Inaugural episode of the SSD Show podcast at Myce.com

Storage I/O trends

Inaugural episode of the SSD Show podcast at Myce.com

The other day I was invited by Jeremy Reynolds and J.W. Aldershoff to be a guest on the Inaugural episode of their new SSD Show podcast (click here to learn more or listen in).

audio

Many different facets or faces of nand flash SSD and SSHD or HHDD

With this first episode we discuss the latest developments in and around the solid-state device (SSD) and related storage industry, from consumer to enterprise, hardware and software, along with hands on experience insight on products, trends, technologies, technique themes. In this first podcast we discuss Solid State Hybrid Disks (SSHDs) aka Hybrid Hard Disk Drives (HHDD) with flash (read about some of my SSD, HHDD/SSHD hands on personal experiences here), the state of NAND memory (also here about nand DIMMs), the market and SSD pricing.

I had a lot of fun doing this first episode with Jeremy and hope to be invited back to do some more, follow-up on themes we discussed along with new ones in future episodes. One question remains after the podcast, will I convince Jeremy to get a Twitter account? Stay tuned!

Check out the new SSD Show podcast here.

Ok, nuff said (for now)

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)

Part II: IBM Server Side Storage I/O SSD Flash Cache Software

Storage I/O trends

Part II IBM Server Flash Cache Storage I/O accelerator for SSD

This is the second in a two-part post series on IBM’s Flash Cache Storage Accelerator (FCSA) for Solid State Device (SSD) storage announced today. You can view part I of the IBM FCSA announcement synopsis here.

Some FCSA ssd cache questions and perspectives

What is FCSA?
FCSA is a server-side storage I/O or IOP caching software tool that makes use of local (server-side) nand flash SSD (PCIe cards or drives). As a cache tool (view IBM flash site here) FCSA provides persistent read caching on IBM servers (xSeries, Flex and Blade x86 based systems) with write through cache (e.g. data cached for later reads) while write data is written directly to block attached storage including SANs. back-end storage can be iSCSI, SAS, FC or FCoE based block systems from IBM or others including all SSD, hybrid SSD or traditional HDD based solutions from IBM and others.

How is this different from just using a dedicated PCIe nand flash SSD card?
FCSA complements those by using them as a persistent storage to cache storage I/O reads to boost performance. By using the PCIe nand flash card or SSD drives, FCSA and other storage I/O cache optimization tools free up valuable server-side DRAM from having to be used as a read cache on the servers. On the other hand, caching tools such as FCSA also keep local cached reads closer to the applications on the servers (e.g. locality of reference) reducing the impact on backed shared block storage systems.

What is FCSA for?
With storage I/O or IOPS and application performance in general, location matters due to locality of reference hence the need for using different approaches for various environments. IBM FCSA is a storage I/O caching software technology that reduces the impact of applications having to do random read operations. In addition to caching reads, FCSA also has a write-through cache, which means that while data written to back-end block storage including on iSCSI, SAS, FC or FCoE based storage (IBM or other vendors), a copy of the data is cached for later reads. Thus while the best storage I/O is the one that does not have to be done (e.g. can be resolved from cache), the second best would be writes that go to a storage system that are not competing with read requests (handled via cache).

Storage I/O trends

Who else is doing this?
This is similar to what EMC initially announced and released in February 2012 with VFcache now renamed to be XtremSW along with other caching and IO optimization software from others (e.g. SANdisk, Proximal and Pernix among others.

Does this replace IBM EasyTier?
Simple answer is no, one is for tiering (e.g. EasyTier), the other is for IO caching and optimization (e.g. FCSA).

Does this replace or compete with other IBM SSD technologies?
With anything, it is possible to find a way to make or view it as competitive. However in general FCSA complements other IBM storage I/O optimization and management software tools such as EasyTier as well as leverage and coexist with their various SSD products (from PCIe cards to drives to drive shelves to all SSD and hybrid SSD solutions).

How does FCSA work?
The FCSA software works in either a physical machine (PM) bare metal mode with Microsoft Windows operating systems (OS) such as Server 2008, 2012 among others. There is also *nix support for RedHat Linux, along with in a VMware virtual machine (VM) environment. In a VMware environment High Availability (HA), DRS and VMotion services and capabilities are supported. Hopefully it will be sooner vs. later that we hear IBM do a follow-up announcement (pure speculation and wishful thinking) on more hypervisors (e.g. Hyper-V, Xen, KVM) support along with Centos, Ubuntu or Power based systems including IBM pSeries. Read more about IBM Pure and Flex systems here.

What about server CPU and DRAM overhead?
As should be expected, a minimal amount of server DRAM (e.g. main memory) and CPU processing cycles are used to support the FCSA software and its drivers. Note the reason I say as should be expected is how you can have software running on a server doing any type of work that does not need some amount of DRAM and processing cycles. Granted some vendors will try to spin and say that there is no server-side DRAM or CPU consumed which would be true if they are completely external to the server (VM or PM). The important thing is to understand how much of an impact in terms of CPU along with DRAM consumed along with their corresponding effectiveness benefit that are derived.

Storage I/O trends

Does FCSA work with NAS (NFS or CIFS) back-end storage?
No this is a server-side block only cache solution. However having said that, if your applications or server are presenting shared storage to others (e.g. out the front-end) as NAS (NFS, CIFS, HDFS) using block storage (back-end), then FCSA can cache the storage I/O going to those back-end block devices.

Is this an appliance?
Short and simple answer is no, however I would not be surprised to hear some creative software defined marketer try to spin it as a flash cache software appliance. What this means is that FCSA is simply IO and storage optimization software for caching to boost read performance for VM and PM servers.

What is this hardware or storage agnostic stuff mean?
Simple, it means that FCSA can work with various nand flash PCIe cards or flash SSD drives installed in servers, as well as with various back-end block storage including SAN from IBM or others. This includes being able to use block storage using iSCSI, SAS, FC or FCoE attached storage.

What is the difference between Easytier and FCSA?
Simple, FCSA is providing read acceleration via caching which in turn should offload some reads from affecting storage systems so that they can focus on handling writes or read ahead operations. Easytier on the other hand is for as its name implies tiering or movement of data in a more deterministic fashion.

How do you get FCSA?
It is software that you buy from IBM that runs on an IBM x86 based server. It is licensed on a per server basis including one-year service and support. IBM has also indicated that they have volume or multiple servers based licensing options.

Storage I/O trends

Does this mean IBM is competing with other software based IO optimization and cache tool vendors?
IBM is focusing on selling and adding value to their server solutions. Thus while you can buy the software from IBM for their servers (e.g. no bundling required), you cannot buy the software to run on your AMD/Seamicro, Cisco (including EMC/VCE and NetApp) , Dell, Fujitsu, HDS, HP, Lenovo, Oracle, SuperMicro among other vendors servers.

Will this work on non-IBM servers?
IBM is only supporting FCSA on IBM x86 based servers; however, you can buy the software without having to buy a solution bundle (e.g. servers or storage).

What is this Cooperative Caching stuff?
Cooperative caching takes the next step from simple read cache with write-through to also support chance coherency in a shared environment, as well as leverage tighter application or guest operating system and storage system integration. For example, applications can work with storage systems to make intelligent predictive informed decisions on what to pre-fetch or read ahead and cached, as well as enable cache warming on restart. Another example is where in a shared storage environment if one server makes a change to a shared LUN or volume that the local server-side caches are also updated to prevent stale or inconsistent reads from occurring.

Can FCSA use multiple nand flash SSD devices on the same server?
Yes, IBM FCSA supports use of multiple server-side PCIe and or drive based SSD devices.

How is cache coherency maintained including during a reboot?
While data stored in the nand flash SSD device is persistent, it’s up to the server and applications working with the storage systems to decide if there is coherent or stale data that needs to be refreshed. Likewise, since FCSA is server-side and back-end storage system or SAN agnostic, without cooperative caching it will not know if the underlying data for a storage volume changed without being notified from another server that modified it. Thus if using shared back-end including SAN storage, do your due diligence to make sure multi-host access to the same LUN’s or volumes is being coordinated with some server-side software to support cache coherency, something that would apply to all vendors.

Storage I/O trends

What about cache warming or reloading of the read cache?
Some vendors who have tightly interested caching software and storage systems, something IBM refers to as cooperative caching that can have the ability to re-warm the cache. With solutions that support cache re-warming, the cache software and storage systems work together to main cache coherency while pre-loading data from the underlying storage system based on hot bands or other profiles and experience. As of this announcement, FCSA does not support cache warming on its own.

Does IBM have service or tools to complement FCSA?
Yes, IBM has an assessment, profile and planning tool that are available on a free consultation services basis with a technician to check your environment. Of course, the next logical step would be for IBM to make the tool available via free download or on some other basis as well.

Do I recommend and have I tried FCSA?
On paper, or WebEx, YouTube or other venue FCSA looks interesting and capable, a good fit for some environments particular if IBM server-based. However since my PM and VMware VM based servers are from other vendors, along with the fact that FCSA only runs on IBM servers, have not actually given it a hands on test drive yet. Thus if you are looking at storage I/O optimization and caching software tools for your VM or PM environment, checkout IBM FCSA to see if it meets your needs.

Storage I/O trends

General comments

It is great to see server and storage systems vendors add value to their solutions with I/O and performance optimization as well as caching software tools. However, I am also concerned with the growing numbers of different software tools that only work with one vendor’s servers or storage systems, or at least are supported as such.

This reminds me of a time not all that long ago (ok, for some longer than others) when we had a proliferation of different host bus adapter (HBA) driver and pathing drivers from various vendors. The result is a hodge podge (a technical term) of software running on different operating systems, hypervisors, PM’s, VMs, and storage systems, all of which need to be managed. On the other hand, for the time being perhaps the benefit will outweigh the pain of having different tools. That is where there are options from server-side vendor centric, storage system focused, or third-party software tool providers.

Another consideration is that some tools work in VMware environments; others support multiple hypervisors while others also support bare metal servers or PMs. Which applies to your environment will of course depend. After all, if you are an all VMware environment given that many of the caching tools tend to be VMware focused, that gives more options vs. for those who are still predominately PM environments.

Ok, nuff said (for now)

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

How much storage performance do you want vs. need?

Storage I/O trends

How much storage I/O performance do you want vs. need?

The answer to how much storage I/O performance you need vs. want probably depends on cost, for which applications along with benefit among other things.

Storage I/O performance
View Part II: How many IOPS can a HDD, HHDD or SSD do with VMware?

I did a piece over at 21cit titled Parsing the Need for Speed in Storage that looks at those and other related themes including metrics that matter across tiered storage.

Here is an excerpt:

Can storage speed be too fast? Or, put another away, how do you decide a return on investments or innovation from the financial resources you spend on storage and the various technologies that go into storage performance.

Think about it: Fast storage needs fast servers, IO and networking interfaces, software, firmware, hypervisors, operating systems, drivers, and a file system or database, along with applications. Then there are the other buzzword bingo technologies that are also factors, among them fast storage DRAM and flash Solid State Devices (SSD).

Some questions to ask about storage I/O performance include among others:

  • How do response time, latency, and think or wait-times effect your environment and applications?
  • Do you know the location of your storage or data center performance bottlenecks?
  • If you remove bottlenecks in storage systems or appliances as well as in the data path, how will your application or the CPU in the server it runs on behave?
  • If your application server is currently showing high CPU due to the system overhead of having to wait for storage I/Os, you may see a positive improvement.
  • If more real work can be done now, will all of the components be ready to support each other without creating a new bottleneck?
  • Also speaking of storage I/O performance, how about can we get a side of context with them IOPs and other metrics that matter!

So how about it, how much performance, for primary, secondary, backup, cloud or virtual storage do you want vs. need?

Ok, nuff said for now.

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Can RAID extend the life of nand flash SSD?

Storage I/O trends

Can RAID extend nand flash SSD life?

Imho, the short answer is YES, under some circumstances.

There is a myth and some FUD that RAID (Redundant Array of Independent Disks) can shorten the life durability of nand flash SSD (Solid State Device) vs. HDD (Hard Disk Drives) due to extra IOP’s. The reality is that depending on how configured, RAID level, implementation and other factors, nand flash SSD can be extended as I discuss in this here video.

Video

Nand flash SSD cells and wear

First, there is a myth that nand flash SSD does not have moving parts like hard disk drives (HDD’s) thus do not wear out or break. That is just a myth in that nand flash by its nature wears out with write usage. This is due to how they store data in cells that have a rated number of program erase (P/E) cycles that vary by type of medium. For example, Single Level Cell (SLC) has a longer P/E life duration vs. Multi-Level Cells (MLC) and eMLC that stack multiple cells together.

There are a number of factors that contribute to nand flash wear, also known as duty cycle or durability tied to P/E. For example, some storage systems or controllers do a better job both at the lower level flash translation layer (FTL) in addition to controllers, firmware, caching using DRAM and IO optimization such as write ordering or grouping.

Now what about this RAID and SSD thing?

Ok first as a recap keep in mind that there are many RAID levels along with variations, enhancements and where, or how implemented ranging from software to hardware, adapters to controllers to storage systems.

In the case of RAID 1 or mirroring, just like replication or other one to one or one too many copy operation a write to one device is echoed to another. In the case of RAID 5, data is spread across drives and parity; however, the parity is rotated across all drives in an equal manner.

Some FUD or myths or misunderstandings come into play is that not all RAID 5 implementations as an example are not the same. Some do a better job of buffering or caching data in battery protected mirrored DRAM memory until a full stripe write can occur, or if needed, a partial write.

Another attribute is the chunk or shard size (how much data is sent to each drive member) along with the stripe width (how many drives). Some systems have narrow stripes of say 3+1 or 4+1 or 5+1 while others can be 14+1 or 15+1 or wider. Thus, data can be written across a wider number of drives reducing the P/E consumption or use of a single drive depending on implementation.

How about RAID 6 (dual parity)?

Same thing, it is a matter of how well the implementation is, how the write gathering is done and so forth.

What about RAID wearing out nand flash SSD?

While it is possible that it has or can occur depending on type of RAID implementation, lack of caching or optimization, configuration, type of SSD, RAID level and other things, in general I will say myth busted.

Want some proof?

I could go through a long technical proof point and citing lots of facts, figures, experts and so forth leaving you all silenced and dazed similar to the students listening to Ben Stein in Ferris Buelers day off (Click here to see what I mean) asking “anybody anybody Buleler?

Ben Stein via https://nostagjicmoviesandthings.blogspot.com
Image via nostagjicmoviesandthings.blogspot.com

How about some simple SSD and storage math?

On a very conservative basis, my estimate is that around 250PB of nand flash SSD drives are shipped and installed on a revenue basis attached to or in storage systems and appliances. Combine what Dell + DotHill + EMC + Fujitsu + HDS + HP + IBM (including TMS) + NEC + NetApp + NEC + Oracle among other legacy along with new all flash as well as hybrid vendors (e.g. Cloudbyte, FusionIO (Via their Nexgen acquisition), Kaminario, Greenbytes, Nutanix or Nimble, Purestorage, Starboard or Solidfire, Tegile or Tintri, Violin or Whiptail among others).

It is also a safe assumption based on how customers configure and use those and other storage systems is with some form of RAID. Thus if things were as bad as some researchers were, vendors and their pundits have made them out to be, wouldn’t’t we be hearing of those issues?

Is it just a RAID 5 problem and that RAID 6 magically corrects the problem?

Well, that depends on apples to apples vs. apples to oranges comparisons.

For example if you are using a 14+2 (16 drive) RAID 6 to compare to say a 3+1 (4 drive) RAID 5 that is not a fair comparison. Granted, it is a handy one if you are a vendor that supports wider RAID groups, stripes and ranks vs. those who do not. However also keep in mind that some legacy vendors actually also support wide stripes and RAID groups.

So in some cases the magic is not in the RAID level, rather the implementation or how configured or lack thereof.

Video

Watch this TechTarget produced video recorded live while I was at EMCworld 2013 to learn more.

Otherwise, ok, nuff said (for now).

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Virtual, Cloud and IT Availability, its a shared responsibility and common sense

IT Availability, it’s a shared responsibility and common sense

In case you missed it, recently the State of Oregon had a data center computer problem (ok, storage and application outage) that resulted in unemployment benefits not being provided. Tony Knotzer over at Network Computing did a story Oregon Storage Debacle Highlights Need To Plan For Failure and asked me for some perspectives that you can read here.

Data center

The reason I bring this incident up is not to join in the feeding frenzy that usually occurs when something like this happens, instead, to touch on what should be common. What is lacking at times (or more needed) is common sense when it comes to designing and managing flexible scalable data infrastructures.

“Fundamental IT 101 is that all technology will fail, despite what the vendors tell you,” Schulz said. And the most likely time technology will fail, he notes, is when people are involved — doing configurations, making changes or updates, or performing upgrades. – Via Network Computing

Note that while any technology can or has fail at some point, how it fails along with fault containment via design best practices and vendor resolution are important.

Good vendors learn and correct things so that they don’t happen again as well as work with customers on best practices to isolate and contain faults from expanding into disasters. Thus when a sales or marketing person tries to tell me that they have never had a failure I wonder if a: they are making something up, b: have not actually shipped to a customer in production, c: not aware of other deployments, d: towing the company line, e: too good to be true or f: all the above.

People talking

On the other hand, when a vendor tells me how they have resiliency in their product as well as processes, best practices and can even tell me (public or under NDA) how they have addressed issues, then they have my attention.

A common challenge today is cost cutting along with focus on the newest technology from servers to storage, networking to cloud, virtualization and software defined among other buzzword bingo themes and trends.

buzzword bingo

What also gets overlooked as mentioned above is common sense.

Perhaps if somebody could package and launch a good public relations campaign profiling common sense such as Software Defined Common Sense (SDCS) that might help?

On the other hand, similar to public service announcements (PSA) that may seem like common sense to some, there is a reason they are being done. That is to pass on the information to others who may not know about it thus lack what is perceived as common sense.

Lets get back to the state of Oregon’s computer systems issues and the blame game.

You know the blame game? That is when something happens or does not happen as you want it to simply find somebody else to blame or pivot and point a finger elsewhere.

the blame game

While perhaps good for CYA, the blame games usually does not help to prevent something happening again, or in the first place.

Hence in my comments about the state of Oregon computer storage system problems, I took the tone of what is common these days of no fault, shared responsibility and blame.

In other words does not matter who did what first or did not do, both sides could have prevented it.

For some this might resonate of it does not matter who misbehaved in the sandbox or play room, everybody gets a time out.

This is not to say that one side or the other has to assume or take on more blame or responsibility than the other, rather there is a shared responsibility to look out for each other.

Storage I/O trends

Just like when you drive a car, the education focus is on defensive safe driving to watch out for what the other person might do or not do (e.g. use turn signals or too busy to look in a mirror while talking or texting and driving among other things). The goal is to prevent accidents by watching out for those who are not taking responsibilities for themselves, not to mention learning from others mishaps.

teamwork
Working together vs. the blame game

Different views of customer vs. vendor

Having been a customer, as well as a vendor in the past not surprisingly I have some different views on this.

Sure the customer or client is always right, however sometimes there needs to be unpleasant conversations to help the customer help themselves, or keep themselves out of trouble.

Likewise a vendor may also take the blame when something does go wrong, even if it was entirely not their own fault just to stay in good graces with the customer or get that next deal.

Sometimes a vendor deserves to get beat up when something goes wrong, or at a least tell their story including if needed behind closed doors or under NDA. Likewise to have a meaningful relationship or partnership with the vendor, supplier or VAR, there needs to be trust and confidence which means not everything gets put out for media or blog venues to feed on.

Sure there is explaining what happened without spin, however there is also learning from mistakes to prevent them from happening which should be common sense. If part of that sharing of blame and responsibility requires being not in public that’s fine, as well as enough information of what happened is conveyed to clarify concerns and create confidence.

With vendor lockin, when I was a customer some taught that it’s the vendors fault (or for CYA, blame them), as a vendor the thinking was enforced that the customer is always right and its the competition who causes lockin.

As an analyst advisory consulting, my thinking not surprisingly is that of shared responsibility.

This means only you can allow vendor lockin, not to mention decide if lockin is bad or not.

Likewise only you can prevent data loss in cloud, virtual or traditional environments which also includes loss of access.

Granted somebody higher up the organization structure may over-ride you, however ask yourself if you did what was needed?

Likewise if a vendor is going to be doing some maintenance work in the middle of the week and there is a risk of something happening, even if they have told or sold you there is no single point of failure (NSPOF), or non disruptive upgrades.

Anytime there is a person involved regardless of if hardware, cables, software, firmware, configurations or physical environments something can happen. If the vendor drops the ball or a cable or card or something else and causes an outage or downtime, it is their responsibility to discuss those issues. However it is also the customers responsibility to discuss why they let the vendor do something during that time without taking adequate precautions. Likewise if the storage system was a single point of failure for an important system, then there is the responsibility to discuss the cost cutting concerns of others and have them justify why a redundant solution is not needed (that’s CYA 101 btw ).

Some other common sense tips

For some these might be familiar and if so, are they being done, and for others, perhaps they are new or revolutionary.

In the race to jump to a new technology or vendor, what are the unknowns? For example you may know what the issues or flaws are in an existing systems, solution, product, service or vendor, however what about the new one? Will you be the production beta customer and if so, how can you mitigate any risk?

Ask vendors tough, yet fair questions that are relevant to your needs and requirements including how they handle updates, upgrades and other tasks. Don’t be afraid to go under NDA if needed to get a better view of where they are at, have been and going to avoid surprises.

If this is not common IT sense, then take the responsibility to learn.

On the other hand, if this is common sense, take the responsibility to share and help others learn what it is that you know.

Also understand your availability needs and wants as well as balance those with costs along with risks. If something can go wrong it will if people are involved, thus design for resiliency including maintenance to offset applicable threat risks. Remember in the data center not everything is the same.

Storage I/O trends

Here is my point.

There is enough blame as well as accolades to go around, however take some shared responsibility and use it wisely.

Likewise in the race to cut cost, watch out for causing problems that compromise your information systems or services.

Look into removing complexity and costs without compromise which has long-term benefits vs. simply cutting costs.

Here are some related links and perspectives:
Don’t Let Clouds Scare You Be Prepared
Cloud conversation, Thanks Gartner for saying what has been said
Cloud conversations: Gaining cloud confidence from insights into AWS outages (Part II)
Make Your Company Ready for the Cloud
What do you do when your service provider drops the ball
People, Not Tech, Prevent IT Convergence
Pulling Together a Converged Team
Speaking of lockin, does software eliminate or move the location of vendor lock-in?

Ok, nuff said for now, what say you?

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Non Disruptive Updates, Needs vs. Wants

Storage I/O trends

Do you want non disruptive updates or do you need non disruptive upgrades?

First there is a bit of play on words going on here with needs vs. wants, as well as what is meant by non disruptive.

Regarding needs vs. wants, they are often used interchangeably particular in IT when discussing requirements or what the customer would like to have. The key differentiator is that a need is something that is required and somehow cost justified, or hopefully easier than a want item. A want or like to have item is simply that, its not a need however it could add value being a benefit although may be seen as discretionary.

There is also a bit of play on words with non disruptive updates or upgrades that can take on different meanings or assumptions. For example my Windows 7 laptop has automatic Microsoft updates enabled some of which can be applied while I work. On the other hand, some of those updates may be applied while I work however they may not take effect until I reboot or exit and restart an application.

This is not unique to Windows as my Ubuntu and Centos Linux systems can also apply updates, and in some cases a reboot might be required, same with my VMware environment. Lets not forget about applying new firmware to a server, or workstation, laptop or other device, along with networking routers, switches and related devices. Storage is also not immune as new software or firmware can be applied to a HDD or SSD (traditional or NVMe), either by your workstation, laptop, server or storage system. Speaking of storage systems, they too have new software or firmware that gets updated.

Storage I/O trends

The common theme here though is if the code (e.g. software, firmware, microcode, flash update, etc) can be applied non disruptive something known as non disruptive code load, followed by activation. With activation, the code may have been applied while the device or software was in use, however may need a reboot or restart. With non disruptive code activation, there should not be a disruption to what is being done when the new software takes effect.

This means that if a device supports non disruptive code load (NDCL) updates along with non disruptive code activation (NDCA), the upgrade can occur without disruption or having to wait for a reboot.

Which is better?

That depends, I want NDCA, however for many things I only need NDCL.

On the other hand, depending on what you need, perhaps it is both NDCL and NDCA, however also keep in mind needs vs. wants.

Ok, nuff said (for now).

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

As the platters spin, HDD’s for cloud, virtual and traditional storage environments

HDDs for cloud, virtual and traditional storage environments

Storage I/O trends

Updated 1/23/2018

As the platters spin is a follow-up to a recent series of posts on Hard Disk Drives (HDD’s) along with some posts about How Many IOPS HDD’s can do.

HDD and storage trends and directions include among others

HDD’s will continue to be declared dead into the next decade, just as they have been for over a decade, meanwhile they are being enhanced, continued to be used in evolving roles.

hdd and ssd

SSD will continue to coexist with HDD, either as separate or converged HHDD’s. Where, where and how they are used will also continue to evolve. High IO (IOPS) or low latency activity will continue to move to some form of nand flash SSD (PCM around the corner), while storage capacity including some of which has been on tape stays on disk. Instead of more HDD capacity in a server, it moves to a SAN or NAS or to a cloud or service provider. This includes for backup/restore, BC, DR, archive and online reference or what some call active archives.

The need for storage spindle speed and more

The need for faster revolutions per minute (RPM’s) performance of drives (e.g. platter spin speed) is being replaced by SSD and more robust smaller form factor (SFF) drives. For example, some of today’s 2.5” SFF 10,000 RPM (e.g. 10K) SAS HDD’s can do as well or better than their larger 3.5” 15K predecessors can for both IOPS and bandwidth. This is also an example where the RPM speed of a drive may not be the only determination for performance as it has been in the past.


Performance comparison of four different drive types, click to view larger image.

The need for storage space capacity and areal density

In terms of storage enhancements, watch for the appearance of Shingled Magnetic Recording (SMR) enabled HDD’s to help further boost the space capacity in the same footprint. Using SMR HDD manufactures can put more bits (e.g. areal density) into the same physical space on a platter.


Traditional vs. SMR to increase storage areal density capacity

The generic idea with SMR is to increase areal density (how many bits can be safely stored per square inch) of data placed on spinning disk platter media. In the above image on the left is a representative example of how traditional magnetic disk media lays down tracks next to each other. With traditional magnetic recording approaches, the tracks are placed as close together as possible for the write heads to safely write data.

With new recording formats such as SMR along with improvements to read/write heads, the tracks can be more closely grouped together in an overlapping way. This overlapping way (used in a generic sense) is like how the shingles on a roof overlap, hence Shingled Magnetic Recording. Other magnetic recording or storage enhancements in the works include Heat Assisted Magnetic Recording (HAMR) and Helium filed drives. Thus, there is still plenty of bits and bytes room for growth in HDD’s well into the next decade to co-exist and complement SSD’s.

DIF and AF (Advanced Format), or software defining the drives

Another evolving storage feature that ties into HDD’s is Data Integrity Feature (DIF) that has a couple of different types. Depending on which type of DIF (0, 1, 2, and 3) is used; there can be added data integrity checks from the application to the storage medium or drive beyond normal functionality. Here is something to keep in mind, as there are different types or levels of DIF, when somebody says they support or need DIF, ask them which type or level as well as why.

Are you familiar with Advanced Format (AF)? If not you should be. Traditionally outside of special formats for some operating systems or controllers, that standard open system data storage block, page or sector has been 512 bytes. This has served well in the past, however; with the advent of TByte and larger sized drives, a new mechanism is needed. The need is to support both larger average data allocation sizes from operating systems and storage systems, as well as to cut the overhead of managing all the small sectors. Operating systems and file systems have added new partitioning features such as GUID Partition Table (GPT) to support 1TB and larger SSD, HDD and storage system LUN’s.

These enhancements are enabling larger devices to be used in place of traditional Master Boot Record (MBR) or other operating system partition and allocation schemes. The next step, however, is to teach operating systems, file systems, and hypervisors along with their associated tools or drives how to work with 4,096 byte or 4 Kbyte sectors. The advantage will be to cut the overhead of tracking all of those smaller sectors or file system extents and clusters. Today many HDD’s support AF however by default may have 512-byte emulation mode enabled due to lack of operating system or other support.

Intelligent Power Management, moving beyond drive spin down

Intelligent Power Management (IPM) is a collection of techniques that can be applied to vary the amount of energy consumed by a drive, controller or processor to do its work. These include in the case of an HDD slowing the spin rate of platters, however, keep in mind that mass in motion tends to stay in motion. This means that HDD’s once up and spinning do not need as much relative power as they function like a flywheel. Where their power draw comes in is during reading and write, in part to the movement of reading/write heads, however also for running the processors and electronics that control the device. Another big power consumer is when drives spin up, thus if they can be kept moving, however at a lower rate, along with disabling energy used by read/write heads and their electronics, you can see a drop in power consumption. Btw, a current generation 3.5” 4TB 6Gbs SATA HDD consumes about 6-7 watts of power while in active use, or less when in idle mode. Likewise a current generation high performance 2.5” 1.2TB HDD consumes about 4.8 watts of energy, a far cry from the 12-16 plus watts of energy some use as HDD fud.

Hybrid Hard Disk Drives (HHDD) and Solid State Hybrid Drives (SSDHD)

Hybrid HDD’s (HHDD’s) also known as Solid State Hybrid Drives (SSHD) have been around for a while and if you have read my earlier posts, you know that I have been a user and fan of them for several years. However one of the drawbacks of the HHDD’s has been lack of write acceleration, (e.g. they only optimize for reads) with some models. Current and emerging HDDD’s are appearing with a mix of nand flash SLC (used in earlier versions), MLC and eMLC along with DRAM while enabling write optimization. There are also more drive options available as HHDD’s from different manufactures both for desktop and enterprise class scenarios.

The challenge with HHDD’s is that many vendors either do not understand how they fit and compliment their tiering or storage management software tools or simply do not see the value proposition. I have had vendors and others tell me that the HHDD’s don’t make sense as they are too simple, how can they be a fit without requiring tiering software, controllers, SSD and HDD’s to be viable?

Storage I/O trends

I also see a trend similar to when the desktop high-capacity SATA drives appeared for enterprise-class storage systems in the early 2000s. Some of the same people did not see where or how a desktop class product or technology could ever be used in an enterprise solution.

Hmm, hey wait a minute, I seem to recall similar thinking when SCSI drives appeared in the early 90s, funny how some things do not change, DejaVu anybody?

Does that mean HHDD’s will be used everywhere?

Not necessarily, however, there will be places where they make sense, others where either an HDD or SSD will be more practical.

Networking with your server and storage

Drive native interfaces near-term will remain as 6Gbs (going to 12Gbs) SAS and SATA with some FC (you might still find a parallel SCSI drive out there). Likewise, with bridges or interface cards, those drives may appear as USB or something else.

What about SCSI over PCIe, will that catch on as a drive interface? Tough to say however I am sure we can find some people who will gladly try to convince you of that. FC based drives operating at 4Gbs FC (4GFC) are still being used for some environments however most activity is shifting over to SAS and SATA. SAS and SATA are switching over from 3Gbs to 6Gbs with 12Gbs SAS on the roadmaps.

So which drive is best for you?

That depends; do you need bandwidth or IOPS, low latency or high capacity, small low profile thin form factor or feature functions? Do you need a hybrid or all SSD or a self-encrypting device (SED) also known as Instant Secure Erase (ISE), these are among your various options.

Disk drives

Why the storage diversity?

Simple, some are legacy soon to be replaced and disposed of while others are newer. I also have a collection so to speak that get used for various testing, research, learning and trying things out. Click here and here to read about some of the ways I use various drives in my VMware environment including creating Raw Device Mapped (RDM) local SAS and SATA devices.

Other capabilities and functionality existing or being added to HDD’s include RAID and data copy assist; securely erase, self-encrypting, vibration dampening among other abilities for supporting dense data environments.

Where To Learn More

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Do not judge a drive only by its interface, space capacity, cost or RPM alone. Look under the cover a bit to see what is inside in terms of functionality, performance, and reliability among other options to fit your needs. After all, in the data center or information factory not everything is the same.

From a marketing and fun to talk about new technology perspective, HDD’s might be dead for some. The reality is that they are very much alive in physical, virtual and cloud environments, granted their role is changing.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Seagate provides proof of life: Enterprise HDD enhancements

Storage I/O trends

Proof of life: Enterprise Hard Disk Drives (HDD’s) are enhanced

Last week while hard disk drive (HDD) competitor Western Digital (WD) was announcing yet another (Velobit) in a string of acquisitions ( e.g. earlier included Stec, Arkeia) and investments (Skyera), Seagate announced new enterprise class HDD’s to their portfolio. Note that it was only two years ago that WD acquired Hitachi Global Storage Technologies (HGST) the disk drive manufacturing business of Hitachi Ltd. (not to be confused with HDS).

Seagate

Similar to WD expanding their presence in the growing nand flash SSD market, Seagate also in May of this year extended their existing enterprise class SSD portfolio. These enhancements included new drives with 12Gbs SAS interface, along with a partnership (and investment) with PCIe flash card startup vendor Virident. Other PCIe flash SSD card vendors (manufacturers and OEMs) include Cisco, Dell, EMC, FusionIO, HP, IBM, LSI, Micron, NetApp and Oracle among others.

These new Seagate enterprise class HDD’s are designed for use in cloud and traditional data center servers and storage systems. A month or two ago Seagate also announced new ultra-thin (5mm) client (aka desktop) class HDD’s along with a 3.5 inch 4TB video optimized HDD. The video optimized HDD’s are intended for Digital Video Recorders (DVR’s), Set Top Boxes (STB’s) or other similar applications.

What was announced?

Specifically what Seagate announced were two enterprise class drives, one for performance (e.g. 1.2TB 10K) and the other for space capacity (e.g. 4TB).

 

Enterprise High Performance 10K.7 (aka formerly known as Savio)

Enterprise Terascale (aka formerly known as constellation)

Class/category

Enterprise / High Performance

Enterprise High Capacity

Form factor

2.5” Small Form Factor (SFF)

3.5”

Interface

6Gbs SAS

6Gbs SATA

Space capacity

1,200GB (1.2TB)

4TB

RPM speed

10,000

5,900

Average seek

2.9 ms

12 ms

DRAM cache

64MB

64MB

Power idle / operating

4.8 watts

5.49 / 6.49 watts

Intelligent Power Management (IPM)

Yes – Seagate PowerChoice

Yes – Seagate PowerChoice

Warranty

Limited 5 years

Limited 3 years

Instant Secure Erase (ISE)

Yes

Optional

Other features

RAID Rebuild assist, Self-Encrypting Device (SED)

Advanced Format (AF) 4K block in addition to standard 512 byte sectors

Use cases

Replace earlier generation 3.5” 15K SAS and Fibre Channel HDD’s for higher performance applications including file systems, databases where SSD are not practical fit.

Backup and data protection, replication, copy operations for erasure coding and data dispersal, active in dormant archives, unstructured NAS, big data, data warehouse, cloud and object storage.

Note the Seagate Terascale has a disk rotation speed of 5,900 (5.9K RPM) which is not a typo given the more traditional 5.4K RPM drives. This slight increase in performance from 5.4K to 5.9K should give when combined with other enhancements (e.g. firmware, electronics) to boost performance for higher capacity workloads.

Let us watch for some performance numbers to be published by Seagate or others. Note that I have not had a chance to try these new drives yet, however look forward to getting my hands on them (among others) sometime in the future for a test drive to add to the growing list found here (hey Seagate and WD, that’s a hint ;) ).

What this all means?

Storage I/O trends

Wait, weren’t HDD’s supposed to be dead or dying?

Some people just like new and emerging things and thus will declare anything existing or that they have lost interest in (or their jobs need it) as old, boring or dead.

For example if you listen to some, they may say nand flash SSD are also dead or dying. For what it is worth, imho nand flash-based SSDs still have a bright future in front of them even with new technologies emerging as they will take time to mature (read more here or listen here).

However, the reality is that for at least the next decade, like them or not, HDD’s will continue to play a role that is also evolving. Thus, these and other improvements with HDD’s will be needed until current nand flash or emerging PCM (Phase Change Memory) among other forms of SSD are capable of picking up all the storage workloads in a cost-effective way.

Btw, yes, I am also a fan and user of nand flash-based SSD’s, in addition to HDD’s and see roles for both as being viable complementing each other for traditional, virtual and cloud environments.

In short, HDD’s will keep spinning (pun intended) for some time granted their roles and usage will also evolve similar to that of tape summit resources.

Storage I/O trends

With this announcement by Seagate along with other enhancements from WD show that the HDD will not only see its 60th birthday, (and here), it will probably also easily see its 70th and not from the comfort of a computer museum. The reason is that there is yet another wave of HDD improvements just around the corner including Shingled Magnetic Recording (SMR) (more info here) along with Heat Assisted Magnetic Recording (HAMR) among others. Watch for more on HAMR and SMR in future posts. With these and other enhancements, we should be able to see a return to the rapid density improvements with HDD’s observed during the mid to late 2000 era when Perpendicular recording became available.

What is up with this ISE stuff is that the same as what Xiotech (e.g. XIO) had?

Is this the same technology that Xiotech (now Xio) referred to the ISE the answer is no. This Seagate ISE is for fast secure erase of data on disk. The benefit of Instant Secure Erase (ISE) is to cut from hours or days the time required to erase a drive for secure disposal to seconds (or less). For those environments that already factor drives erase time as part of those overall costs, this can increase the useful time in service to help improve TCO and ROI.

Wait a minute, aren’t slower RPM’s supposed to be lower performance?

Some of you might be wondering or asking the question of wait, how can a 10,000 revolution per minute (10K RPM) HDD be considered fast vs. a 15K HDD, let alone SSD?

Storage I/O trends

There is a trend occurring with HDD’s that the old rules of IOPS or performance being tied directly to the size and rotational speed (RPM’s) of drives, along with their interfaces. This comes down to being careful to judge a book or in this case a drive by its cover. While RPM’s do have an impact on performance, new generation drives at 10K such as some 2.5” models are delivering performance equal to or better than earlier generation 3.5” 15K device’s.

Likewise, there are similar improvements with 5.4K devices vs. previous generation 7.2K models. As you will see in some of the results found here, not all the old rules of thumbs when it comes to drive performance are still valid. Likewise, keep those metrics that matter in the proper context.


Click on above image to see various performance results

For example as seen in the results (above), the more DRAM or DDR cache on the drives has a positive impact on sequential reads which can be good news if that is what your applications need. Thus, do your homework and avoid judging a device simply by its RPM, interface or form factor.

Other considerations, temperature and vibration

Another consideration is that with increased density of more drives being placed in a given amount of space, some of which may not have the best climate controls, humidity and vibration are concerns. Thus, the importance of drives having vibration dampening or safeguards to keep up performance are important. Likewise, even though drive heads and platters are sealed, there are also considerations that need to be taken care of for humidity in data center or cloud service providers in hot environments near the equator.

If this is not connecting with you, think about how close parts of Southeast Asia and the India subcontinent are to the equator along with the rapid growth and low-cost focus occurring there. Your data center might be temperature and humidity controlled, however others who very focused on cost cutting may not be as concerned with normal facilities best practices.

What type of drives should be used for cloud, virtual and traditional storage?

Good question and one where the answer should be it depends upon what you are trying or need to do (e.g. see previous posts here or here and here (via Seagate)).For example here are some tips for big data storage and storage making decisions in general.

Disclosure

Seagate recently invited me along with several other industry analysts to their cloud storage analyst summit in San Francisco where they covered roundtrip coach airfare, lodging, airport transfers and a nice dinner at the Epic Roast house.

hdd image

I also have received in the past a couple of Momentus XT HHDD (aka SSHD) from Seagate. These are in addition to those that I bought including various Seagate, WD along with HGST, Fujitsu, Toshiba and Samsung (SSD and HDD’s) that I use for various things.

Ok, nuff said (for now).

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Part II: EMC Evolves Enterprise Data Protection with Enhancements

Storage I/O trends

This is the second part of a two-part series on recent EMC backup and data protection announcements. Read part I here.

What about the products, what’s new?

In addition to articulating their strategy for modernizing data protection (covered in part I here), EMC announced enhancements to Avamar, Data Domain, Mozy and Networker.

Data protection storage systems (e.g. Data Domain)

Building off of previously announced Backup Recovery Solutions (BRS) including Data Domain operating system storage software enhancements, EMC is adding more application and software integration along with new platform (systems) support.

Data Domain (e.g. Protection Storage) enhancements include:

  • Application integration with Oracle, SAP HANA for big data backup and archiving
  • New Data Domain protection storage system models
  • Data in place upgrades of storage controllers
  • Extended Retention now available on added models
  • SAP HANA Studio backup integration via NFS
  • Boost for Oracle RMAN, native SAP tools and replication integration
  • Support for backing up and protecting Oracle Exadata
  • SAP (non HANA) support both on SAP and Oracle

Data in place upgrades of controllers for 4200 series models on up (previously available on some larger models). This means that controllers can be upgraded with data remaining in place as opposed to a lengthy data migration.

Extended Retention facility is a zero cost license that enables more disk drive shelves to be attached to supported Data Domain systems. Thus there is a not a license fee, however you do pay for the storage shelves and drives to increase the available storage capacity. Note that this feature increases the storage capacity by adding more disk drives and does not increase the performance of the Data Domain system. Extended Retention has been available in the past however is now supported via more platform models. The extra storage capacity is essentially placed into a different tier that an archive policy can then migrate data into.

Boost for accelerating data movement to and from Data Domain systems is only available using Fibre Channel. When asked about FC over Ethernet (FCoE) or iSCSI EMC indicated its customers are not asking for this ability yet. This has me wondering if it is that the current customer focus is around FC, or if those customers are not yet ready for iSCSI or FCoE, or, if there were iSCSI or FCoE support, more customers would ask for it?

With the new Data Domain protection storage systems EMC is claiming up to:

  • 4x faster performance than earlier models
  • 10x more scalable and 3x more backup/archive streams
  • 38 percent lower cost per GB based on holding price points and applying improvements


EMC Data Domain data protection storage platform family


Data Domain supporting both backup and archive

Expanding Data Domain from backup to archive

EMC continues to evolve the Data Domain platform from just being a backup target platform with dedupe and replication to a multi-function, multi-role solution. In other words, one platform with many uses. This is an example of using one tool or technology for different purposes such as backup and archiving, however with separate polices. Here is a link to a video where I discuss using common tools for backup and archiving, however with separate polices. In the above figure EMC Data Domain is shown as being used for backup along with storage tiering and archiving (file, email, Sharepoint, content management and databases among other workloads).


EMC Data Domain supporting different functions and workloads

Also shown are various tools from other vendors such as Commvault Simpana that can be used as both a backup or archiving tool with Data Domain as a target. Likewise Dell products acquired via the Quest acquisition are shown along with those from IBM (e.g. Tivoli), FileTek among others. Note that if you are a competitor of EMC or simply a fan of other technology you might come to the conclusion that the above may not be different from others. Then again others who are not articulating their version or vision of something like the above figure probably should be also stating the obvious vs. arguing they did it first.

Data source integration (aka data protection software tools)

It seems like just yesterday that EMC acquired Avamar (2006) and NetWorker aka Legato (2003), not to mention Mozy (2007) or Dantz (Retrospect, since divested) in 2004. With the exception of Dantz (Retrospect) which is now back in the hands of its original developers, EMC continues to enhance and evolve Avamar, Mozy and NetWorker including with this announcement.

General Avamar 7 and Networker 8.1 enhancements include:

  • Deeper integration with primary storage and protection storage tiers
  • Optimization for VMware vSphere virtual server environments
  • Improved visibility and control for data protection of enterprise applications

Additional Avamar 7 enhancements include:

  • More Data Domain integration and leveraging as a repository (since Avamar 6)
  • NAS file systems with NDMP accelerator access (EMC Isilon & Celera, NetApp)
  • Data Domain Boost enhancements for faster backup / recovery
  • Application integration with IBM (DB2 and Notes), Microsoft (Exchange, Hyper-V images, Sharepoint, SQL Server), Oracle, SAP, Sybase, VMware images

Note that Avamar dat is still used mainly for ROBO and desktop, laptop type backup scenarios that do not yet support Data Domain. Also see Mozy enhancements below).

Avamar supports VMware vSphere virtual server environments using granular change block tracking (CBT) technology as well as image level backup and recovery with vSphere plugins. This includes an Instant Access recovery when images are stored on Data Domain storage.

Instant Access enables a VM that has been protected using Avamar image level technology on Data Domain to be booted via an NFS VMware Dat. VMware sees the VM and is able to power it on and boot directly from the Data Domain via the NFS Dat. Once the VM is active, it can be Storage vMotion to a production storage VMware Dat while active (e.g. running) for recovery on the fly capabilities.


Instant Access to a VM on Data Domain storage

EMC NetWorker 8.1 enhancements include:

  • Enhanced visibility and control for owners of data
  • Collaborative protection for Oracle environments
  • Synchronize backup and data protection between DBA and Backup admin’s
  • Oracle DBAs use native tools (e.g. RMAN)
  • Backup admin implements organizations SLA’s (e.g. using Networker)
  • Deeper integration with EMC primary storage (e.g. VMAX, VNX, etc)
  • Isilon integration support
  • Snapshot management (VMAX, VNX, RecoverPoint)
  • Automation and wizards for integration, discovery, simplified management
  • Policy-based management, fast recovery from snapshots
  • Integrating snapshots into and as part of data protection strategy. Note that this is more than basic snapshot management as there is also the ability to roll over a snapshot into a Data Domain protection storage tier.
  • Deeper integration with Data Domain protection storage tier
  • Data Domain Boost over Fibre Channel for faster backups and restores
  • Data Domain Virtual Synthetics to cut impact of full backups
  • Integration with Avamar for managing image level backup recovery (Avamar services embedded as part of NetWorker)
  • vSphere Web Client enabling self-service recovery of VMware images
  • Newly created VMs inherit backup polices automatically

Mozy is being positioned for enterprise remote office branch office (ROBO) or distributed private cloud where Avamar, NetWorker or Data Domain solutions are not as applicable. EMC has mentioned that they have over 800 enterprises using Mozy for desktop, laptop, ROBO and mobile data protection. Note that this is a different target market than the Mozy consumer product focused which also addresses smaller SMBs and SOHOs (Small Office Home Offices).

EMC Mozy enhancements to be more enterprise grade:

  • Simplified management services and integration
  • Active Directory (AD) for Microsoft environments
  • New storage pools (multiple types of pools) vs. dedicated storage per client
  • Keyless activation for faster provisioning of backup clients

Note that EMC enhanced earlier this year Data Protection Advisor (DPA) with version 6.0.

What does this all mean?

Storage I/O trends

Data protection and backup discussions often focus around tape summit resources or cloud arguments, although this is changing. What is changing is growing awareness and discussion around how data protection storage mediums, systems and services are used along with the associated software management tools.

Some will say backup is broke often pointing a finger at a media or medium (e.g. tape and disk) about what is wrong. Granted in some environments the target medium (or media) destination is an easy culprit to point a finger to as the problem (e.g. the usual tape sucks or is dead) mantra. However, for many environments while there can be issues, it is more often than not the media, medium, device or target storage system that is broke, instead how it is being used or abused.

This means revisiting how tools are used along with media or storage systems allocated, used and retained with respect to different threat risk scenarios. After all, not everything is the same in the data center or information factory.

Thus modernizing data protection is more than swapping media or mediums including types of storage system from one to another. It is also more than swapping out one backup or data protection tool for another. Modernizing data protection means rethinking what different applications and data need to be protected against various threat risks.

Storage I/O trends

What this has to do with today’s announcement is that EMC is among others in the industry moving towards a holistic data protection modernizing thought model.

In my opinion what you are seeing out of EMC and some others is taking that step back and expanding the data protection conversation to revisit, rethink why, how, where, when and by whom applications and information get protected.

This announcement also ties into finding and removing costs vs. simply cutting cost at the cost of something elsewhere (e.g. service levels, performance, availability). In other words, finding and removing complexities or overhead associated with data protection while making it more effective.

Some closing points, thoughts and more links:

There is no such thing as a data or information recession
People and data are living longer while getting larger
Not everything is the same in the data center or information factory
Rethink data protection including when, why, how, where, with what and by whom
There is little data, big data, very big data and big fast data
Data protection modernization is more than playing buzzword bingo
Avoid using new technology in old ways
Data footprint reduction (DFR) can be help counter changing data life-cycle patterns
EMC continues to leverage Avamar while keeping Networker relevant
Data Domain evolving for both backup and archiving as an example of tool for multiple uses

Ok, nuff said (for now).

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

EMC Evolves Enterprise Data Protection with Enhancements (Part I)

Storage I/O trends

A couple of months ago at EMCworld there were announcements around ViPR, Pivotal along with trust and clouds among other topics. During the recent EMCworld event there were some questions among attendees what about backup and data protection announcements (or lack there of)?

Modernizing Data Protection

Today EMC announced enhancements to its Backup Recovery Solutions (BRS) portfolio (@EMCBackup) that continue to enable information and applications data protection modernizing including Avamar, Data Domain, Mozy and Networker.

Keep in mind you can’t go forward if you can’t go back, which means if you do not have good data protection to go to, you can’t go forward with your information.

EMC Modern Data Protection Announcements

As part of their Backup to the Future event, EMC announced the following:

  • New generation of data protection products and technologies
  • Data Domain systems: enhanced application integration for backup and archive
  • Data protection suite tools Avamar 7 and Networker 8.1
  • Enhanced Cloud backup capabilities for the Mozy service
  • Paradigm shift as part of data protection modernizing including revisiting why, when, where, how, with what and by whom data protection is accomplished.

What did EMC announce for data protection modernization?

While much of the EMC data protection announcement is around product, there is also the aspect of rethinking data protection. This means looking at data protection modernization beyond swapping out media (e.g. tape for disk, disk for cloud) or one backup software tool for another. Instead, revisiting why data protection needs to be accomplished, by whom, how to remove complexity and cost, enable agility and flexibility. This also means enabling data protection to be used or consumed as a service in traditional, virtual and private or hybrid cloud environments.

EMC uses as an example (what they refer to as Accidental Architecture) of how there are different group and areas of focus, along with silos associated with data protection. These groups span virtual, applications, database, server, storage among others.

The results are silos that need to be transformed in part using new technology in new ways, as well as addressing a barrier to IT convergence (people and processes). The theme behind EMC data protection strategy is to enable the needs and requirements of various groups (servers, applications, database, compliance, storage, BC and DR) while removing complexity.

Moving from Silos of data protection to a converged service enabled model

Three data protection and backup focus areas

This sets the stage for the three components for enabling a converged data protection model that can be consumed or used as a service in traditional, virtual and private cloud environments.


EMC three components of modernized data protection (EMC Future Backup)

The three main components (and their associated solutions) of EMC BRS strategy are:

  • Data management services: Policy and storage management, SLA, SLO, monitoring, discovery and analysis. This is where tools such as EMC Data Protection Advisor (aka via WysDM acquisition) fit among others for coordination or orchestration, setting and managing polices along with other activities.
  • Data source integration: Applications, Database, File systems, Operating System, Hypervisors and primary storage systems. This is where data movement tools such as Avamar and Networker among others fit along with interfaces to application tools such as Oracle RMAN.
  • Protection storage: Targets, destination storage system with media or mediums optimized for protecting and preserving data along with enabling data footprint reduction (DFR). DFR includes functionality such as compression and dedupe among others. Example of data protection storage is EMC Data Domain.

Read more about product items announced and what this all means here in the second of this two-part series.

Ok, nuff said (for now).

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

HDS Mid Summer Storage and Converged Compute Enhancements

Storage I/O trends

Converged Compute, SSD Storage and Clouds

Hitachi Data Systems (HDS) announced today several enhancements to their data storage and unified compute portfolio as part of their Maximize I.T. initiative.

Setting the context

As part of setting the stage for this announcement, HDS has presented the following strategy vision as part their vision for IT transformation and cloud computing.

https://hds.com/solutions/it-strategies/maximize-it.html?WT.ac=us_hp_flash_r11

What was announced

This announcement builds on earlier ones around HDS Unified Storage (HUS) primary storage using nand flash MLC Solid State Devices (SSD) and Hard Disk Drives (HDD’s), along with unified block and file (NAS), as well Unified Compute Platform (UCP) also known as converged compute, networking, storage and software. These enhancements follow recent updates to the HDS Content Platform (HCP) for object, file and content storage.

There are three main focus areas of the announcement:

  • Flash SSD storage enhancements for HUS
  • Unified with enhanced file (aka BlueArc based)
  • Enhanced unified compute (UCP)

HDS Flash SSD acceleration

The question should not be if SSD is in your future, rather when, where, with what and how much will be needed.

As part of this announcement, HDS is releasing an all flash SSD based HUS enterprise storage system. Similar to what other vendors have done, HDS is attaching flash SSD storage to their HUS systems in place of HDD’s. Hitachi has developed their own SSD module announced in 2012 (read more here). The HDS SSD module use Multi Level Cell (MLC) nand flash chips (dies) that now supports 1.6TB of storage space capacity unit. This is different from other vendors who either use nand flash SSD drive form factor devices (e.g. Intel, Micron, Samsung, SANdisk, Seagate, STEC (now WD), WD among others) or, PCIe form factor cards (e.g. FusionIO, Intel, LSI, Micron, Virident among others) or, attach a third-party external SSD device (e.g. IBM/TMS, Violin, Whiptail etc.).

Like some other vendors, HDS has also done more than simply attach a SSD (drive, PCIe card, or external device) to their storage systems calling it an integrated solution. What this means is that HDS has implemented software or firmware changes into their storage systems to manage durability and extend flash duty cycles caused by program erase (P/E) cycle wear. In addition HDS has implemented performance optimization in their storage systems to leverage the faster SSD modules, after all, faster storage media or devices need fast storage systems or controllers.

While the new all flash storage system can be initially bought with just SSD, similar to other hybrid storage solutions, hard disk drives (HDD’s) can also be installed. For enabling full performance at low latency, HDS is addressing both the flash SSD modules as well as the storage systems they attach to including back-end, front-end and caching in-between.

The release enables 500,000 or half a million IOPS (no IOP size, reads or writes, random or sequential. Future firmware (non-disrupted) to enable higher performance that HDS is claiming will be 1,000,000 IOPS at under a millisecond) were indicated.

In addition to future performance improvements, HDS is also indicating increased storage space capacity of its MLC flash SSD modules (1.6TB today). Using 12 modules (1.6TB each), 154TB of flash SSD can be placed in a single rack.

HDS File and Network Attached Storage (NAS)

HUS unified NAS file system and gateway (BlueArc based) enhancements include:

  • New platforms leveraging faster processors (both Intel and Field Programmable Gate Arrays (FPGA’s))
  • Common management and software tools from 3000 to new 4000 series
  • Bandwidth doubled with faster connections and more memory
  • Four 10GbE NAS serving ports (front-end)
  • Four 8Gb Fibre Channel ports (back-end)
  • FPGA leveraged for off-loading some dedupe functions (faster performance)

HDS Unified Complete Platform (UCP)

As part of this announcement, HDS is enhancing the Unified Compute Platform (UCP) offerings. HDS re-entered the compute market in 2012 joining other vendors offering unified compute, storage and networking solutions. The HDS converged data infrastructure competes with AMD (Seamicro) SM15000, Dell vStart and VRTX (for lower end market), EMC and VCE vBlock, NetApp FlexPod along with those from HP (or Moonshot micro servers), IBM Puresystems, Oracle and others.

UCP Pro for VMware vSphere

  • Turnkey converged solution (Compute, Networking, Storage, Software)
  • Includes VMware vSphere pre-installed (OEM from VMware)
  • Flexible compute blade options
  • Three storage system options (HUS, HUS VM and VSP)
  • Cisco and Brocade IP networking
  • UCP Director 3.0 with enhanced automation and orchestration software

UCP Select for Microsoft Private Cloud

  • Supports Hyper-V 3.0 server virtualization
  • Live migration with DR and resynch
  • Microsoft Fast Track certified

UCP Select for Oracle RAC

  • HDS Flash SSD storage
  • SMP x86 compute for performance
  • 2x improvements for IOPS less than 1 millisecond
  • Common management with HiCommand suite
  • Integrated with Oracle RMAN and OVM

UCP Select for SAP HANA

  • Scale out to 8TBs memory (DRAM)
  • Tier 1 storage system certified for SAP HANA DR
  • Leverages SAP HANA SAP storage connector API

What this all means?

Storage I/O trends

With these announcements HDS is extending its storage centric hardware, software and services solution portfolio for block, file and object access across different usage tiers (systems, applications, mediums). HDS is also expanding their converged unified compute platforms to stay competitive with others including Dell, EMC, Fujitsu, HP, IBM, NEC, NetApp and Oracle among others. For environments with HDS storage looking for converged solutions to support VMware, Microsoft Hyper-V, Oracle or SAP HANA these UCP systems are worth checking out as part of evaluating vendor offerings. Likewise for those who have HDS storage exploring SSD offerings, these announcements give opportunities to enable consolidation as do the unified file (NAS) offerings.

Note that now HDS does not have a public formalized message or story around PCIe flash cards, however they have relationships with various vendors as part of their UCP offerings.

Overall a good set of incremental enhancements for HDS to stay competitive and leverage their field proven capabilities including management software tools.

Ok, nuff said

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

IBM buys Softlayer, for software defined infrastructures and clouds?

Storage I/O trends

IBM today announced that they are acquiring privately held Dallas Texas-based Softlayer and Infrastructure as a Service (IaaS) provider.

IBM is referring to this as Cloud without Compromise (read more about clouds, conversations and confidence here).

It’s about the management, flexibly, scale up, out and down, agility and valueware.

Is this IBM’s new software defined data center (SDDC) or software defined infrastructure (SDI) or software defined management (SDM), software defined cloud (SDC) or software defined storage (SDS) play?

This is more than a software defined marketing or software defined buzzword announcement.
buzzword bingo

If your view of software define ties into the theme of leveraging, unleashing resources, enablement, flexibility, agility of hardware, software or services, then you may see Softlayer as part of a software defined infrastructure.

On the other hand, if your views or opinions of what is or is not software defined align with a specific vendor, product, protocol, model or punditry then you may not agree, particular if it is in opposition to anything IBM.

Cloud building blocks

During today’s announcement briefing call with analysts there was a noticeable absence of software defined buzz talk which given its hype and usage lately, was a refreshing welcome relief. So with that, lets set the software defined conversation aside (for now).

Cloud image

Who is Softlayer, why is IBM interested in them?

Softlayer provide software and services to support both SMB, SME and other environments with bare metal (think traditional hosted servers), along with multi-tenant (shared) cloud virtual public and private cloud service offerings.

Softlayer supports various applications, environments from little data processing to big data analytics to little data processing, from social to mobile to legacy. This includes those app’s or environments that were born in the cloud, or legacy environments looking to leverage cloud in a complimentary way.

Some more information about Softlayer includes:

  • Privately held IaaS firm founded in 2005
  • Estimated revenue run rate of around $400 million with 21,000 customers
  • Mix of SMB, SME and Web-based or born in the cloud customers
  • Over 100,000 devices under management
  • Provides a common modularized management framework set of tools
  • Mix of customers from Web startups to global enterprise
  • Presence in 13 data centers across the US, Asia and Europe
  • Automation, interoperability, large number of API access and supported
  • Flexibility, control and agility for physical (bare metal) and cloud or virtual
  • Public, private and data center to data center
  • Designed for scale, durability and resiliency without complexity
  • Part of OpenStack ecosystem both leveraging and supporting it
  • Ability for customers to use OpenStack, Cloudstack, Citrix, VMware, Microsoft and others
  • Can be white or private labeled for use as a service by VARs

Storage I/O trends

What IBM is planning for Softlayer

Softlayer will report into IBM Global Technology Services (GTS) complimenting existing capabilities which includes ten cloud computing centers on five continents. IBM has created a new Cloud Services Division and expects cloud revenues could be $7 billion annually by the end of 2015. Amazon Web Services (AWS) is estimated to hit about $3.8 Billion by end of 2013. Note that in 2012 AWS target available market was estimated to be about $11 Billion which should become larger moving forward. Rackspace by comparison had recent earning announcements on May 8 2013 of $362 Million with most that being hosting vs. cloud services. That works out to an annualized estimated run rate of $1.448 Billion (or better depending on growth).

I mention AWS and Rackspace to illustrate the growth potential for IBM and Softlayer to discuss the needs of both cloud services customers such as those who use AWS (among other providers), as well as bare metal or hosting or dedicated servers such as with Rackspace among others.

Storage I/O trends

What is not clear at this time is if IBM is combing traditional hosting, managed services, new offerings, products and services in that $7 billion number. In other words if the $7 billion represents what the revenues of the new Cloud Services Division independent of other GTS or legacy offerings as well as excluding hardware, software products from STG (Systems Technology Group) among others, that would be impressive and a challenge to the likes of AWS.

IBM has indicated that it will leverage its existing Systems Technology Group (STG) portfolio of servers and storage extending the capabilities of Softlayer. While currently x86 based, one could expect IBM to leverage and add support for their Power systems line of processors and servers, Puresystems, as well as storage such as XIV or V7000 among others for tier 1 needs.

Some more notes:

  • Ties into IBM Smart Cloud initiatives, model and paradigm
  • This deal is expected to close 3Q 2013, terms or price were not disclosed.
  • Will enable Softlayer to be leveraged on a larger, broader basis by IBM
  • Gives IBM increased access to SMB, SME and web customers than in the past
  • Software and development to stay part of Softlayer
  • Provides IBM an extra jumpstart play for supporting and leveraging OpenStack
  • Compatible and supports Cloustack and Citrix who are also IBM partners
  • Also compatible and supports VMware who is also an IBM partner

Storage I/O trends

Some other thoughts and perspectives

This is a good and big move for IBM to add value and leverage their current portfolios of both services, as well as products and technologies. However it is more than just adding value or finding new routes to markets for those goods and services, it’s also about enablement IBM has long been in the services including managed services, out or in sourcing and hosting business. This can be seen as another incremental evolution of those offerings to both existing IBM enterprise customers, as well to reach new, emerging along with SMB or SME’s that tend to grow up and become larger consumers of information and data infrastructure services.

Further this helps to add some product and meaning around the IBM Smart Cloud initiatives and programs (not that there was not before) giving customers, partners and resellers something tangible to see, feel, look at, touch and gain experience not to mention confidence with clouds.

On the other hand, is IBM signaling that they want more of the growing business that AWS has been realizing, not to mention Microsoft Azure, Rackspace, Centurylink/Savvis, Verizon/Terremark, CSC, HP Cloud, Cloudsigma, Bluehost among many others (if I missed you or your favorite provider, feel free to add it to the comments section). This also gets IBM added Devops exposure something that Softlayer practices, as well as a Openstack play, not to mention cloud, software defined, virtual, big data, little data, analytics and many other buzzword bingo terms.

Congratulations to both IBM and the Softlayer folks, now lets see some execution to watch how this unfolds.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Web chat Thur May 30th: Hot Storage Trends for 2013 (and beyond)

Storage I/O trends

Join me on Thursday May 30, 2013 at Noon ET (9AM PT) for a live web chat at the 21st Century IT (21cit) site (click here to register, sign-up, or view earlier posts). This will be an online web chat format interactive conversation so if you are not able to attend, you can visit at your convenience to view and give your questions along with comments. I have done several of these web chats with 21cit as well as other venues that are a lot of fun and engaging (time flies by fast).

For those not familiar, 21cIT is part of the Desum/UBM family of sites including Internet Evolution, SMB Authority, and Enterprise Efficiency among others that I do article posts, videos and live chats for.


Sponsored by NetApp

I like these types of sites in that while they have a sponsor, the content is generally kept separate between those of editors and contributors like myself and the vendor supplied material. In other words I coordinate with the site editors on what topics I feel like writing (or doing videos) about that align with the given sites focus and themes as opposed to following and advertorial calendar script.

During this industry trends perspective web chat, one of the topics and themes planned for discussion include software defined storage (SDS). View a recent video blog post I did here about SDS. In addition to SDS, Solid State Devices (SSD) including nand flash, cloud, virtualization, object, backup and data protection, performance, management tools among others are topics that will be put out on the virtual discussion table.

Storage I/O trends

Following are some examples of recent and earlier industry trends perspectives posts that I have done over at 21cit:

Video: And Now, Software-Defined Storage!
There are many different views on what is or is not “software-defined” with products, protocols, preferences and even press releases. Check out the video and comments here.

Big Data and the Boston Marathon Investigation
How the human face of big-data will help investigators piece together all the evidence in the Boston bombing tragedy and bring those responsible to justice. Check out the post and comments here.

Don’t Use New Technologies in Old Ways
You can add new technologies to your data center infrastructure, but you won’t get the full benefit unless you update your approach with people, processes, and policies. Check out the post and comments here.

Don’t Let Clouds Scare You, Be Prepared
The idea of moving to cloud computing and cloud services can be scary, but it doesn’t have to be so if you prepare as you would for implementing any other IT tool. Check out the post and comments here.

Storage and IO trends for 2013 (& Beyond)
Efficiency, new media, data protection, and management are some of the keywords for the storage sector in 2013. Check out these and other trends, predictions along with comments here.

SSD and Real Estate: Location, Location, Location
You might be surprised how many similarities between buying real estate and buying SSDs.
Location matters and it’s not if, rather when, where, why and how you will be using SSD including nand flash in the future, read more and view comments here.

Everything Is Not Equal in the Data center, Part 3
Here are steps you can take to give the right type of backup and protection to data and solutions, depending on the risks and scenarios they face. The result? Savings and efficiencies. Read more and view comments here.

Everything Is Not Equal in the Data center, Part 2
Your data center’s operations can be affected at various levels, by multiple factors, in a number of degrees. And, therefore, each scenario requires different responses. Read more and view comments here.

Everything Is Not Equal in the Data center, Part 1
It pays to check your data center Different components need different levels of security, storage, and availability. Read more and view comments here.

Data Protection Modernizing: More Than Buzzword Bingo
IT professionals and solution providers should put technologies such as disk based backup, dedupe, cloud, and data protection management tools as assets and resources to make sure they receive necessary funding and buy in. Read more and view comments here.

Don’t Take Your Server & Storage IO Pathing Software for Granted
Path managers are valuable resources. They will become even more useful as companies continue to carry out cloud and virtualization solutions. Read more and view comments here.

SSD Is in Your Future: Where, When & With What Are the Questions
During EMC World 2012, EMC (as have other vendors) made many announcements around flash solid-state devices (SSDs), underscoring the importance of SSDs to organizations future storage needs. Read more here about why SSD is in your future along with view comments.

Changing Life cycles and Data Footprint Reduction (DFR), Part 2
In the second part of this series, the ABCDs (Archive, Backup modernize, Compression, Dedupe and data management, storage tiering) of data footprint reduction, as well as SLOs, RTOs, and RPOs are discussed. Read more and view comments here.

Changing Life cycles and Data Footprint Reduction (DFR), Part 1
Web 2.0 and related data needs to stay online and readily accessible, creating storage challenges for many organizations that want to cut their data footprint. Read more and view comments here.

No Such Thing as an Information Recession
Data, even older information, must be protected and made accessible cost-effectively. Not to mention that people and data are living longer as well as getting larger. Read more and view comments here.

Storage I/O trends

These real-time, industry trends perspective interactive chats at 21cit are open forum format (however be polite and civil) as well as non vendor sales or marketing pitches. If you have specific questions you ‘d like to ask or points of view to express, click here and post them in the chat room at any time (before, during or after).

Mark your calendar for this event live Thursday, May 30, at noon ET or visit after the fact.

Ok, nuff said (for now)

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

How many I/O iops can flash SSD or HDD do?

How many i/o iops can flash ssd or hdd do with vmware?

sddc data infrastructure Storage I/O ssd trends

Updated 2/10/2018

A common question I run across is how many I/O iopsS can flash SSD or HDD storage device or system do or give.

The answer is or should be it depends.

This is the first of a two-part series looking at storage performance, and in context specifically around drive or device (e.g. mediums) characteristics across HDD, HHDD and SSD that can be found in cloud, virtual, and legacy environments. In this first part the focus is around putting some context around drive or device performance with the second part looking at some workload characteristics (e.g. benchmarks).

What about cloud, tape summit resources, storage systems or appliance?

Lets leave those for a different discussion at another time.

Getting started

Part of my interest in tools, metrics that matter, measurements, analyst, forecasting ties back to having been a server, storage and IO performance and capacity planning analyst when I worked in IT. Another aspect ties back to also having been a sys admin as well as business applications developer when on the IT customer side of things. This was followed by switching over to the vendor world involved with among other things competitive positioning, customer design configuration, validation, simulation and benchmarking HDD and SSD based solutions (e.g. life before becoming an analyst and advisory consultant).

Btw, if you happen to be interested in learn more about server, storage and IO performance and capacity planning, check out my first book Resilient Storage Networks (Elsevier) that has a bit of information on it. There is also coverage of metrics and planning in my two other books The Green and Virtual Data Center (CRC Press) and Cloud and Virtual Data Storage Networking (CRC Press). I have some copies of Resilient Storage Networks available at a special reader or viewer rate (essentially shipping and handling). If interested drop me a note and can fill you in on the details.

There are many rules of thumb (RUT) when it comes to metrics that matter such as IOPS, some that are older while others may be guess or measured in different ways. However the answer is that it depends on many things ranging from if a standalone hard disk drive (HDD), Hybrid HDD (HHDD), Solid State Device (SSD) or if attached to a storage system, appliance, or RAID adapter card among others.

Taking a step back, the big picture

hdd image
Various HDD, HHDD and SSD’s

Server, storage and I/O performance and benchmark fundamentals

Even if just looking at a HDD, there are many variables ranging from the rotational speed or Revolutions Per Minute (RPM), interface including 1.5Gb, 3.0Gb, 6Gb or 12Gb SAS or SATA or 4Gb Fibre Channel. If simply using a RUT or number based on RPM can cause issues particular with 2.5 vs. 3.5 or enterprise and desktop. For example, some current generation 10K 2.5 HDD can deliver the same or better performance than an older generation 3.5 15K. Other drive factors (see this link for HDD fundamentals) including physical size such as 3.5 inch or 2.5 inch small form factor (SFF), enterprise or desktop or consumer, amount of drive level cache (DRAM). Space capacity of a drive can also have an impact such as if all or just a portion of a large or small capacity devices is used. Not to mention what the drive is attached to ranging from in internal SAS or SATA drive bay, USB port, or a HBA or RAID adapter card or in a storage system.

disk iops
HDD fundamentals

How about benchmark and performance for marketing or comparison tricks including delayed, deferred or asynchronous writes vs. synchronous or actually committed data to devices? Lets not forget about short stroking (only using a portion of a drive for better IOP’s) or even long stroking (to get better bandwidth leveraging spiral transfers) among others.

Almost forgot, there are also thick, standard, thin and ultra thin drives in 2.5 and 3.5 inch form factors. What’s the difference? The number of platters and read write heads. Look at the following image showing various thickness 2.5 inch drives that have various numbers of platters to increase space capacity in a given density. Want to take a wild guess as to which one has the most space capacity in a given footprint? Also want to guess which type I use for removable disk based archives along with for onsite disk based backup targets (compliments my offsite cloud backups)?

types of disks
Thick, thin and ultra thin devices

Beyond physical and configuration items, then there are logical configuration including the type of workload, large or small IOPS, random, sequential, reads, writes or mixed (various random, sequential, read, write, large and small IO). Other considerations include file system or raw device, number of workers or concurrent IO threads, size of the target storage space area to decide impact of any locality of reference or buffering. Some other items include how long the test or workload simulation ran for, was the device new or worn in before use among other items.

Tools and the performance toolbox

Then there are the various tools for generating IO’s or workloads along with recording metrics such as reads, writes, response time and other information. Some examples (mix of free or for fee) include Bonnie, Iometer, Iorate, IOzone, Vdbench, TPC, SPC, Microsoft ESRP, SPEC and netmist, Swifttest, Vmark, DVDstore and PCmark 7 among many others. Some are focused just on the storage system and IO path while others are application specific thus exercising servers, storage and IO paths.

performance tools
Server, storage and IO performance toolbox

Having used Iometer since the late 90s, it has its place and is popular given its ease of use. Iometer is also long in the tooth and has its limits including not much if any new development, never the less, I have it in the toolbox. I also have Futremark PCmark 7 (full version) which turns out has some interesting abilities to do more than exercise an entire Windows PC. For example PCmark can use a secondary drive for doing IO to.

PCmark can be handy for spinning up with VMware (or other tools) lots of virtual Windows systems pointing to a NAS or other shared storage device doing real world type activity. Something that could be handy for testing or stressing virtual desktop infrastructures (VDI) along with other storage systems, servers and solutions. I also have Vdbench among others tools in the toolbox including Iorate which was used to drive the workloads shown below.

What I look for in a tool are how extensible are the scripting capabilities to define various workloads along with capabilities of the test engine. A nice GUI is handy which makes Iometer popular and yes there are script capabilities with Iometer. That is also where Iometer is long in the tooth compared to some of the newer generation of tools that have more emphasis on extensibility vs. ease of use interfaces. This also assumes knowing what workloads to generate vs. simply kicking off some IOPs using default settings to see what happens.

Another handy tool is for recording what’s going on with a running system including IO’s, reads, writes, bandwidth or transfers, random and sequential among other things. This is where when needed I turn to something like HiMon from HyperIO, if you have not tried it, get in touch with Tom West over at HyperIO and tell him StorageIO sent you to get a demo or trial. HiMon is what I used for doing start, stop and boot among other testing being able to see IO’s at the Windows file system level (or below) including very early in the boot or shutdown phase.

Here is a link to some other things I did awhile back with HiMon to profile some Windows and VDI activity test profiling.

What’s the best tool or benchmark or workload generator?

The one that meets your needs, usually your applications or something as close as possible to it.

disk iops
Various 2.5 and 3.5 inch HDD, HHDD, SSD with different performance

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

That depends, however continue reading part II of this series to see some results for various types of drives and workloads.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.