just getting started. Likewise, it is early to tell if Azure Stack will gain traction with various organizations, some of whom may have tried or struggled with OpenStack among others.

    Given a large number of Microsoft Windows-based servers on VMware, OpenStack, Public cloud services as well as other platforms, along with continued growing popularity of Azure, having a solution such as Azure Stack provides an attractive option for many environments. That leads to the question of if Azure Stack is essentially a replacement for Windows Servers or Hyper-V and if only for Windows guest operating systems. At this point indeed, Windows would be an attractive and comfortable option, however, given a large number of Linux-based guests running on Hyper-V as well as Azure Public, those are also primary candidates as are containers and other services.

    Continue reading more in part two of this two-part series here including installing Microsoft Azure Stack TP3.

    Ok, nuff said (for now…).

    Cheers
    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    Azure Stack TP3 Overview Preview Review Part II

    server storage I/O trends

    Azure Stack TP3 Overview Preview (Part II) Install Review

    This is part two of a two-part series looking at Microsoft Azure Stack with a focus on my experiences installing Microsoft Azure Stack Technical Preview 3 (TP3) including into a nested VMware vSphere ESXi environment. Read part one here that provides a general overview of Azure Stack.

    Azure Stack Review and Install

    Being familiar with Microsoft Azure public cloud having used it for a few years now, I wanted to gain some closer insight, experience, expand my trade craft on Azure Stack by installing TP3. This is similar to what I have done in the past with OpenStack, Hadoop, Ceph, VMware, Hyper-V and many others, some of which I need to get around to writing about sometime. As a refresher from part one of this series, the following is an image via Microsoft showing the Azure Stack TP3 architecture, click here or on the image to learn more including the names and functions of the various virtual machines (VMs) that make up Azure Stack.

    Microsoft Azure Stack architecture
    Click here or on the above image to view list of VMs and other services (Image via Microsoft.com)

    Whats Involved Installing Azure Stack TP3?

    The basic steps are as follows:

    • Read this Azure Stack blog post (Azure Stack)
    • Download the bits (e.g. the Azure Stack software) from here, where you access the Azure Stack Downloader tool.
    • Planning your deployment making decisions on Active Directory and other items.
    • Prepare the target server (physical machine aka PM, or virtual machine VM) that will be the Azure Stack destination.
    • Copy Azure Stack software and installer to target server and run pre-install scripts.
    • Modify PowerShell script file if using a VM instead of a PM
    • Run the Azure Stack CloudBuilder setup, configure unattend.xml if needed or answer prompts.
    • Server reboots, select Azure Stack from two boot options.
    • Prepare your Azure Stack base system (time, network NICs in static or DHCP, if running on VMware install VMtools)
    • Determine if you will be running with Azure Active Directory (AAD) or standalone Active Directory Federated Services (ADFS).
    • Update any applicable installation scripts (see notes that follow)
    • Deploy the script, then extended Azure Stack TP3 PoC as needed

    Note that this is a large download of about 16GB (23GB with optional WIndows Server 2016 demo ISO).

    Use the AzureStackDownloader tool to download the bits (about 16GB or 23GB with optional Windows Server 2016 base image) which will either be in several separate files which you stitch back together with the MicrosoftAzureStackPOC tool, or as a large VHDX file and smaller 6.8GB ISO (Windows Server 2016). Prepare your target server system for installation once you have all the software pieces downloaded (or do the preparations while waiting for download).

    Once you have the software downloaded, if it is a series of eight .bin files (7 about 2GB, 1 around 1.5GB), good idea to verify their checksums, then stitch them together on your target system, or on a staging storage device or file share. Note that for the actual deployment first phase, the large resulting cloudbuilder.vhdx file will need to reside in the C:\ root location of the server where you are installing Azure Stack.

    server storageio nested azure stack tp3 vmware

    Azure Stack deployment prerequisites (Microsoft) include:

    • At least 12 cores (or more), dual socket processor if possible
    • As much DRAM as possible (I used 100GB)
    • Put the operating system disk on flash SSD (SAS, SATA, NVMe) if possible, allocate at least 200GB (more is better)
    • Four x 140GB or larger (I went with 250GB) drives (HDD or SSD) for data deployment drives
    • A single NIC or adapter (I put mine into static instead of DHCP mode)
    • Verify your physical or virtual server BIOS has VT enabled

    The above image helps to set the story of what is being done. On the left is for bare metal (BM) or physical machine (PM) install of Azure Stack TP3, on the right, a nested VMware (vSphere ESXi 6.5) with virtual machine (VM) 11 approach. Note that you could also do a Hyper-V nested among other approaches. Shown in the image above common to both a BM or VM is a staging area (could be space on your system drive) where Azure Stack download occurs. If you use a separate staging area, then simply copy the individual .bin files and stitch together into the larger .VHDX, or, copy the larger .VHDX, which is better is up to your preferences.

    Note that if you use the nested approach, there are a couple of configuration (PowerShell) scripts that need to be updated. These changes are to trick the installer into thinking that it is on a PM when it checks to see if on physical or virtual environments.

    Also note that if using nested, make sure you have your VMware vSphere ESXi host along with specific VM properly configured (e.g. that virtualization and other features are presented to the VM). With vSphere ESXi 6.5 virtual machine type 11 nesting is night and day easier vs. earlier generations.

    Something else to explain here is that you will initially start the Azure Stack install preparation using a standard Windows Server (I used a 2016 version) where the .VHDX is copied into its C:\ root. From there you will execute some PowerShell scripts to setup some configuration files, one of which needs to be modified for nesting.

    Once those prep steps are done, there is a Cloudbuilder deploy script that gets run that can be done with an unattend.xml file or manual input. This step will cause a dual-boot option to be added to your server where you can select Azure Stack or your base prep Windows Server instance, followed by reboot.

    After the reboot occurs and you choose to boot into Azure Stack, this is the server instance that will actually run the deployment script, as well as build and launch all the VMs for the Azure Stack TP3 PoC. This is where I recommend having a rough sketch like above to annotate layers as you go to remember what layer working at. Don’t worry, it becomes much easier once all is said and done.

    Speaking of preparing your server, refer to Microsoft specs, however in general give the server as much RAM and cores as possible. Also if possible place the system disk on a flash SSD (SAS, SATA, NVMe) and make sure that it has at least 200GB, however 250 or even 300GB is better (just in case you need more space).

    Additional configuration tips include allocating four data disks for Azure, if possible make these SSDs as well as, however more important IMHO to have at least the system on fast flash SSD. Another tip is to enable only one network card or NIC and put it into static vs. DHCP address mode to make things easier later.

    Tip: If running nested, vSphere 6.5 worked the smoothest as had various issues or inconsistencies with earlier VMware versions, even with VMs that ran nested just fine.

    Tip: Why run nested? Simple, I wanted to be able to use using VMware tools, do snapshots to go back in time, plus share the server with some other activities until ready to give Azure Stack TP3 its own PM.

    Tip: Do not connect the POC machine to the following subnets (192.168.200.0/24, 192.168.100.0/27, 192.168.101.0/26, 192.168.102.0/24, 192.168.103.0/25, 192.168.104.0/25) as Azure Stack TP3 uses those.

    storageio azure stack tp3 vmware configuration

    Since I decided to use a nested VM deploying using VMware, there were a few extra steps needed that I have included as tips and notes. Following is view via vSphere client of the ESXi host and VM configuration.

    The following image combines a couple of different things including:

    A: Showing the contents of C:\Azurestack_Supportfiles directory

    B: Modifying the PrepareBootFromVHD.ps1 file if deploying on virtual machine (See tips and notes)

    C: Showing contents of staging area including individual .bin files along with large CloudBuilder.vhdx

    D: Running the PowerShell script commands to prepare the PrepareBootFromVHD.ps1 and related items

    prepariing azure stack tp3 cloudbuilder for nested vmware deployment

    From PowerShell (administrator):

    # Variables
    $Uri = 'https://raw.githubusercontent.com/Azure/Azure stack/master/Deployment/'
    $LocalPath = 'c:\AzureStack_SupportFiles'

    # Create folder
    New-Item $LocalPath -type directory

    # Download files
    ( 'BootMenuNoKVM.ps1', 'PrepareBootFromVHD.ps1', 'Unattend.xml', 'unattend_NoKVM.xml') | foreach { Invoke-WebRequest ($uri + $_) -OutFile ($LocalPath + '\' + $_) }

    After you do the above, decide if you will be using an Unattend.xml or manual entry of items for building the Azure Stack deployment server (e.g. a Windows Server). Note that the above PowerShell script created the C:\azurestack_supportfiles folder and downloads the script files for building the cloud image using the previously downloaded Azure Stack CloudBuilder.vhdx (which should be in C:\).

    Note and tip is that if you are doing a VMware or virtual machine based deployment of TP3 PoC, you will need to change C:\PrepareBootFromVHD.ps1 in the Azure Stack support files folder. Here is a good resource on what gets changed via Github that shows an edit on or about line 87 of PrepareBootFromVHD.ps1. If you run the PrepareBootFromVHD.ps1 script on a virtual machine you will get an error message, the fix is relatively easy (after I found this post).

    Look in PrepareBootFromVHD.ps1 for something like the following around line 87:

    if ((get-disk | where {$_.isboot -eq $true}).Model -match 'Virtual Disk')       {      Write-Host "The server is currently already booted from a virtual hard disk, to boot the server from the CloudBuilder.vhdx you will need to run this script on an Operating System that is installed on the physical disk of this server."      Exit      }
    

    You can either remove the "exit" command, or, change the test for "Virtual Disk" to something like "X", for fun I did both (and it worked).

    Note that you only have to make the above and another change in a later step if you are deploying Azure Stack TP3 as a virtual machine.

    Once you are ready, go ahead and launch the PrepareBootFromVHD.ps1 script which will set the BCDBoot entry (more info here).

    azure stack tp3 cloudbuilder nested vmware deployment

    You will see a reboot and install, this is installing what will be called the physical instance. Note that this is really being installed on the VM system drive as a secondary boot option (e.g. azure stack).

    azure stack tp3 dual boot option

    After the reboot, login to the new Azure Stack base system and complete any configuration including adding VMware Tools if using VMware nested. Some other things to do include make sure you have your single network adapter set to static (makes things easier), and any other updates or customizations. Before you run the next steps, you need to decide if going to use Azure Active Directory (AAD) or local ADFS.

    Note that if you are not running on a virtual machine, simply open a PowerShell (administrator) session, and run the deploy script. Refer to here for more guidance on the various options available including discussion on using AAD or ADFS.

    Note if you run the deployment script on a virtual machine, you will get an error which is addressed in the next section, otherwise, sit back and watch the progress..

    CloudBuilder Deployment Time

    Once you have your Azure Stack deployment system and environment ready, including a snapshot if on virtual machine, launch the PowerShell deployment script. Note that you will need to have decided if deploying with Azure Active Directory (AAD) or Azure Directory Federated Services (ADFS) for standalone aka submarine mode. There are also other options you can select as part of the deployment discussed in the Azure Stack tips here (a must read) and here. I chose to do a submarine mode (e.g. not connected to Public Azure and AAD) deployment.

    From PowerShell (administrator):

    cd C:\CloudDeployment:\Setup
    $adminpass = ConvertTo-SecureString "youradminpass" -AsPlainText -Force
    .\InstallAzureStackPOC.ps1 -AdminPassword $adminpass -UseADFS

    Deploying on VMware Virtual Machines Tips

    Here is a good tip via Gareth Jones (@garethjones294) that I found useful for updating one of the deployment script files (BareMetal_Tests.ps1 located in C:\CloudDeployment\Roles\PhysicalMachines\Tests folder) so that it would skip the bare metal (PM) vs. VM tests. Another good resource, even though it is for TP2 and early versions of VMware is TP2 deployment experiences by Niklas Akerlund (@vNiklas).

    Note that this is a bit of a chick and egg scenario unless you are proficient at digging into script files since the BareMetal_Tests.ps1 file does not get unpacked until you run the CloudBuilder deployment script. If you run the script and get an error, then make the changes below, and rerun the script as noted. Once you make the modification to the BareMetal_Tests.ps1 file, keep a copy in a safe place for future use.

    Here are some more tips for deploying Azure Stack on VMware,

    Per the tip mentioned about via Gareth Jones (tip: read Gareths post vs. simply cut and paste the following which is more of a guide):

    Open BareMetal_Tests.ps1 file in PowerShell ISE and navigate to line 376 (or in that area)
    Change $false to $true which will stop the script failing when checking to see if the Azure Stack is running inside a VM.
    Next go to line 453.
    Change the last part of the line to read “Should Not BeLessThan 0”
    This will stop the script checking for the required amount of cores available.

    After you make the above correction as with any error (and fix) during Azure Stack TP3 PoC deployment, simply run the following.

    cd C:\CloudDeployment\Setup
    .\InstallAzureStackPOC.ps1 -rerun
    

    Refer to the extra links in the where to learn more section below that offer various tips, tricks and insight that I found useful, particular for deploying on VMware aka nested. Also in the links below are tips on general Azure Stack, TP2, TP3, adding services among other insight.

    starting azure stack tp3 deployment

    Tip: If you are deploying Azure Stack TP3 PoC on virtual machine, once you start the script above, copy the modified BareMetal_Tests.ps1 file

    Once the CloudBuilder deployment starts, sit back and wait, if you are using SSDs, it will take a while, if using HDDs, it will take a long while (up to hours), however check in on it now and then to see progress of if any errors. Note that some of the common errors will occur very early in the deployment such as the BareMetal_Tests.ps1 mentioned above.

    azure stack tp3 deployment finished

    Checking in periodically to see how the deployment progress is progressing, as well as what is occurring. If you have the time, watch some of the scripts as you can see some interesting things such as the software defined data center (SDDC) aka software-defined data infrastructure (SDDC) aka Azure Stack virtual environment created. This includes virtual machine creation and population, creating the software defined storage using storage spaces direct (S2D), virtual network and active directory along with domain controllers among others activity.

    azure stack tp3 deployment progress

    After Azure Stack Deployment Completes

    After you see the deployment completed, you can try accessing the management portal, however there may be some background processing still running. Here is a good tip post on connecting to Azure Stack from Microsoft using Remote Desktop (RDP) access. Use RDP from the Azure Stack deployment Windows Server and connect to a virtual machine named MAS-CON01, launch Server Manager and for Local Server disable Internet Explorer Enhanced Security (make sure you are on the right system, see the tip mentioned above). Disconnect from MAS-CON01 (refer to the Azure Stack architecture image above), then reconnect, and launch Internet Explorer with an URL of (note documentation side to use which did not work for me).

    Note the username for the Azure Stack system is AzureStack\AzureStackAdmin with a password of what you set for administrative during setup. If you get an error, verify the URLs, check your network connectivity, wait a few minutes as well as verify what server you are trying to connect from and too. Keep in mind that even if deploying on a PM or BM (e.g. non virtual server or VM), the Azure Stack deployment TP3 PoC creates a "virtual" software-defined environment with servers, storage (Azure Stack uses Storage Spaces Direct [S2D] and software defined network.

    accessing azure stack tp3 management portal dashboard

    Once able to connect to Azure Stack, you can add new services including virtual machine image instances such as Windows (use the Server 2016 ISO that is part of Azure Stack downloads), Linux or others. You can also go to these Microsoft resources for some first learning scenarios, using the management portals, configuring PowerShell and troubleshooting.

    Where to learn more

    The following provide more information and insight about Azure, Azure Stack, Microsoft and Windows among related topics.

  • Azure Stack Technical Preview 3 (TP3) Overview Preview Review
  • Azure Stack TP3 Overview Preview Review Part II
  • Azure Stack Technical Preview (get the bits aka software download here)
  • Azure Stack deployment prerequisites (Microsoft)
  • Microsoft Azure Stack troubleshooting (Microsoft Docs)
  • Azure Stack TP3 refresh tips (Azure Stack)
  • Here is a good post with a tip about not applying certain Windows updates to AzureStack TP3 installs.
  • Configure Azure Stack TP3 to be available on your own network (Azure Stack)
  • Azure Stack TP3 Marketplace syndication (Azure Stack)
  • Azure Stack TP3 deployment experiences (Azure Stack)
  • Frequently asked questions for Azure Stack (Microsoft)
  • Azure Active Directory (AAD) and Active Directory Federation Services (ADFS)
  • Deploy Azure Stack (Microsoft)
  • Connect to Azure Stack (Microsoft)
  • Azure Stack TP2 deployment experiences by Niklas Akerlund (@vNiklas) useful for tips for TP3
  • Deployment Checker for Azure Stack Technical Preview (Microsoft Technet)
  • Azure stack and other tools (Github)
  • How to enable nested virtualization on Hyper-V Windows Server 2016
  • Dell EMC announce Microsoft Hybrid Cloud Azure Stack (Dell EMC)
  • Dell EMC Cloud for Microsoft Azure Stack (Dell EMC)
  • Dell EMC Cloud for Microsoft Azure Stack Data Sheet (Dell EMC PDF)
  • Dell EMC Cloud Chats (Dell EMC Blog)
  • Microsoft Azure stack forum
  • Dell EMC Microsoft Azure Stack solution
  • Gaining Server Storage I/O Insight into Microsoft Windows Server 2016
  • Overview Review of Microsoft ReFS (Reliable File System) and resource links
  • Via WServerNews.com Cloud (Microsoft Azure) storage considerations
  • Via CloudComputingAdmin.com Cloud Storage Decision Making: Using Microsoft Azure for cloud storage
  • www.thenvmeplace.com, www.thessdplace.com, www.objectstoragecenter.com and www.storageio.com/converge
  • What this all means

    A common question is if there is demand for private and hybrid cloud, in fact, some industry expert pundits have even said private, or hybrid are dead which is interesting, how can something be dead if it is just getting started. Likewise, it is early to tell if Azure Stack will gain traction with various organizations, some of whom may have tried or struggled with OpenStack among others.

    Given a large number of Microsoft Windows-based servers on VMware, OpenStack, Public cloud services as well as other platforms, along with continued growing popularity of Azure, having a solution such as Azure Stack provides an attractive option for many environments. That leads to the question of if Azure Stack is essentially a replacement for Windows Servers or Hyper-V and if only for Windows guest operating systems. At this point indeed, Windows would be an attractive and comfortable option, however, given a large number of Linux-based guests running on Hyper-V as well as Azure Public, those are also primary candidates as are containers and other services.

    software defined data infrastructures SDDI and SDDC

    Some will say that if OpenStack is struggling in many organizations and being free open source, how Microsoft can have success with Azure Stack. The answer could be that some organizations have struggled with OpenStack while others have not due to lack of commercial services and turnkey support. Having installed both OpenStack and Azure Stack (as well as VMware among others), Azure Stack is at least the TP3 PoC is easy to install, granted it is limited to one node, unlike the production versions. Likewise, there are easy to use appliance versions of OpenStack that are limited in scale, as well as more involved installs that unlock full functionality.

    OpenStack, Azure Stack, VMware and others have their places, alongside, or supporting containers along with other tools. In some cases, those technologies may exist in the same environment supporting different workloads, as well as accessing various public clouds, after all, Hybrid is the home run for many if not most legality IT environments.

    Ok, nuff said (for now…).

    Cheers
    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    Dell EMC Announce Azure Stack Hybrid Cloud Solution

    server storage I/O trends

    Dell EMC Azure Stack Hybrid Cloud Solution

    Dell EMC have announced their Microsoft Azure Stack hybrid cloud platform solutions. This announcement builds upon earlier statements of support and intention by Dell EMC to be part of the Microsoft Azure Stack community. For those of you who are not familiar, Azure Stack is an on premise extension of Microsoft Azure public cloud.

    What this means is that essentially you can have the Microsoft Azure experience (or a subset of it) in your own data center or data infrastructure, enabling cloud experiences and abilities at your own pace, your own way with control. Learn more about Microsoft Azure Stack including my experiences with and installing Technique Preview 3 (TP3) here.

    software defined data infrastructures SDDI and SDDC

    What Is Azure Stack

    Microsoft Azure Stack is an on-premises (e.g. in your own data center) private (or hybrid when connected to Azure) cloud platform. Currently Azure Stack is in Technical Preview 3 (e.g. TP3) and available as a proof of concept (POC) download from Microsoft. You can use Azure Stack TP3 as a POC for learning, demonstrating and trying features among other activities. Here is link to a Microsoft Video providing an overview of Azure Stack, and here is a good summary of roadmap, licensing and related items.

    In summary, Microsoft Azure Stack and this announcement is about:

    • A onsite, on-premises, in your data center extension of Microsoft Azure public cloud
    • Enabling private and hybrid cloud with good integration along with shared experiences with Azure
    • Adopt, deploy, leverage cloud on your terms and timeline choosing what works best for you
    • Common processes, tools, interfaces, management and user experiences
    • Leverage speed of deployment and configuration with a purpose-built integrated solution
    • Support existing and cloud-native Windows, Linux, Container and other services
    • Available as a public preview via software download, as well as vendors offering solutions

    What Did Dell EMC Announce

    Dell EMC announced their initial product, platform solutions, and services for Azure Stack. This includes a Proof of Concept (PoC) starter kit (PE R630) for doing evaluations, prototype, training, development test, DevOp and other initial activities with Azure Stack. Dell EMC also announced a larger for production deployment, or large-scale development, test DevOp activity turnkey solution. The initial production solution scales from 4 to 12 nodes, or from 80 to 336 cores that include hardware (server compute, memory, I/O and networking, top of rack (TOR) switches, management, Azure Stack software along with services. Other aspects of the announcement include initial services in support of Microsoft Azure Stack and Azure cloud offerings.
    server storage I/O trends
    Image via Dell EMC

    The announcement builds on joint Dell EMC Microsoft experience, partnerships, technologies and services spanning hardware, software, on site data center and public cloud.
    server storage I/O trends
    Image via Dell EMC

    Dell EMC along with Microsoft have engineered a hybrid cloud platform for organizations to modernize their data infrastructures enabling faster innovate, accelerate deployment of resources. Includes hardware (server compute, memory, I/O networking, storage devices), software, services, and support.
    server storage I/O trends
    Image via Dell EMC

    The value proposition of Dell EMC hybrid cloud for Microsoft Azure Stack includes consistent experience for developers and IT data infrastructure professionals. Common experience across Azure public cloud and Azure Stack on-premises in your data center for private or hybrid. This includes common portal, Powershell, DevOps tools, Azure Resource Manager (ARM), Azure Infrastructure as a Service (IaaS) and Platform as a Service (PaaS), Cloud Infrastructure and associated experiences (management, provisioning, services).
    server storage I/O trends
    Image via Dell EMC

    Secure, protect, preserve and serve applications VMs hosted on Azure Stack with Dell EMC services along with Microsoft technologies. Dell EMC data protection including backup and restore, Encryption as a Service, host guard and protected VMs, AD integration among other features.
    server storage I/O trends
    Image via Dell EMC

    Dell EMC services for Microsoft Azure Stack include single contact support for prepare, assessment, planning; deploy with rack integration, delivery, configuration; extend the platform with applicable migration, integration with Office 365 and other applications, build new services.
    server storage I/O trends
    Image via Dell EMC

    Dell EMC Hyper-converged scale out solutions range from minimum of 4 x PowerEdge R730XD (total raw specs include 80 cores (4 x 20), 1TB RAM (4 x 256GB), 12.8TB SSD Cache, 192TB Storage, plus two top of row network switches (Dell EMC) and 1U management server node. Initial maximum configuration raw specification includes 12 x R730XD (total 336 cores), 6TB memory, 86TB SSD cache, 900TB storage along with TOR network switch and management server.

    The above configurations initially enable HCI nodes of small (low) 20 cores, 256GB memory, 5.7TB SSD cache, 40TB storage; mid size 24 cores, 384GB memory, 11.5TB cache and 60TB storage; high-capacity with 28 cores, 512GB memory, 11.5TB cache and 80TB storage per node.
    server storage I/O trends
    Image via Dell EMC

    Dell EMC Evaluator program for Microsoft Azure Stack including the PE R630 for PoCs, development, test and training environments. The solution combines Microsoft Azure Stack software, Dell EMC server with Intel E5-2630 (10 cores, 20 threads / logical processors or LPs), or Intel E5-2650 (12 cores, 24 threads / LPs). Memory is 128GB or 256GB, storage includes flash SSD (2 x 480GB SAS) and HDD (6 x 1TB SAS).
    and networking.
    server storage I/O trends
    Image via Dell EMC

    Collaborative support single contact between Microsoft and Dell EMC

    Who Is This For

    This announcement is for any organization that is looking for an on-premises, in your data center private or hybrid cloud turnkey solution stack. This initial set of announcements can be for those looking to do a proof of concept (PoC), advanced prototype, support development test, DevOp or gain cloud-like elasticity, ease of use, rapid procurement and other experiences of public cloud, on your terms and timeline. Naturally, there is a strong affinity and seamless experience for those already using, or planning to use Azure Public Cloud for Windows, Linux, Containers and other workloads, applications, and services.

    What Does This Cost

    Check with your Dell EMC representative or partner for exact pricing which varies for the size and configurations. There are also various licensing models to take into consideration if you have Microsoft Enterprise License Agreements (ELAs) that your Dell EMC representative or business partner can address for you. Likewise being cloud based, there is also time usage-based options to explore.

    Where to learn more

    What this all means

    The dust is starting to settle on last falls Dell EMC integration, both of whom have long histories working with, and partnering along with Microsoft on legacy, as well as virtual software-defined data centers (SDDC), software-defined data infrastructures (SDDI), native, and hybrid clouds. Some may view the Dell EMC VMware relationship as a primary focus, however, keep in mind that both Dell and EMC had worked with Microsoft long before VMware came into being. Likewise, Microsoft remains one of the most commonly deployed operating systems on VMware-based environments. Granted Dell EMC have a significant focus on VMware, they both also sell, service and support many services for Microsoft-based solutions.

    What about Cisco, HPE, Lenovo among others who have to announce or discussed their Microsoft Azure Stack intentions? Good question, until we hear more about what those and others are doing or planning, there is not much more to do or discuss beyond speculating for now. Another common question is if there is demand for private and hybrid cloud, in fact, some industry expert pundits have even said private, or hybrid are dead which is interesting, how can something be dead if it is just getting started. Likewise, it is early to tell if Azure Stack will gain traction with various organizations, some of whom may have tried or struggled with OpenStack among others.

    Given a large number of Microsoft Windows-based servers on VMware, OpenStack, Public cloud services as well as other platforms, along with continued growing popularity of Azure, having a solution such as Azure Stack provides an attractive option for many environments. That leads to the question of if Azure Stack is essentially a replacement for Windows Servers or Hyper-V and if only for Windows guest operating systems. At this point indeed, Windows would be an attractive and comfortable option, however, given a large number of Linux-based guests running on Hyper-V as well as Azure Public, those are also primary candidates as are containers and other services.

    Overall, this is an excellent and exciting move for both Microsoft extending their public cloud software stack to be deployed within data centers in a hybrid way, something that those customers are familiar with doing. This is a good example of hybrid being spanning public and private clouds, remote and on-premises, as well as familiarity and control of traditional procurement with the flexibility, elasticity experience of clouds.

    software defined data infrastructures SDDI and SDDC

    Some will say that if OpenStack is struggling in many organizations and being free open source, how Microsoft can have success with Azure Stack. The answer could be that some organizations have struggled with OpenStack while others have not due to lack of commercial services and turnkey support. Having installed both OpenStack and Azure Stack (as well as VMware among others), Azure Stack is at least the TP3 PoC is easy to install, granted it is limited to one node, unlike the production versions. Likewise, there are easy to use appliance versions of OpenStack that are limited in scale, as well as more involved installs that unlock full functionality.

    OpenStack, Azure Stack, VMware and others have their places, along, or supporting containers along with other tools. In some cases, those technologies may exist in the same environment supporting different workloads, as well as accessing various public clouds, after all, Hybrid is the home run for many if not most legality IT environments.

    Overall this is a good announcement from Dell EMC for those who are interested in, or should become more aware about Microsoft Azure Stack, Cloud along with hybrid clouds. Likewise look forward to hearing more about the solutions from others who will be supporting Azure Stack as well as other hybrid (and Virtual Private Clouds).

    Ok, nuff said (for now…).

    Cheers
    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    Six plus data center software defined management dashboards tools

    Software defined data infrastructure management insight tools

    server storage I/O trends

    Updated 1/17/2018

    Managing data infrastructures involves using software defined management dashboards tools. Recently I found in my inbox a link to a piece 6 Dashboards for Managing Every Modern Data Center that caught my attention. I was hoping to see who the six different datacenter technologies, dashboard solutions tools were instead of finding list of dashboard considerations for modern data centers and data infrastructures.

    Turns out the piece was nothing more than a list of six items featured as part of the vendors (Sunbird) piece about what to look for in a dashboard (e.g. their product). Sure there were some of the usual key performance indicator (KPI) associated with or related to IT Service Management (ITSM), Data Center Infrastructure (Insight/Information) Management (DCIM), Configuration and Change management databases (CMDB), availability, capacity and Performance Management Databases (PMDB) among others.

    • Space
    • Inventory
    • Connectivity
    • Change
    • Environment
    • Power

    Dashboard Discussions

    Keep in mind however that there are many different types of dashboards (and consoles), some are active along with analytics including correlation, others are passive simply displaying. The focus area also various from physical data center facilities, to applications, to data infrastructures or components such as servers, storage, I/O networks, clouds, virtual, containers among others modern data centers.

    Data Infrastructures and SDDI, SDDC, SDI
    Data Infrastructures (hardware, software, services, servers, storage, I/O and networks)

    This is where some context comes into play as there are different types of dashboards for various audience, technology and focus areas (e.g. domains) across data infrastructure (and other entities). For example do a google search of “dashboard” and see what appears, or “IT dashboard”, “data center dashboard” vs. “datacenter dashboard” among others.

    Additional KPIs include:

    • Performance, availability, Capacity and Economic (PACE) attributes
    • Service Level Objectives (SLO), Service Level Agreements (SLAs)
    • Recovery Time Objectives (RTO), Recovery Point Objectives (SLO)
    • IT Service Management (ITSM) and Data Center Infrastructure Management (DCIM)
    • Configuration and Change Management (e.g. things part of CMDB)
    • Performance, availability and capacity (e.g. things part of PMDB)
    • Various focus and layers, cross domain functionality views
    • Costs management including subscriptions, licenses and others

    IT Data Center and Data Infrastructure Dashboard Options

    For those of you who have made it this far, while not a comprehensive list, the following are some examples of vendors, services or solutions that either are, or have an association with data center, as well as data infrastructure management. Some dashboards or tools are homogenous in that they only work within a given area of focus such as particular cloud, service provider, vendor or solution set. Others are heterogeneous or federated working across different services, solutions, vendors and domain focus areas. Think of these as software defined management (SDM), or, software defined data infrastructure (SDDI) management, software defined data center (SDDC) management among other variations for the modern information factory.

    There is a mix of tools that run on site (e.g. on premise) or via cloud services (e.g. manager your on site from the cloud). Likewise, some are for fee, others subscription and some are open source. In addition some of the tools are turnkey while others are do it yourself (DiY) or allow you to customize. Also keep in mind that depending on what your tradecraft (skills, experience, expertise) interest area is, these may or may not be applicable to you, while relevant to others. For example some such as Spiceworks tend to be more helpdesk focused while others on other data center or data infrastructure areas.

    There are dashboards for or from AWS, Canonical (Ubuntu), Dell including EMC, Google, HPE, IBM, Microsoft System Center and Azure, NetApp, OpenStack, Oracle, Rackspace, Redhat, Rightscale, Servicenow, Softlayer, Suse and VMware among others.

    Blue Medora (various data infrastructure monitoring)
    Cloudkitty (open source cloud rating and chargeback)
    Collectd (data infrastructure collection and monitoring)
    cPanel and whm (web and hosting dashboards)
    data infrastructure sddi cpanel

    Dashbuilder (customize your dashboard)
    Datadog (super easy to get access, download, install, configure and use)
    Domo (various data infrastructure monitoring tools)
    Extrahop (still waiting to be able to download and try their bits vs. watching a demo)
    Firescope (data infrastructure insight and awareness)
    Freezer (open source dashboard tools)
    Komprise (interesting solution, would like try, however lots of gated material)
    Nagios (data infrastructure monitoring)
    Openit (data infrastructure tracking, report, monitoring)
    Opvizor (data infrastructure monitoring and reporting)

    storageio datadog dashboard

    Panorama9 (various data infrastructure monitoring and reporting)
    Quest (various tools)
    Redhat Cloudforms (openstack and cloud management)
    Rrdtools (data collection, logging and display)
    Sisense (insight and awareness tools)
    Solarwinds Server Application Monitor (SAM) among other tools
    Teamquest (various monitoring, management, capacity planning tools)
    Turbomomic (software defined data infrastructure insight tools)
    Virtual Instruments (various monitoring and insight awareness along with analytics)

    In addition to the above, there are tools such as Splunk among others that also provide insight and awareness to help avoid flying blind while managing your data center or data infrastructure.

    Where to learn more

    Learn more via the following links.

  • Data Infrastructure Primer and Overview (Its Whats Inside The Data Center)
  • E2E Awareness and insight for IT environments
  • Server and Storage I/O Benchmarking and Performance Resources
  • Data Center Infrastructure Management (DCIM) and IRM
  • The Value of Infrastructure Insight – Enabling Informed Decision Making
  • More storage and IO metrics that matter
  • Whats a data infrastructure?
  • Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

    Software Defined Data Infrastructure Essentials Book SDDC

    What this all means

    Without insight and awareness you are flying blind, how can you make informed decisions about your information factory, data infrastructures, data center along with applications. There are different focus areas for various audiences up and down the stack layers in data infrastructures and data centers. Key is having insight and awareness including knowing what are some different tool options.

    Ok, nuff said, for now.

    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

    Some popular 2016 storageioblog posts

    Some popular 2016 storageioblog posts

    server storage I/O trends

    Big Files and Lots of Little File Processing and Benchmarking with Vdbench – Need to test, validate, compare, contrast or simply apply workload to file systems, NAS or other file-based access? Want the flexibility and simplicity to software define your benchmark workload to meet various needs? For example, millions of small files or thousands of large 5GB, 10GB, 15GB (or larger) files with various read, write size and access patterns spanning a single directory, or many with various depths? Do you want the flexibility for different platforms including Windows, *NIX, bare metal, container, virtual or cloud without a bulk tool using simple scripts that produce lots of insightful results? Then you will want to check this post out.

    Breaking the VMware ESXi 5.5 ACPI boot loop on Lenovo TD350 – Ever have a VMware host server go into a boot loop and purple screen of death (PSD) then displaying a message about ACPI or similar? After spending time searching and applying many filters to sift through the noise of false positive matches, finally found the simple fix (e.g. a BIOS setting) to break the VMware ESXi vSphere boot loop, or at least on a Lenovo server.

    Cloud and Object Storage

    Cloud conversations: AWS EBS, Glacier and S3 overview (Part I) – This is one of the perennial favorites that while new features have been added with others extended, the post series still provides a good overview, primer or refresher of various Amazon Web Services (AWS) services including how they work. Interesting in learning more about Microsoft and Azure, then check out this, this, this and this.

    Cloud Conversations: AWS EFS Elastic File System (Cloud NAS) – This is a companion to the above AWS as well as other cloud post series that looks at AWS Elastic File System. Note that other cloud service providers have also added NAS file access support, some are intra (e.g. inside AWS cloud), others are inter-cloud (e.g. inside and outside cloud) such as Azure (can work with external Windows Servers using SMB3). Even OpenStack has added NAS file with Manila folders and Ceph with CephFS among others. So when some people tell you that NAS and file access are dead particular for cloud, remind them of the increasing number of services and software stacks that are adding new services to allow their solution to be compatible with existing environments or applications.

    Server Storage I/O performance

    Collecting Transaction Per Minute from SQL Server and HammerDB – If you have used the free tool HammerDB (e.g. Hammora) for driving database workloads, simulations or benchmarks you should recall that the resulting statistics are rather lacking. Sure there is a nice GUI chart that shows current executing transactions per second (TPS) along with some very simple counters in the log. However compared to some other tools such as sysbench, Quest Benchmark Factory and YCSB among others, the Hammer metrics are rather lacking. In this post I show how you can collect some more metrics from SQL Server if you have to use HammerDB. View more server storage I/O performance benchmark and monitoring tools resources here.

    Windows Server 2016

    Gaining Server Storage I/O Insight into Microsoft Windows Server 2016 – Microsoft released into general availability Windows Server 2016 and this post looks at some of the new features along with functionality including Storage Spaces Direct (S2D), Storage Replica (SR) as well as other enhancements. With these new and enhanced features Windows Servers increase their interoperability with Azure, as well as supporting aggregated hyper-converged infrastructure (HCI), disaggregated converged (CI) as well as traditional workloads along with Hyper-V (and containers). One of the other new enhancements in Windows Server 2016 which now uses ReFS (Reliable File System) as its default file system that you can read more about here. RIP Windows SIS (Single Instance Storage), or at least in Server 2016 With Windows Server 2016 Microsoft removed single instance storage replacing with new capabilities that you can read more about in the this post.

    Garbage data in garbage data out

    Garbage data in, garbage information out, big data or big garbage? There is a classic IT expression of garbage data in results in garbage data (or information out) in that your algorithms and data structures (which equals programs e.g. Niklaus Wirth) are only as good as the data they work on. What this means then is that if there is a large amount of big data then there can also be a big garbage in and garbage out problem unless addressed.

    Hard product vs. soft product – Hard product refers to something such as hardware, software or a service resource that is obtained and then joined with other resources in a particular way to create a soft product. Not to be confused with software, the soft product is the result or how resources get defined that give some ability or benefit. Think of a soft product as for how airlines can use the same airplane, serve the same coca cola, have same seats, yet their soft product is the service experience of how those are delivered, as well as how you find and buy or use them. Another way of thinking about it is hard products are the ingredients for a recipe, the recipe defines how those ingredients result in some food dish.

    how many IOPs can an HDD or SSD do

    Part II: How many IOPS can a HDD, HHDD or SSD do with VMware? – This is part of a multi-post series looking at how many IOPs (or bandwidth) various HDD and SSDs can do handling different workloads. Of course, your results will vary with configuration settings, tools among other considerations. However, some of the older rules of thumb (RUT) about RPM and other considerations for HDDs have changed and continue to do so. As an example of how HDDs continue to evolve check out this popular post from the 2016 list Which Enterprise HDDs to use for a Content Server Platform.

    Part II: What I did with Lenovo TS140 in my Server and Storage I/O Review – This is a popular post series of some things I have done with a Lenovo TS140 including defining with various software as well as hardware. This is a great price performer value system that several years ago after testing one Lenovo sent me, I returned that to Lenovo and bought several of them to join my other systems.

    Server and Storage I/O Benchmarking and Performance Resources – This is a collection of various server, storage I/O and networking hardware, software as well as services tools, techniques as well as tips for benchmarking, comparing, simulation, testing, gaining insight across cloud, virtual, container and legacy resources. Server and Storage I/O Benchmark Tools: Microsoft Diskspd (Part I) – This is one of the tools found on the server, storage I/O benchmarking and performance resources page. Diskspd is a tool developed by Microsoft as an alternative to using Iometer, vdbench, fio.exe, SQLIO among many others, plus, it is on github.

    server storage I/O nvme and ssd

    The NVM (Non Volatile Memory) and NVMe Place – Interesting and adoption in nand flash, nvram, 3D XPoint among other SSD and Non-volatile Memory (NVM) continues. Another popular post that you can find at thenvmeplace.com is this NVMe overview and primer – Part I. There is a growing interest, awareness and deployment adoption around NVM Express (NVMe) the new protocol for accessing NVMs and SSDs. Some of the common conversations and questions I encounter is confusion between NVM and NVMe, too which the answer is one (the former) are the media or devices, the other is the access method alternative to using AHCI/SATA or SCSI (e.g. SAS, iSCSI, FCP, SRP) among others.

    VMware VVOLs and storage I/O fundamentals (Part 1) – VMware Virtual Volumes (VVOL) continue to gain adoption and this post is part of an overview and primer. If you want to go deeper into VVOL as well as see some adoption insights check out Eric Sieberts post here over at vsphere-land.com

    Welcome to the Object Storage Center page – This is a micro site that has a primer and overview of cloud as well as object storage along with an expanding list of links to various resources, tips, technologies, tools, trends and industry activity.

    Where To Learn More

    www.storageio.com particular if you have not been there for awhile to check out the new streamlined look and navigation to various content including Server StorageIO update newsletters (free subscription) among other resources.

    Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

    Software Defined Data Infrastructure Essentials Book SDDC

    What this all means and wrapping up

    Some of the popular posts for 2016 are perennial favorites and based on experience will probably appear on the 2017 list. However there are also several new posts that appeared in 2016 that I suspect will also appear on the 2017 version of the above list, along with new content from 2017.

    Thank you to all of you who frequent StorageIOblog.com as well as StorageIO.com along with our various micro sites including server storage I/O performance and benchmarking resources, thenvmeplace.com, thessdplace.com, cloud and objectstoragecenter.com, data protection diaries among others.

    Also thank you for viewing various partner venues and syndicates with extra ones appearing throughout 2017. Watch for more content in the coming weeks, months and throughout 2017 on software defined data infrastructures (SDDI) along with server, storage I/O, networking, hardware, software, cloud, container, data protection and related topics, trends, technologies, tools and tips.

    Again, thank you

    Ok, nuff said, for now.

    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

    Overview Review of Microsoft ReFS (Reliable File System) and resource links

    server storage I/O trends

    This is an overview review of Microsoft ReFS (Resilient File System) along with some resource links. ReFS is part of some Windows operating system platforms including Server 2016.

    Some context here is that review can mean an in-depth deep dive product or technology review, while another meaning is to simply to refresh what you may already know about ReFS. For this post, the focus is on the latter, that is a bit of overview that also functions as a refresh review of what you may already know. However click here to see how ReFS and NTFS compare.

    Click here to read more about Windows Server 2016, Storage Spaces Direct (S2D), Storage Replica (SR) and other related topics (or click on the image below).

    Microsoft Windows Server 2016
    Windows Server 2016 Welcome Screen – Source Server StorageIOlab.com

    What Is Microsoft ReFS and Why It Matters

    Microsoft ReFS (Resilient File System) is part of Windows Servers 2012, 2012 R2, 2016 as well as Windows 8.1 and 10 platforms as an alternative to NTFS file system. ReFS is designed not only for resiliency, also for scaling volumes beyond 256 TBytes (NTFS) to 4.7 Zettabytes (ZB). Note files size for both NTFS and ReFS is 18 Exabytes (EB). Click here to view various ReFS and NTFS data services, feature functionality along with limits. Part of being resilient means that ReFS is able to provide more data integrity protection to guard against logical data corruption.

    Note while ReFS is the future for Windows-based platforms, NTFS is not going away anytime soon, after all, FAT (File Allocation Table) volumes are still supported after how many decades of being around? ReFS has been around for several years having existed in earlier WIndows operating systems as an option, however with Server 2016, its status is promoted to a more prominent role with more features, data services and functionality.

    ReFS data services, features and functionality include:

    • Resiliency – Automatic detection and online repair of data corruption issues
    • Online repair – Isolate faults to localized area of data corruption for repair enabling volumes to stay online
    • Storage Spaces integration – Leverage mirror or parity spaces for automatic detect and repair via alternate data copies. Note that with Windows Server 2016 Microsoft also has introduced Storage Spaces Direct (S2D).
    • Data salvage – Should a volume become corrupt with no alternate copy (you should still have a backup), ReFS removes corrupt data from name space on a live volume. This capability enables surviving data to stay accessible while isolating the fault to the corrupted or damaged data.
    • Integrity streams – Checksums for metadata and optionally file data that enable ReFS to detect corruptions in a reliable way.
    • Proactive error correction – Besides validating data before reads and writes, ReFS also has a background scrubber data integrity check of volumes. This capability enables ReFS to proactively detect latent or silent data corruption so that corrective repair of damaged data can occur.
    • Real-time tiering – When combined with S2D maximizes performance and space capacity across performance and capacity tiers using NVMe, flash SSD and HDDs devices. Writes occur to the performance tier, with large chunks de-staged to capacity tier. Read acceleration enabled via cache. Can support all flash (e.g. performance NVMe and capacity TLC or other flash SSD) as well as hybrid mix of HDD and SSD configurations.
    • Block cloning for dynamic workloads including server virtualization such as accelerating checkpoint merge operations.
    • Sparse VDL (Valid Data Length) improves virtual machine (VM) operations reducing time needed to create fixed size VHDs from 10s of minutes to seconds.
    • Variable storage allocation cluster size of 4KB (for most environments) and 64KB (for environments with larger sequential file processing needs).

    ReFS Deployment Options

    Microsoft ReFS deployment options include:

    • Basic disk (HDD, and SSD) – Leverage applications or other resiliency and protection solutions.
    • SAS drive enclosures with storage spaces provides more data protection including availability as well as integrity and accessibility. Leverages classic storage spaces mirroring and parity protection for increased resiliency and availability.
    • Storage Spaces Direct (S2D) – Increased scalability, real-time tiering and cache server storage I/O performance (effectiveness) and capacity (efficiency) optimization. For increased resiliency adds block clone and sparse Valid Data Length (VDL) to boost VHDX file performance operations (create, merge, expand). For resiliency, built-in checksums, online repair as well as leverage alternate data copies combined with S2D to detect as well as correct both metadata as well as primary data corruption issues. Optimized for large-scale and virtualized application workloads.

    Where To Learn More

    For those of you not as familiar with Microsoft Windows Server and related topics, or that simply need a refresh, here are several handy links as well as resources.

    • Benchmarking Microsoft Hyper-V server, VMware ESXi and Xen Hypervisors (Via cisjournal PDF)
    • BrightTalk Webinar – Software-Defined Data Centers (SDDC) are in your Future (if not already here)
    • BrightTalk Weibniar – Software-Defined Data Infrastructures Enabling Software-Defined Data Centers
    • Choosing drives and resiliency types in Storage Spaces Direct to meet performance and capacity requirements (Via TechNet)
    • Data Protection for Modern Microsoft Environments (Redmond Magazine Webinar)
    • Deep Dive: Volumes in Storage Spaces Direct (Via TechNet Blogs)
    • Discover Storage Spaces Direct, the ultimate software-defined storage for Hyper-V (YouTube Video)
    • DUPLICATE_EXTENTS_DATA structure (Via MSDN)
    • Block cloning on ReFS (Via TechNet)
    • DISKSPD now on GitHub, and the mysterious VMFLEET released (Via TechNet)
    • Erasure Coding in Windows azure storage (Via Microsoft)
    • Fault domain awareness in Windows Server 2016 (Via TechNet)
    • Fault tolerance and storage efficiency in Storage Spaces Direct (Via TechNet)
    • FSCTL_DUPLICATE_EXTENTS_TO_FILE control code (Via MSDN)
    • Gaining Server Storage I/O Insight into Microsoft Windows Server 2016 (StorageIOblog)
    • General information about SSD at www.thessdplace.com and NVMe at www.thenvmeplace.com
    • Get the Windows Server 2016 evaluation bits here
    • Happy 20th Birthday Windows Server, ready for Server 2016?
    • How to run nested Hyper-V and Windows Server 2016 (Via Altaro and via MSDN)
    • How to run Nested Windows Server and Hyper-V on VMware vSphere ESXi (Via Nokitel)
    • Hyper-converged solution using Storage Spaces Direct in Windows Server 2016 (Via TechNet)
    • Hyper-V large-scale VM performance for in-memory transaction processing (Via Technet)
    • Introducing Windows Server 2016 (Free ebook from Microsoft Press)
    • Large scale VM performance with Hyper-V and in-memory transaction processing (Via Technet)
    • Microsoft Resilient File System (ReFS) overview (Via TechNet)
    • Microsoft S2D Software Storage Bus (Via TechNet)
    • Microsoft Storage Replica (SR) (Via TechNet)
    • Microsoft Windows S2D Software Defined Storage (Via TechNet)
    • NVMe, SSD and HDD storage configurations in Storage Spaces Direct TP5 (Via TechNet)
    • Microsoft Azure Stack overview and related material via Microsoft
    • ReFS integrity streams (Via TechNet)
    • ReFS and NTFS feature, data services and functionality comparisons (Via TechNet)
    • ReFS and NTFS limits (speeds and feeds via TechNet)
    • Resilient File System aka ReFS (Via TechNet)
    • Server 2016 Impact on VDI User Experience (Via LoginVSI)
    • Server and Storage I/O Benchmark Tools: Microsoft Diskspd (Part I
    • Setting up S2D with a 4 node configuration (Via StarWind blog)
    • Setting up testing Windows Server 2016 and S2D using virtual machines (Via MSDN blogs)
    • SQL Server workload (benchmark) Order Processing Benchmark using In-Memory OLTP (Via Github)
    • Storage IOPS update with Storage Spaces Direct (Via TechNet)
    • Storage throughput with Storage Spaces Direct (S2D TP5 (Via TechNet)
    • Storage Spaces Direct hardware requirements (Via TechNet)
    • Storage Spaces Direct in Windows Server 2016 (Via TechNet with Video)
    • Storage Spaces Direct – Lab Environment Setup (Via Argon Systems)
    • Understanding Software Defined Storage with S2D in Windows Server 2016 (Via TechNet)
    • Understanding the cache in Storage Spaces Direct (Via TechNet)
    • Various Windows Server and S2D lab scripts (Via Github)
    • Volume resiliency and efficiency in Storage Spaces Direct (Via TechNet Blogs)
    • What’s New in Windows Server 2016 (Via TechNet)
    • Windows Server 2016 Getting Started (Via TechNet)
    • Windows Server 2016 and Active Directory (Redmond Magazine Webinar)
    • Server StorageIO resources including added links, tools, reports, events and more

    What This All Means

    Now is as good of time as any to refresh (or enhance) your knowledge of ReFS and its current capabilities particular if you are involved with Microsoft environments. On the other hand, if you are not involved with Microsoft, take a few moments to update your insight and awareness of ReFS, storage spaces, S2D and other related capabilities including Windows Servers converged (desegregated) and hyper-converged (aggregated) options to avoid working off of or with stale data.

    Ok, nuff said, for now…

    Cheers
    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, vSAN and VMware vExpert. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO All Rights Reserved

    Ubuntu 16.04 LTS (aka Xenial Xerus) What’s In The Bits and Bytes?

    Ubuntu 16.04 LTS (aka Xenial Xerus) What’s In The Bits and Bytes?

    server storage I/O trends

    Ubuntu 16.04 LTS (aka Xenial Xerus) was recently released (you can get the bits or software download here). Ubuntu is available in various distributions including as a server, workstation or desktop among others that can run bare metal on a physical machine (PM), virtual machine (VM) or as a cloud instance via services such as Amazon Web Services (AWS) as well as Microsoft Azure among others.

    Refresh, What is Ubuntu

    For those not familiar or who need a refresh, Ubuntu is an open source Linux distribution with the company behind it called Canonical. The Ubuntu software is a Debian based Linux distribution with Unity (user interface). Ubuntu is available across different platform architecture from industry standard Intel and AMD x86 32bit and 64bit to ARM processors and even the venerable IBM zSeriues (aka zed) mainframe as part of LinuxOne.

    As a desktop, some see or use Ubuntu as an open source alternative to desktop interfaces based on those from Microsoft such as Windows or Apple.

    As a server Ubuntu can be deployed from traditional applications to cloud, converged and many others including as a docker container, Ceph or OpenStack deployment platform. Speaking of Microsoft and Windows, if you are a *nix bash type person yet need (or have) to work with Windows, bash (and more) are coming to Windows 10. Ubuntu desktop GUI or User Interface options include Unity along with tools such as Compiz and LibreOffice (an alternative to Microsoft Office).

    What’s New In the Bits and Bytes (e.g. Software)

    Ubuntu 16.04 LTS is based on the Linux 4.4 kernel, that also includes Python 3, Ceph Jewel (block, file and object storage) and OpenStack Mitaka among other enhancements. These and other fixes as well as enhancements include:

    • Libvirt 1.3.1
    • Qemu 2.5
    • Open vSwitch 2.5.0
    • NginxLX2 2.0
    • Docker 1.10
    • PHP 7.9
    • MySQL 7.0
    • Juju 2.0
    • Golang 1.6 toolchain
    • OpenSSH 7.2p2 with legacy support along with cipher improvements, including 1024 bit diffie-hellman-group1-sha1 key exchange, ssh-dss, ssh-dss-cert
    • GNU toolchain
    • Apt 1.2

    What About Ubuntu for IBM zSeries Mainframe

    Ubuntu runs on 64 bit zSeries architecture with about 95% binary compatibility. If you look at the release notes, there are still a few things being worked out among known issues. However (read the release notes), Ubuntu 16.04 LTS has OpenStack and Ceph, means that those capabilities could be deployed on a zSeries.

    Now some of you might think wait, how can Linux and Ceph among others work on a FICON based mainframe?

    No worries, keep in mind that FICON the IBM zSeries server storage I/O protocol that co-exists on Fibre Channel along with SCSI_FCP (e.g. FCP) aka what most Open Systems people simply refer to as Fibre Channel (FC) works with the zOS and other operating systems. In the case of native Linux on zSeries, those systems can in fact use SCSI mode for accessing shared storage. In addition to the IBM LinuxOne site, you can learn more about Ubuntu running native on zSeries here on the Ubuntu site.

    Where To Learn More

    What This All Means

    Ubuntu as a Linux distribution continues to evolve and increase in deployment across different environments. Some still view Ubuntu as the low-end Linux for home, hobbyist or those looking for a alternative desktop to Microsoft Windows among others. However Ubuntu is also increasingly being used in roles where other Linux distribution such as Red Hat Enterprise Linux (RHEL), SUSE and Centos among others have gained prior popularity.

    In someway’s you can view RHEL as the first generation Linux distribution that gained popular in the enterprise with early adopters, followed by a second wave or generation of those who favored Centos among others such as the cloud crowd. Then there is the Ubuntu wave which is expanding in many areas along with others such as CoreOS. Granted with some people the preference between one Linux distribution vs. another can be as polarizing as Linux vs. Windows, OpenSystems vs. Mainframe vs. Cloud among others.

    Having various Ubuntu distributions installed across different servers (in addition to Centos, Suse and others), I found the install and new capabilities of Ubuntu 16.04 LTS interesting and continue to explore the many new features, while upgrading some of my older systems.

    Get the Ubuntu 16.04 LTS bits here to give a try or upgrade your existing systems.

    Ok, nuff said

    Cheers
    Gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO All Rights Reserved

    Part 2 – Which HDD for Content Applications – HDD Testing

    Part 2 – Which HDD for Content Applications – HDD Testing

    HDD testing server storage I/O trends

    Updated 1/23/2018

    Which enterprise HDD to use with a content server, hdd testing, how and what to do

    Insight for effective server storage I/O decision making
    Server StorageIO Lab Review

    Which enterprise HDD to use for content servers

    This is the second in a multi-part series (read part one here) based on a white paper hands-on lab report I did compliments of Servers Direct and Seagate that you can read in PDF form here. The focus is looking at the Servers Direct (www.serversdirect.com) converged Content Solution platforms with Seagate Enterprise Hard Disk Drive (HDD’s). In this post we look at some decisions and configuration choices to make for testing content applications servers as well as project planning.

    Content Solution Test Objectives

    In short period, collect performance and another server, storage I/O decision-making information on various HDD’s running different content workloads.

    Working with the Servers Direct staff a suitable content solution platform test configuration was created. In addition to providing two Intel-based content servers, Servers Direct worked with their partner Seagate to arrange for various enterprise-class HDD’s to be evaluated. For these series of content application tests, being short on time, I chose to do run some simple workloads including database, basic file (large and small) processing and general performance characterization.

    Content Solution Decision Making

    Knowing how Non-Volatile Memory (NVM) NAND flash SSD (1) devices (drives and PCIe cards) perform, what would be the best HDD based storage option for my given set of applications? Different applications have various performance, capacity and budget considerations. Different types of Seagate Enterprise class 2.5” Small Form Factor (SFF) HDD’s were tested.

    While revolutions per minute (RPM) still plays a role in HDD performance, there are other factors including internal processing capabilities, software or firmware algorithm optimization, and caching. Most HDD’s today have some amount of DRAM for read caching and other operations. Seagate Enterprise Performance HDD’s with the enhanced caching feature (2) are examples of devices accelerate storage I/O speed vs. traditional 10K and 15K RPM drives.

    Project Planning And Preparation

    Workload to be tested included:

    • Database read/writes
    • Large file processing
    • Small file processing
    • General I/O profile

    Project testing consisted of five phases, some of which overlapped with others:

    Phase 1 – Plan
    Identify candidate workloads that could be run in the given amount of time, determine time schedules and resource availability, create a project plan.

    Phase 2 – Define
    Hardware define and software define the test platform.

    Phase 3 – Setup
    The objective was to assess plug-play capability of the server, storage and I/O networking hardware with a Linux OS before moving on to the reported workloads in the next phase. Initial setup and configuration of hardware and software, installation of additional devices along with software configuration, troubleshooting, and learning as applicable. This phase consisted of using Ubuntu Linux 14.04 server as the operating system (OS) along with MySQL 5.6 as a database server during initial hands-on experience.

    Phase 4 – Execute
    This consisted of using Windows 2012 R2 server as the OS along with Microsoft SQL Server on the system under test (SUT) to support various workloads. Results of this phase are reported below.

    Phase 5 – Analyze      
    Results from the workloads run in phase 3 were analyzed and summarized into this document.

    (Note 1) Refer to Seagate 1200 12 Gbps Enterprise SAS SSD StorageIO lab review

    (Note 2) Refer to Enterprise SSHD and Flash SSD Part of an Enterprise Tiered Storage Strategy

    Planning And Preparing The Tests

    As with most any project there were constraints to contend with and work around.

    Test constraints included:

    • Short-time window
    • Hardware availability
    • Amount of hardware
    • Software availability

    Three most important constraints and considerations for this project were:

    • Time – This was a project with a very short time “runway”, something common in most customer environments who are looking to make a knowledgeable server, storage I/O decisions.
    • Amount of hardware – Limited amount of DRAM main memory, sixteen 2.5” internal hot-swap storage slots for HDD’s as well as SSDs. Note that for a production content solution platform; additional DRAM can easily be added, along with extra external storage enclosures to scale memory and storage capacity to fit your needs.
    • Software availability – Utilize common software and management tools publicly available so anybody could leverage those in their own environment and tests.

    The following content application workloads were profiled:

    • Database reads/writes – Updates, inserts, read queries for a content environment
    • Large file processing – Streaming of large video, images or other content objects.
    • Small file processing – Processing of many small files found in some content applications
    • General I/O profile – IOP, bandwidth and response time relevant to content applications

    Where To Learn More

    Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

    Software Defined Data Infrastructure Essentials Book SDDC

    What This All Means

    There are many different types of content applications ranging from little data databases to big data analytics as well as very big fast data such as for video. Likewise there are various workloads and characteristics to test. The best test and metrics are those that apply to your environment and application needs.

    Continue reading part three of this multi-part series here looking at how the systems and HDD’s were configured and tested.

    Ok, nuff said, for now.

    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

    Part 3 – Which HDD for content applicaitons – Test Configuration

    Which HDD for content applications – HDD Test Configuration

    HDD Test Configuration server storage I/O trends

    Updated 1/23/2018

    Which enterprise HDD to use with a content server platform hdd test configuratoin

    Insight for effective server storage I/O decision making
    Server StorageIO Lab Review

    Which enterprise HDD to use for content servers

    This is the third in a multi-part series (read part two here) based on a white paper hands-on lab report I did compliments of Servers Direct and Seagate that you can read in PDF form here. The focus is looking at the Servers Direct (www.serversdirect.com) converged Content Solution platforms with Seagate Enterprise Hard Disk Drive (HDD’s). In this post the focus expands to hardware and software defining as well as configuring the test environments along with applications workloads.

    Defining Hardware Software Environment

    Servers Direct content platforms are software defined and hardware defined to your specific solution needs. For my test-drive, I used a pair of 2U Content Solution platforms, one for a client System Test Initiator (STI) (3), the other as server SUT shown in figure-1 (next page). With the STI configured and SUT setup Seagate Enterprise class 2.5” 12Gbps SAS HDD’s were added to the configuration.

    (Note 3) System Test Initiator (STI) was hardware defined with dual Intel Xeon E5-2695 v3 (2.30 GHz) processors, 32GB RAM running Windows Server 2012 R2 with two network connections to the SUT. Network connections from the STI to SUT included an Intel GbE X540-AT2 as well as an Intel XL710 Q2 40 GbE Converged Network Adapter (CNA). In addition to software defining the STI with Windows Server 2012 R2, Dell Benchmark Factory (V7.1 64b bit 496) part of the Database Administrators (DBA) Toad Tools (including free versions) was also used. For those familiar with HammerDB, Sysbench among others, Benchmark Factory is an alternative that supports various workloads and database connections with robust reporting, scripting and automation. Other installed tools included Spotlight on Windows, Iperf 2.0.5 for generating network traffic and reporting results, as well as Vdbench with various scripts.

    SUT setup (4)  included four Enterprise 10K and two 15K Performance drives with enhanced performance caching feature enabled, along with two Enterprise Capacity 2TB HDD’s, all were attached to an internal 12Gbps SAS RAID controller. With the STI configured and SUT setup Seagate Enterprise class 2.5” 12Gbps SAS HDD’s were added to the configuration.

    (Note 4) System Under Test (SUT) dual Intel Xeon E5-2697 v3 (2.60 GHz) providing 54 logical processors, 64GB of RAM (expandable to 768GB with 32GB DIMMs, or 3TB with 128GB DIMMs) and two network connections. Network connections from the STI to SUT consisting of an Intel 1 GbE X540-AT2 as well as an Intel XL710 Q2 40 GbE CNA. The GbE LAN connection was used for management purposes while the 40 GbE was used for data traffic. System disk was a 6Gbs SATA flash SSD. Seagate Enterprise class HDD’s were installed into the 16 available 2.5” small form factor (SFF) drive slots. Eight (left most) drive slots were connected to an Intel RMS3CC080 12 Gbps SAS RAID internal controller. The “Blue” drives in the middle were connected to both an NVMe PCIe card and motherboard 6 Gbps SATA controller using an SFF-8637 connector. The four right most drives were also connected to the motherboard 6 Gbps SATA controller.

    System Test Configuration
    Figure-1 STI and SUT hardware as well as software defined test configuration

    This included four Enterprise 10K and two 15K Performance drives with enhanced performance caching feature enabled, along with two Enterprise Capacity 2TB HDD’s, all were attached to an internal 12Gbps SAS RAID controller. Five 6 Gbps SATA Enterprise Capacity 2TB HDD’s were setup using Microsoft Windows as a spanned volume. System disk was a 6Gbps flash SSD and an NVMe flash SSD drive was used for database temp space.

    What About NVM Flash SSD?

    NAND flash and other Non-Volatile Memory (NVM) memory and SSD complement content solution. A little bit of flash SSD in the right place can have a big impact. The focus for theses tests is HDD’s, however some flash SSDs were used as system boot and database temp (e.g. tempdb) space. Refer to StorageIO Lab reviews and visit www.thessdplace.com

    Seagate Enterprise HDD’s Used During Testing

    Various Seagate Enterprise HDD specifications use in the testing are shown below in table-1.

     

    Qty

     

    Seagate HDD’s

     

    Capacity

     

    RPM

     

    Interface

     

    Size

     

    Model

    Servers Direct Price Each

    Configuration

    4

    Enterprise 10K
    Performance

    1.8TB

    10K with cache

    12 Gbps SAS

    2.5”

    ST1800MM0128
    with enhanced cache

    $875.00 USD

    HW(5) RAID 10 and RAID 1

    2

    Enterprise
    Capacity 7.2K

    2TB

    7.2K

    12 Gbps SAS

    2.5”

    ST2000NX0273

    $399.00 USD

    HW RAID 1

    2

    Enterprise 15K
    Performance

    600GB

    15K with cache

    12 Gbps SAS

    2.5”

    ST600MX0082
    with enhanced cache

    $595.00 USD

    HW RAID 1

    5

    Enterprise
    Capacity 7.2K

    2TB

    7.2K

    6 Gbps SATA

    2.5”

    ST2000NX0273

    $399.00 USD

    SW(6) RAID Span Volume

    Table-1 Seagate Enterprise HDD specification and Servers Direct pricing

    URLs for additional Servers Direct content platform information:
    https://serversdirect.com/solutions/content-solutions
    https://serversdirect.com/solutions/content-solutions/video-streaming
    https://www.serversdirect.com/File%20Library/Data%20Sheets/Intel-SDR-2P16D-001-ds2.pdf

    URLs for additional Seagate Enterprise HDD information:
    https://serversdirect.com/Components/Drives/id-HD1558/Seagate_ST2000NX0273_2TB_Hard_Drive

    https://serversdirect.com/Components/Drives/id-HD1559/Seagate_ST600MX0082_SSHD

    Seagate Performance Enhanced Cache Feature

    The Enterprise 10K and 15K Performance HDD’s tested had the enhanced cache feature enabled. This feature provides a “turbo” boost like acceleration for both reads and write I/O operations. HDD’s with enhanced cache feature leverage the fact that some NVM such as flash in the right place can have a big impact on performance (7).

    In addition to their performance benefit, combing a best of or hybrid storage model (combing flash with HDD’s along with software defined cache algorithms), these devices are “plug-and-play”. By being “plug-and-play” no extra special adapters, controllers, device drivers, tiering or cache management software tools are required.

    (Note 5) Hardware (HW) RAID using Intel server on-board LSI based 12 Gbps SAS RAID card, RAID 1 with two (2) drives, RAID 10 with four (4) drives. RAID configured in write-through mode with default stripe / chunk size.

    (Note 6) Software (SW) RAID using Microsoft Windows Server 2012 R2 (span). Hardware RAID used write-through cache (e.g. no buffering) with read-ahead enabled and a default 256KB stripe/chunk size.

    (Note 7) Refer to Enterprise SSHD and Flash SSD Part of an Enterprise Tiered Storage Strategy

    The Seagate Enterprise Performance 10K and 15K with enhanced cache feature are a good example of how there is more to performance in today’s HDD’s than simply comparing RPM’s, drive form factor or interface.

    Where To Learn More

    Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

    Software Defined Data Infrastructure Essentials Book SDDC

    What This All Means

    Careful and practical planning are key steps for testing various resources as well as aligning the applicable tools, configuration to meet your needs.

    Continue reading part four of this multi-part series here where the focus expands to database application workloads.

    Ok, nuff said, for now.

    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

    Part 4 – Which HDD for Content Applications – Database Workloads

    Part 4 – Which HDD for Content Applications – Database Workloads

    data base server storage I/O trends

    Updated 1/23/2018
    Which enterprise HDD to use with a content server platform for database workloads

    Insight for effective server storage I/O decision making
    Server StorageIO Lab Review

    Which enterprise HDD to use for content servers

    This is the fourth in a multi-part series (read part three here) based on a white paper hands-on lab report I did compliments of Servers Direct and Seagate that you can read in PDF form here. The focus is looking at the Servers Direct (www.serversdirect.com) converged Content Solution platforms with Seagate Enterprise Hard Disk Drive (HDD’s). In this post the focus expands to database application workloads that were run to test various HDD’s.

    Database Reads/Writes

    Transaction Processing Council (TPC) TPC-C like workloads were run against the SUT from the STI. These workloads simulated transactional, content management, meta-data and key-value processing. Microsoft SQL Server 2012 was configured and used with databases (each 470GB e.g. scale 6000) created and workload generated by virtual users via Dell Benchmark Factory (running on STI Windows 2012 R2).

    A single SQL Server database instance (8) was used on the SUT, however unique databases were created for each HDD set being tested. Both the main database file (.mdf) and the log file (.ldf) were placed on the same drive set being tested, keep in mind the constraints mentioned above. As time was a constraint, database workloads were run concurrent (9) with each other except for the Enterprise 10K RAID 1 and RAID 10. Workload was run with two 10K HDD’s in a RAID 1 configuration, then another workload run with a four drive RAID 10. In a production environment, ideally the .mdf and .ldf would be placed on separate HDD’s and SSDs.

    To improve cache buffering the SQL Server database instance memory could be increased from 16GB to a larger number that would yield higher TPS numbers. Keep in mind the objective was not to see how fast I could make the databases run, rather how the different drives handled the workload.

    (Note 8) The SQL Server Tempdb was placed on a separate NVMe flash SSD, also the database instance memory size was set to 16GB which was shared by all databases and virtual users accessing it.

    (Note 9) Each user step was run for 90 minutes with a 30 minute warm-up preamble to measure steady-state operation.

    Users

    TPCC Like TPS

    Single Drive Cost per TPS

    Drive Cost per TPS

    Single Drive Cost / Per GB Raw Cap.

    Cost / Per GB Usable (Protected) Cap.

    Drive Cost (Multiple Drives)

    Protect
    Space Over head

    Cost per usable GB per TPS

    Resp. Time (Sec.)

    ENT 15K R1

    1

    23.9

    $24.94

    $49.89

    $0.99

    $0.99

    $1,190

    100%

    $49.89

    0.01

    ENT 10K R1

    1

    23.4

    $37.38

    $74.77

    $0.49

    $0.49

    $1,750

    100%

    $74.77

    0.01

    ENT CAP R1

    1

    16.4

    $24.26

    $48.52

    $0.20

    $0.20

    $ 798

    100%

    $48.52

    0.03

    ENT 10K R10

    1

    23.2

    $37.70

    $150.78

    $0.49

    $0.97

    $3,500

    100%

    $150.78

    0.07

    ENT CAP SWR5

    1

    17.0

    $23.45

    $117.24

    $0.20

    $0.25

    $1,995

    20%

    $117.24

    0.02

    ENT 15K R1

    20

    362.3

    $1.64

    $3.28

    $0.99

    $0.99

    $1,190

    100%

    $3.28

    0.02

    ENT 10K R1

    20

    339.3

    $2.58

    $5.16

    $0.49

    $0.49

    $1,750

    100%

    $5.16

    0.01

    ENT CAP R1

    20

    213.4

    $1.87

    $3.74

    $0.20

    $0.20

    $ 798

    100%

    $3.74

    0.06

    ENT 10K R10

    20

    389.0

    $2.25

    $9.00

    $0.49

    $0.97

    $3,500

    100%

    $9.00

    0.02

    ENT CAP SWR5

    20

    216.8

    $1.84

    $9.20

    $0.20

    $0.25

    $1,995

    20%

    $9.20

    0.06

    ENT 15K R1

    50

    417.3

    $1.43

    $2.85

    $0.99

    $0.99

    $1,190

    100%

    $2.85

    0.08

    ENT 10K R1

    50

    385.8

    $2.27

    $4.54

    $0.49

    $0.49

    $1,750

    100%

    $4.54

    0.09

    ENT CAP R1

    50

    103.5

    $3.85

    $7.71

    $0.20

    $0.20

    $ 798

    100%

    $7.71

    0.45

    ENT 10K R10

    50

    778.3

    $1.12

    $4.50

    $0.49

    $0.97

    $3,500

    100%

    $4.50

    0.03

    ENT CAP SWR5

    50

    109.3

    $3.65

    $18.26

    $0.20

    $0.25

    $1,995

    20%

    $18.26

    0.42

    ENT 15K R1

    100

    190.7

    $3.12

    $6.24

    $0.99

    $0.99

    $1,190

    100%

    $6.24

    0.49

    ENT 10K R1

    100

    175.9

    $4.98

    $9.95

    $0.49

    $0.49

    $1,750

    100%

    $9.95

    0.53

    ENT CAP R1

    100

    59.1

    $6.76

    $13.51

    $0.20

    $0.20

    $ 798

    100%

    $13.51

    1.66

    ENT 10K R10

    100

    560.6

    $1.56

    $6.24

    $0.49

    $0.97

    $3,500

    100%

    $6.24

    0.14

    ENT CAP SWR5

    100

    62.2

    $6.42

    $32.10

    $0.20

    $0.25

    $1,995

    20%

    $32.10

    1.57

    Table-2 TPC-C workload results various number of users across different drive configurations

    Figure-2 shows TPC-C TPS (red dashed line) workload scaling over various number of users (1, 20, 50, and 100) with peak TPS per drive shown. Also shown is the used space capacity (in green), with total raw storage capacity in blue cross hatch. Looking at the multiple metrics in context shows that the 600GB Enterprise 15K HDD with performance enhanced cache is a premium option as an alternative, or, to complement flash SSD solutions.

    database TPCC transactional workloads
    Figure-2 472GB Database TPS scaling along with cost per TPS and storage space used

    In figure-2, the 1.8TB Enterprise 10K HDD with performance enhanced cache while not as fast as the 15K, provides a good balance of performance, space capacity and cost effectiveness. A good use for the 10K drives is where some amount of performance is needed as well as a large amount of storage space for less frequently accessed content.

    A low cost, low performance option would be the 2TB Enterprise Capacity HDD’s that have a good cost per capacity, however lack the performance of the 15K and 10K drives with enhanced performance cache. A four drive RAID 10 along with a five drive software volume (Microsoft WIndows) are also shown. For apples to apples comparison look at costs vs. capacity including number of drives needed for a given level of performance.

    Figure-3 is a variation of figure-2 showing TPC-C TPS (blue bar) and response time (red-dashed line) scaling across 1, 20, 50 and 100 users. Once again the Enterprise 15K with enhanced performance cache feature enabled has good performance in an apples to apples RAID 1 comparison.

    Note that the best performance was with the four drive RAID 10 using 10K HDD’s Given popularity, a four drive RAID 10 configuration with the 10K drives was used. Not surprising the four 10K drives performed better than the RAID 1 15Ks. Also note using five drives in a software spanned volume provides a large amount of storage capacity and good performance however with a larger drive footprint.

    database TPCC transactional workloads scaling
    Figure-3 472GB Database TPS scaling along with response time (latency)

    From a cost per space capacity perspective, the Enterprise Capacity drives have a good cost per GB. A hybrid solution for environment that do not need ultra-high performance would be to pair a small amount of flash SSD (10) (drives or PCIe cards), as well as the 10K and 15K performance enhanced drives with the Enterprise Capacity HDD (11) along with cache or tiering software.

    (Note 10) Refer to Seagate 1200 12 Gbps Enterprise SAS SSD StorageIO lab review

    (Note 11) Refer to Enterprise SSHD and Flash SSD Part of an Enterprise Tiered Storage Strategy

    Where To Learn More

    Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

    Software Defined Data Infrastructure Essentials Book SDDC

    What This All Means

    If your environment is using applications that rely on databases, then test resources such as servers, storage, devices using tools that represent your environment. This means moving up the software and technology stack from basic storage I/O benchmark or workload generator tools such as Iometer among others instead using either your own application, or tools that can replay or generate various workloads that represent your environment.

    Continue reading part five in this multi-part series here where the focus shifts to large and small file I/O processing workloads.

    Ok, nuff said, for now.

    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.