NVMe overview primer

server storage I/O trends
Updated 2/2/2018

This is the first in a five-part mini-series providing a primer and overview of NVMe. View companion posts and more material at www.thenvmeplace.com.

What is NVM Express (NVMe)

Non-Volatile Memory (NVM) includes persistent memory such as NAND flash and other forms Solid State Devices (SSD). NVM express (NVMe) is a new server storage I/P protocol alternative to AHCI/SATA and the SCSI protocol used by Serial Attached SCSI (SAS). Note that the name NVMe is owned and managed by the industry trade group for NVM Express is (www.nvmexpress.org).

The key question with NVMe is not if, rather when, where, why, how and with what will it appear in your data center or server storage I/O data infrastructure. This is a companion to material that I have on my micro site www.thenvmeplace.com that provides an overview of NVMe, as well as helps to discuss some of the questions about NVMe.

Main features of NVMe include among others:

  • Lower latency due to improve drivers and increased queues (and queue sizes)
  • Lower CPU used to handler larger number of I/Os (more CPU available for useful work)
  • Higher I/O activity rates (IOPs) to boost productivity unlock value of fast flash and NVM
  • Bandwidth improvements leveraging various fast PCIe interface and available lanes
  • Dual-pathing of devices like what is available with dual-path SAS devices
  • Unlock the value of more cores per processor socket and software threads (productivity)
  • Various packaging options, deployment scenarios and configuration options
  • Appears as a standard storage device on most operating systems
  • Plug-play with in-box drivers on many popular operating systems and hypervisors

Why NVMe for Server Storage I/O?
NVMe has been designed from the ground up for accessing fast storage including flash SSD leveraging PCI Express (PCIe). The benefits include lower latency, improved concurrency, increased performance and the ability to unleash a lot more of the potential of modern multi-core modern processors.

NVMe Server Storage I/O
Figure 1 shows common server I/O connectivity including PCIe, SAS, SATA and NVMe.

NVMe, leveraging PCIe, enables modern applications to reach their full potential. NVMe is one of those rare, generational protocol upgrades that comes around every couple of decades to help unlock the full performance value of servers and storage. NVMe does need new drivers, but once in place, it plugs and plays seamlessly with existing tools, software and user experiences. Likewise many of those drivers are now in the box (e.g. ship with) for popular operating systems and hypervisors.

While SATA and SAS provided enough bandwidth for HDDs and some SSD uses, more performance is needed. NVMe near-term does not replace SAS or SATA they can and will coexist for years to come enabling different tiers of server storage I/O performance.

NVMe unlocks the potential of flash-based storage by allowing up to 65,536 (64K) queues each with 64K commands per queue. SATA allowed for only one command queue capable of holding 32 commands per queue and SAS supports a queue with 64K command entries. As a result, the storage IO capabilities of flash can now be fed across PCIe much faster to enable modern multi-core processors to complete more useful work in less time.

Where To Learn More

View additional NVMe, SSD, NVM, SCM, Data Infrastructure and related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Continue reading about NVMe with Part II (Different NVMe configurations) in this five-part series, or jump to Part III, Part IV or Part V.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Various Hardware (SAS, SATA, NVM, M2) and Software (VHD) Defined Odd’s and Ends

Various Hardware (SAS, SATA, NVM, M2) and Software (VHD) Defined Odd’s and Ends

server storage I/O trends

Ever need to add another GbE port to a small server, workstation or perhaps Intel NUC, however no PCIe slots are available? How about attaching a M2 form factor flash SSD card to a server or device that does not have an M2 port, or, for mirroring two M2 cards together with a RAID adapter? Looking for tool to convert a Windows system to a Virtual Hard Disk (VHD) while it is running? The following are a collection of odd’s and end’s devices and tools for hardware and software defining your environment.

Adding GbE Ports Without PCIe Ports

Adding Ethernet ports or NICs is relatively easy with larger servers, assuming you have available PCIe slots.

However what about when you are limited or out of PCIe ports? One option is to use USB (preferably USB 3) to GbE connectors. Another option is if you have an available mSATA card slot, such as on a server or workstation that had a WiFi card you no longer need to use, is get a mSATA to GbE kit (shown below). Granted you might have to get creative with the PCIe bracket depending on what you are going to put one of these into.

mSATA to GbE and USB to GbE
Left mSATA to GbE port, Right USB 3 (Blue) to GbE connector

Tip: Some hypervisors may not like the USB to GbE, or have drivers for the mSATA to GbE connector, likewise some operating systems do not have in the box drivers. Start by loading GbE drivers such as those needed for RealTek NICs and you may end up with plug and play.

SAS to SATA Interposer and M2 to SATA docking card

In the following figure on the left is a SAS to SATA interposer which enables a SAS HDD or SSD to connect to a SATA connector (power and data). Keep in mind that SATA devices can attach to SAS ports, however the usual rule of thumb is that SAS devices can not attach to a SATA port or controller. To prevent that from occurring, the SAS and SATA connectors have different notched connectors that prevent a SAS device from plugging into a SATA connector.

Where the SAS to SATA interposers come into play is that some servers or systems have SAS controllers, however their drive bays have SATA power and data connectors. Note that the key here is that there is a SAS controller, however instead of a SAS connector to the drive bay, a SATA connector is used. To get around this, interposers such as the one above allows the SAS device to attach to the SATA connector which in turn attached to the SAS controller.

SAS SATA interposer and M2 to SATA docking card
Left SAS to SATA interposer, Right M2 to SATA docking card

In the above figure on the right, is an M2 NVM nand flash SSD card attached to a M2 to SATA docking card. This enables M2 cards that have SATA protocol controllers (as opposed to M2 NVMe) to be attached to a SATA port on an adapter or RAID card. Some of these docking cards can also be mounted in server or storage system 2.5" (or larger) drive bays. You can find both of the above at Amazon.com as well as many other venues.

P2V and Creating VHD and VHDX

I like and use various Physical to Virtual (P2V) as well as Virtual to Virtual (V2V) and even Virtual to Physical (V2P) along with Virtual to Cloud (V2C) tools including those from VMware (vCenter Converter), Microsoft (e.g. Microsoft Virtual Machine Converter) among others. Likewise Clonezilla, Acronis and many other tools are in the toolbox. One of those other tools that is handy for relatively quickly making a VHD or VHDX out of a running Windows server is disk2vhd.

disk2vhd

Now you should ask, why not just use the Microsoft Migration tool or VMware converter?

Simple, if you use those or other tools and run into issues with GPT vs MBR or BIOS vs UEFI settings among others, disk2vhd is a handy work around. Simply install it, tell it where to create the VHD or VHDX (preferably on another device), start the creation, when done, move the VHDX or VHD to where needed and go from there.

Where do you get disk2vhd and how much does it cost?

Get it here from Microsoft Technet Windows Sysinternals page and its free.

Where to learn more

Continue reading about the above and other related topics with these links.

  • Server storage I/O Intel NUC nick knack notes – Second impressions
  • Some Windows Server Storage I/O related commands
  • Server Storage I/O Cables Connectors Chargers & other Geek Gifts
  • The NVM (Non Volatile Memory) and NVMe Place (Non Volatile Memory Express)
  • Nand flash SSD and NVM server storage I/O memory conversations
  • Cloud Storage for Camera Data?
  • Via @EmergencyMgtMag Cloud Storage for Camera Data?

  • Software Defined Storage Virtual Hard Disk (VHD) Algorithms + Data Structures
  • Part II 2014 Server Storage I/O Geek Gift ideas
  • What this all means

    While the above odd’s and end’s tips, tricks, tools and technology may not be applicable for your production environment, perhaps they will be useful for your test or home lab environment needs. On the other hand, the above may not be practically useful for anything, yet simply entertaining, the rest is up to you as if there is any return on investment, or, perhaps return on innovation from use these or other odd’s, end’s tips and tricks that might be outside of the traditional box so to speak.

    Ok, nuff said (for now)

    Cheers
    Gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO All Rights Reserved

    NVMe Place NVM Non Volatile Memory Express Resources

    Updated 8/31/19
    NVMe place server Storage I/O data infrastructure trends

    Welcome to NVMe place NVM Non Volatile Memory Express Resources. NVMe place is about Non Volatile Memory (NVM) Express (NVMe) with Industry Trends Perspectives, Tips, Tools, Techniques, Technologies, News and other information.

    Disclaimer

    Please note that this NVMe place resources site is independent of the industry trade and promoters group NVM Express, Inc. (e.g. www.nvmexpress.org). NVM Express, Inc. is the sole owner of the NVM Express specifications and trademarks.

    NVM Express Organization
    Image used with permission of NVM Express, Inc.

    Visit the NVM Express industry promoters site here to learn more about their members, news, events, product information, software driver downloads, and other useful NVMe resources content.

     

    The NVMe Place resources and NVM including SCM, PMEM, Flash

    NVMe place includes Non Volatile Memory (NVM) including nand flash, storage class memories (SCM), persistent memories (PM) are storage memory mediums while NVM Express (NVMe) is an interface for accessing NVM. This NVMe resources page is a companion to The SSD Place which has a broader Non Volatile Memory (NVM) focus including flash among other SSD topics. NVMe is a new server storage I/O access method and protocol for fast access to NVM based storage and memory technologies. NVMe is an alternative to existing block based server storage I/O access protocols such as AHCI/SATA and SCSI/SAS devices commonly used for access Hard Disk Drives (HDD) along with SSD among other things.

    Server Storage I/O NVMe PCIe SAS SATA AHCI
    Comparing AHCI/SATA, SCSI/SAS and NVMe all of which can coexist to address different needs.

    Leveraging the standard PCIe hardware interface, NVMe based devices (that have an NVMe controller) can be accessed via various operating systems (and hypervisors such as VMware ESXi) with both in the box drivers or optional third-party device drivers. Devices that support NVMe can be 2.5″ drive format packaged that use a converged 8637/8639 connector (e.g. PCIe x4) coexisting with SAS and SATA devices as well as being add-in card (AIC) PCIe cards supporting x4, x8 and other implementations. Initially, NVMe is being positioned as a back-end to servers (or storage systems) interface for accessing fast flash and other NVM based devices.

    NVMe as back-end storage
    NVMe as a “back-end” I/O interface for NVM storage media

    NVMe as front-end server storage I/O interface
    NVMe as a “front-end” interface for servers or storage systems/appliances

    NVMe has also been shown to work over low latency, high-speed RDMA based network interfaces including RoCE (RDMA over Converged Ethernet) and InfiniBand (read more here, here and here involving Mangstor, Mellanox and PMC among others). What this means is that like SCSI based SAS which can be both a back-end drive (HDD, SSD, etc) access protocol and interface, NVMe can also being used for back-end can also be used as a front-end of server to storage interface like how Fibre Channel SCSI_Protocol (aka FCP), SCSI based iSCSI, SCSI RDMA Protocol via InfiniBand (among others) are used.

    NVMe features

    Main features of NVMe include among others:

    • Lower latency due to improve drivers and increased queues (and queue sizes)
    • Lower CPU used to handle larger number of I/Os (more CPU available for useful work)
    • Higher I/O activity rates (IOPs) to boost productivity unlock value of fast flash and NVM
    • Bandwidth improvements leveraging various fast PCIe interface and available lanes
    • Dual-pathing of devices like what is available with dual-path SAS devices
    • Unlock the value of more cores per processor socket and software threads (productivity)
    • Various packaging options, deployment scenarios and configuration options
    • Appears as a standard storage device on most operating systems
    • Plug-play with in-box drivers on many popular operating systems and hypervisors

    Shared external PCIe using NVMe
    NVMe and shared PCIe (e.g. shared PCIe flash DAS)

    NVMe related content and links

    The following are some of my tips, articles, blog posts, presentations and other content, along with material from others pertaining to NVMe. Keep in mind that the question should not be if NVMe is in your future, rather when, where, with what, from whom and how much of it will be used as well as how it will be used.

    • How to Prepare for the NVMe Server Storage I/O Wave (Via Micron.com)
    • Why NVMe Should Be in Your Data Center (Via Micron.com)
    • NVMe U2 (8639) vs. M2 interfaces (Via Gamersnexus)
    • Enmotus FuzeDrive MicroTiering (StorageIO Lab Report)
    • EMC DSSD D5 Rack Scale Direct Attached Shared SSD All Flash Array Part I (Via StorageIOBlog)
    • Part II – EMC DSSD D5 Direct Attached Shared AFA (Via StorageIOBlog)
    • NAND, DRAM, SAS/SCSI & SATA/AHCI: Not Dead, Yet! (Via EnterpriseStorageForum)
    • Non Volatile Memory (NVM), NVMe, Flash Memory Summit and SSD updates (Via StorageIOblog)
    • Microsoft and Intel showcase Storage Spaces Direct with NVM Express at IDF ’15 (Via TechNet)
    • MNVM Express solutions (Via SuperMicro)
    • Gaining Server Storage I/O Insight into Microsoft Windows Server 2016 (Via StorageIOblog)
    • PMC-Sierra Scales Storage with PCIe, NVMe (Via EEtimes)
    • RoCE updates among other items (Via InfiniBand Trade Association (IBTA) December Newsletter)
    • NVMe: The Golden Ticket for Faster Flash Storage? (Via EnterpriseStorageForum)
    • What should I consider when using SSD cloud? (Via SearchCloudStorage)
    • MSP CMG, Sept. 2014 Presentation (Flash back to reality – Myths and Realities – Flash and SSD Industry trends perspectives plus benchmarking tips)– PDF
    • Selecting Storage: Start With Requirements (Via NetworkComputing)
    • PMC Announces Flashtec NVMe SSD NVMe2106, NVMe2032 Controllers With LDPC (Via TomsITpro)
    • Exclusive: If Intel and Micron’s “Xpoint” is 3D Phase Change Memory, Boy Did They Patent It (Via Dailytech)
    • Intel & Micron 3D XPoint memory — is it just CBRAM hyped up? Curation of various posts (Via Computerworld)
    • How many IOPS can a HDD, HHDD or SSD do (Part I)?
    • How many IOPS can a HDD, HHDD or SSD do with VMware? (Part II)
    • I/O Performance Issues and Impacts on Time-Sensitive Applications (Via CMG)
    • Via EnterpriseStorageForum: 5 Hot Storage Technologies to Watch
    • Via EnterpriseStorageForum: 10-Year Review of Data Storage

    Non-Volatile Memory (NVM) Express (NVMe) continues to evolve as a technology for enabling and improving server storage I/O for NVM including nand flash SSD storage. NVMe streamline performance enabling more work to be done (e.g. IOPs), data to be moved (bandwidth) at a lower response time using less CPU.

    NVMe and SATA flash SSD performance

    The above figure is a quick look comparing nand flash SSD being accessed via SATA III (6Gbps) on the left and NVMe (x4) on the right. As with any server storage I/O performance comparisons there are many variables and take them with a grain of salt. While IOPs and bandwidth are often discussed, keep in mind that with the new protocol, drivers and device controllers with NVMe that streamline I/O less CPU is needed.

    Additional NVMe Resources

    Also check out the Server StorageIO companion micro sites landing pages including thessdplace.com (SSD focus), data protection diaries (backup, BC/DR/HA and related topics), cloud and object storage, and server storage I/O performance and benchmarking here.

    If you are in to the real bits and bytes details such as at device driver level content check out the Linux NVMe reflector forum. The linux-nvme forum is a good source if you are developer to stay up on what is happening in and around device driver and associated topics.

    Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

    Software Defined Data Infrastructure Essentials Book SDDC

    Disclaimer

    Disclaimer: Please note that this site is independent of the industry trade and promoters group NVM Express, Inc. (e.g. www.nvmexpress.org). NVM Express, Inc. is the sole owner of the NVM Express specifications and trademarks. Check out the NVM Express industry promoters site here to learn more about their members, news, events, product information, software driver downloads, and other useful NVMe resources content.

    NVM Express Organization
    Image used with permission of NVM Express, Inc.

    Wrap Up

    Watch for updates with more content, links and NVMe resources to be added here soon.

    Ok, nuff said (for now)

    Cheers
    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

    Server Storage I/O Cables Connectors Chargers & other Geek Gifts

    Server Storage I/O Cables Connectors Chargers & other Geek Gifts

    server storage I/O trends

    This is part one of a two part series for what to get a geek for a gift, read part two here.

    It is that time of the year when annual predictions are made for the upcoming year, including those that will be repeated next year or that were also made last year.

    It’s also the time of the year to get various projects wrapped up, line up new activities, get the book-keeping things ready for year-end processing and taxes, as well as other things.

    It’s also that time of the year to do some budget and project planning including upgrades, replacements, enhancements while balancing an over-subscribed holiday party schedule some of you may have.

    Lets not forget getting ready for vacations, perhaps time off from work with some time upgrading your home lab or other projects.

    Then there are the gift lists or trying to figure out what to get that difficult to shop for person particular geek’s who may have everything, or want the latest and greatest that others have, or something their peers don’t have yet.

    Sure I have a DJI Phantom II on my wish list, however also have other things on my needs list (e.g. what I really need and want vs. what would be fun to wish for).

    DJI Phantom helicopter drone
    Image via DJI.com, click on image to learn more and compare models

    So here are some things for the geek or may have everything or is up on having the latest and greatest, yet forgot or didn’t know about some of these things.

    Not to mention some of these might seem really simple and low-cost, think of them like a Lego block or erector set part where your imagination will be your boundary how to use them. Also, most if not all of these are budget friendly particular if you shop around.

    Replace a CD/DVD with 4 x 2.5″ HDD’s or SSD’s

    So you need to add some 2.5" SAS or SATA HDD’s, SSD’s, HHDD’s/SSHD’s to your server for supporting your VMware ESXi, Microsoft Hyper-V, KVM, Xen, OpenStack, Hadoop or legacy *nix or Windows environment or perhaps gaming system. Challenge is that you are out of disk drive bay slots and you want things neatly organized vs. a rat’s nest of cables hanging out of your system. No worries assuming your server has an empty media bay (e.g. those 5.25" slots where CDs/DVDs or really old HDD’s go), or if you can give up the CD/DVD, then use that bay and its power connector to add ones of these. This is a 4 x 2.5" SAS and SATA drive bay that has a common power connector (molex male) with each drive bay having its own SATA drive connection. By each drive having its own SATA connection you can map the drives to an on-board available SATA port attached to a SAS or SATA controller, or attach an available port on a RAID adapter to the ports using a cable such as small form factor (SFF) 8087 to SATA.

    sas storage enclosuresas sata storage enclosure
    (Left) Rear view with Molex power and SATA cables (Right) front view

    I have a few of these in different systems and what I like about them is that they support different drive speeds, plus they will accept a SAS drive where many enclosures in this category only support SATA. Once you mount your 2.5" HDD or SSD using screws, you can hot swap (requires controller and OS support) the drives and move them between other similar enclosures as needed. The other thing I like is that there are front indicator lights as well as by each drive having its own separate connection, you can attach some of the drives to a RAID adapter while others connected to on-board SATA ports. Oh, and you can also have different speeds of drives as well.

    Power connections

    Depending on the type of your server, you may have Molex, SATA or some other type of power connections. You can use different power connection cables to go from one type (Molex) to another, create a connection for two devices, create an extension to reach hard to get to mounting locations.

    Warning and disclosure note, keep in mind how much power you are drawing when attaching devices to not cause an electrical or fire hazard, follow manufactures instructions and specification doing so at your own risk! After all, Just like Clark Grizzwald in National Lampoon Christmas Vacation who found you could attach extension cord to splitters to splitters and fan-out to have many lights attached, you don’t want to cause a fire or blackout when you plug to many drives in.


    National Lampoon Christmas Vacation

    Measuring Power

    Ok so you do not want to do a Clark Grizzwald (see above video) and overload a power circuit, or perhaps you simply want to know how many watts, amps or quality of your voltage is.

    There are many types of power meters along with various prices, some even have interfaces where you can grab event data to correlate with server storage I/O networking performance to do things such as IOP’s per watt among other metrics. Speaking of IOP’s per watt, check out the SNIA Emerald site where they have some good tools including a benchmark script that uses Vdbench to drive hot band workload (e.g. basically kick the crap out of a storage system).

    Back to power meters, I like the Kill A Watt series of meters as they give good info about amps, volts, power quality. I have these plugged into outlets so I can see how much power is being used by the battery backup units (BBU) aka UPS that also serve as power surge filters. If needed I can move these further downstream to watch the power intake of a specific server, storage, network or other device.

    Kill A Watt Power meter

    Standby and backup power

    Electrical power surge strips should be a given or considered common sense, however what is or should be common sense should be repeated so that it remains common sense, you should be using power surge strips or other devices.

    Standby, UPS and BBU

    For most situations a good surge suppressor will cover short power transients.

    APC power strips and battery backup
    Image via APC and model similar to those that I have

    For slightly longer power outages of a few seconds to minutes, that’s where battery backup up (BBU) units that also have surge suppression comes into play. There are many types, sizes with various features to meet your needs and budget. I have several of theses in a couple of different sizes not only for servers, storage and networking equipment (including some WiFi access points, routers, etc), I also have them for home things such as satellite DVR’s. However not everything needs to stay on while others simply need to stay on long-enough in order to shutdown manually or via automated power off sequences.

    Alternate Power Generation

    Generators are not just for the rich and famous or large data center, like other technologies they are available in different sizes, power capacity, fuel sources, manual or automated among other things.

    kohler residential generator
    Image via Kohler Power similar to model that I have

    Note that even with a typical generator there will be a time gap from the time power goes off until the generator starts, stabilizes and you have good power. That’s where the BBU and UPS mentioned above comes into play to bridge those time gaps which in my cases is about 25-30 seconds. Btw, knowing how much power your technology is drawing using tools such as the Kill A Watt is part of the planning process to avoid surprises.

    What about Solar Power

    Yup, whether it is to fit in and be green, or simply to get some electrical power when or where it is not needed to charge a battery or power some device, these small solar power devices are very handy.

    solar charger
    Image via Amazon.com
    solar battery charger
    Image via Amazon.com

    For example you can get or easily make an adapter to charge laptops, cell phones or even power them for normal use (check manufactures information on power usage, Amps and Voltage draws among other warnings to prevent fire and other things). Btw, not only are these handy for computer related things, they also work great for keeping batteries on my fishing boat charged so that I have my fish finder and other electronics, just saying.

    Fire suppression

    How about a new or updated smoke and fire detection alarm monitor, as well as fire extinguisher for the geek’s software defined hardware that runs on power (electrical or battery)?

    The following is from the site Fire Extinguisher 101 where you can learn more about different types of suppression technologies.

    Image via Fire Extinguisher 101
    • Class A extinguishers are for ordinary combustible materials such as paper, wood, cardboard, and most plastics. The numerical rating on these types of extinguishers indicates the amount of water it holds and the amount of fire it can extinguish. Geometric symbol (green triangle)
    • Class B fires involve flammable or combustible liquids such as gasoline, kerosene, grease and oil. The numerical rating for class B extinguishers indicates the approximate number of square feet of fire it can extinguish. Geometric symbol (red square)
    • Class C fires involve electrical equipment, such as appliances, wiring, circuit breakers and outlets. Never use water to extinguish class C fires – the risk of electrical shock is far too great! Class C extinguishers do not have a numerical rating. The C classification means the extinguishing agent is non-conductive. Geometric symbol (blue circle)
    • Class D fire extinguishers are commonly found in a chemical laboratory. They are for fires that involve combustible metals, such as magnesium, titanium, potassium and sodium. These types of extinguishers also have no numerical rating, nor are they given a multi-purpose rating – they are designed for class D fires only. Geometric symbol (Yellow Decagon)
    • Class K fire extinguishers are for fires that involve cooking oils, trans-fats, or fats in cooking appliances and are typically found in restaurant and cafeteria kitchens. Geometric symbol (black hexagon)

    Wrap up for part I

    This wraps up part I of what to get a geek V2014, continue reading part II here.

    Ok, nuff said, for now…

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    Care to help Coraid with a Storage I/O Content Conversation?

    Storage I/O trends

    Blog post – Can you help Coraid with a Storage I/O Content Conversation?

    Over the past week or so have had many email conversations with the Coraid marketing/public relations (PR) folks who want to share some of their content unique or custom content with you.

    Normally I (aka @StorageIO) does not accept unsolicited (placed) content (particular for product pitch/placements) from vendors or their VARs, PR, surrogates including third or fourth party placement firms. Granted StorageIOblog.com does have site sponsors , per our policies that is all that those are, advertisements with no more or less influence than for others. StorageIO does do commissioned or sponsored custom content including white papers, solution briefs among other things with applicable disclosures, retention of editorial tone and control.

    Who is Coraid and what do they do?

    However wanting to experiment with things, not to mention given Coraids persistence, let’s try something to see how it works.

    Coraid for those who are not aware provides an alternative storage and I/O networking solution called ATA over Ethernet or AoE (here is a link to Coraids Analyst supplied content page). AoE enables servers with applicable software to use storage equipped with AoE technology (or via an applicable equipped appliance) to use Ethernet as an interconnect and transport. AoE is on the low-end an alternative to USB, Thunderbolt or direct attached SATA or SAS, along with switched or shared SAS (keep in mind SATA can plug into SAS, not vice versa).

    In addition AoE is an alternative to the industry standard iSCSI (SCSI command set mapped onto IP) which can be found in various solutions including as a software stack. Another area where AoE is positioned by Coraid is as an alternative to Fibre Channel SCSI_FCP (FCP) and Fibre Channel over Ethernet (FCoE). Keep in mind that Coraid AoE is block based (granted they have other solutions) as opposed to NAS (file) such as NFS, CIFS/SMB/SAMBA, pNFS or HDFS among others and is using native Ethernet as opposed to being layered on top of iSCSI.

    Storage I/O trends

    So here is the experiment

    Since Coraid wanted to get their unique content placed either by them or via others, lets see what happens in the comments section here at StorageIOblog.com. The warning of course is keep it respectful, courteous and no bashing or disparaging comments about others (vendors, products, technology).

    Thus the experiment is simple, lets see how the conversation evolves into the caveats, benefits, tradeoffs and experiences of those who have used or looked into the solution (pro or con) and why a particular opinion. If you have a perspective or opinion, no worries, however put it in context including if you are a Coraid employee, var, reseller, surrogate and likewise for those with other view (state who you are, your affiliation and other disclosure). Likewise if providing or supplying links to any content (white papers, videos, webinars) including via third-party provide applicable disclosures (e.g. it was sponsored and by whom etc.).

    Disclosure

    While I have mentioned or provided perspectives about them via different venues (online, print and in person) in the past, Coraid has never been a StorageIO client. Likewise this is not an endorsement for or against Coraid and their AoE or other solutions, simply an industry trends perspective.

    Ok, nuff said (for now).

    Cheers
    Gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    Viking SATADIMM: Nand flash SATA SSD in DDR3 DIMM slot?

    Storage I/O trends

    Today computer and data storage memory vendor Viking announced that SSD vendor Solidfire has deployed their SATADIMM modules in DDR3 DIMM (e.g. Random Access Memory (RAM) main memory) slots of their SF SSD based storage solution.

    solidfire ssd storage with satadimm
    Solidfire SD solution with SATADIMM via Viking

    Nand flash SATA SSD in a DDR3 DIMM slot?

    Per Viking, Solidfire uses the SATADIMM as boot devices and cache to complement the normal SSD drives used in their SF SSD storage grid or cluster. For those not familiar, Solidfire SF storage systems or appliances are based on industry standard servers that are populated with SSD devices which in turn are interconnected with other nodes (servers) to create a grid or cluster of SSD performance and space capacity. Thus as nodes are added, more performance, availability and capacity are also increased all of which are accessed via iSCSI. Learn more about Solidfire SD solutions on their website here.

    Here is the press release that Viking put out today:

    Viking Technology SATADIMM Increases SSD Capacity in SolidFire’s Storage System (Press Release)

    Viking Technology’s SATADIMM enables higher total SSD capacity for SolidFire systems, offering cloud infrastructure providers an optimized and more powerful solution

    FOOTHILL RANCH, Calif., August 12, 2013 – Viking Technology, an industry leading supplier of Solid State Drives (SSDs), Non-Volatile Dual In-line Memory Module (NVDIMMs), and DRAM, today announced that SolidFire has selected its SATADIMM SSD as both the cache SSD and boot volume SSD for their storage nodes. Viking Technology’s SATADIMM SSD enables SolidFire to offer enhanced products by increasing both the number and the total capacity of SSDs in their solution.

    “The Viking SATADIMM gives us an additional SSD within the chassis allowing us to dedicate more drives towards storage capacity, while storing boot and metadata information securely inside the system,” says Adam Carter, Director of Product Management at SolidFire. “Viking’s SATADIMM technology is unique in the market and an important part of our hardware design.”

    SATADIMM is an enterprise-class SSD in a Dual In-line Memory Module (DIMM) form factor that resides within any empty DDR3 DIMM socket. The drive enables SSD caching and boot capabilities without using a hard disk drive bay. The integration of Viking Technology’s SATADIMM not only boosts overall system performance but allows SolidFire to minimize potential human errors associated with data center management, such as accidentally removing a boot or cache drive when replacing an adjacent failed drive.

    “We are excited to support SolidFire with an optimal solid state solution that delivers increased value to their customers compared to traditional SSDs,” says Adrian Proctor, VP of Marketing, Viking Technology. “SATADIMM is a solid state drive that takes advantage of existing empty DDR3 sockets and provides a valuable increase in both performance and capacity.”

    SATADIMM is a 6Gb SATA SSD with capacities up to 512GB. A next generation SAS solution with capacities of 1TB & 2TB will be available early in 2014. For more information, visit our website www.vikingtechnology.com or email us at sales@vikingtechnology.com.

    Sales information is available at: www.vikingtechnology.com, via email at sales@vikingtechnology.com or by calling (949) 643-7255.

    About Viking Technology Viking Technology is recognized as a leader in NVDIMM technology. Supporting a broad range of memory solutions that bridge DRAM and SSD, Viking delivers solutions to OEMs in the enterprise, high-performance computing, industrial and the telecommunications markets. Viking Technology is a division of Sanmina Corporation (Nasdaq: SANM), a leading Electronics Manufacturing Services (EMS) provider. More information is available at www.vikingtechnology.com.

    About SolidFire SolidFire is the market leader in high-performance data storage systems designed for large-scale public and private cloud infrastructure. Leveraging an all-flash scale-out architecture with patented volume-level quality of service (QoS) control, providers can now guarantee storage performance to thousands of applications within a shared infrastructure. In-line data reduction techniques along with system-wide automation are fueling new block-storage services and advancing the way the world uses the cloud.

    What’s inside the press release

    On the surface this might cause some to jump to the conclusion that the nand flash SSD is being accessed via the fast memory bus normally used for DRAM (e.g. main memory) of a server or storage system controller. For some this might even cause a jump to conclusion that Viking has figured out a way to use nand flash for reads and writes not only via a DDR3 DIMM memory location, as well as doing so with the Serial ATA (SATA) protocol enabling server boot and use by any operating system or hypervisors (e.g. VMware vSphere or ESXi, Microsoft Hyper-V, Xen or KVM among others).

    Note for those not familiar or needing a refresh on DRAM, DIMM and related items, here is an excerpt from Chapter 7 (Servers – Physical, Virtual and Software) from my book "The Green and Virtual Data Center" (CRC Press).

    7.2.2 Memory

    Computers rely on some form of memory ranging from internal registers, local on-board processor Level 1 (L1) and Level 2 (L2) caches, random accessible memory (RAM), non-volatile RAM (NVRAM) or Flash along with external disk storage. Memory, which includes external disk storage, is used for storing operating system software along with associated tools or utilities, application programs and data. Read more of the excerpt here…

    Is SATADIMM memory bus nand flash SSD storage?

    In short no.

    Some vendors or their surrogates might be tempted to spin such a story by masking some details to allow your imagination to run wild a bit. When I saw the press release announcement I reached out to Tinh Ngo (Director Marketing Communications) over at Viking with some questions. I was expecting the usual marketing spin story, dancing around the questions with long answers or simply not responding with anything of substance (or that requires some substance to believe). Again what I found was the opposite and thus want to share with you some of the types of questions and answers.

    So what actually is SATADIMM? See for yourself in the following image (click on it to view or Viking site).

    Via Viking website, click on image or here to learn more about SATADIMM

    Does SATADIMM actually move data via DDR3 and memory bus? No, SATADIMM only draws power from it (yes nand flash does need power when in use contrary to a myth I was told about).

    Wait, then how is data moved and how does it get to and through the SATA IO stack (hardware and software)?

    Simple, there is a cable connector that attached to the SATADIMM that in turn attached to an internal SATA port. Or using a different connector cable attach the SATADIMM (up to four) to a standard SAS internal port such as on a main board, HBA, RAID or caching adapter.

    industry trend

    Does that mean that Viking and who ever uses SATADIMM is not actually moving data or implementing SATA via the memory bus and DDR3 DIMM sockets? That would be correct, data movement occurs via cable connection to standard SATA or SAS ports.

    Wait, why would I give up a DDR3 DIMM socket in my server that could be used for more DRAM? Great question and one that should be it depends on if you need more DRAM or more nand flash? If you are out of drive slots or PCIe card slots and have enough DRAM for your needs along with available DDR3 slots, you can stuff more nand flash into those locations assuming you have SAS or SATA connectivity.

    satadimm
    SATADIMM with SATA connector top right via Viking

    satadimm sata connector
    SATADIMM SATA connector via Viking

    satadimm sas connector
    SATADIMM SAS (Internal) connector via Viking

    Why not just use the onboard USB ports and plug-in some high-capacity USB thumb drives to cut cost? If that is your primary objective it would probably work and I can also think of some other ways to cut cost. However those are also probably not the primary tenants that people looking to deploy something like SATADIMM would be looking for.

    What are the storage capacities that can be placed on the SATADIMM? They are available in different sizes up to 400GB for SLC and 480GB for MLC. Viking indicated that there are larger capacities and faster 12Gb SAS interfaces in the works which would be more of a surprise if there were not. Learn more about current product specifications here.

    Good questions. Attached are three images that sort of illustrates the connector. As well, why not a USB drive; well, there are customers that put 12 of these in the system (with up to 480GB usable capacity) that equates to roughly an added 5.7TBs inside the box without touching the drive bays (left for mass HDD’s). You will then need to raid/connect) all the SATADIMM via a HBA.

    How fast is the SATADIMM and does putting it into a DDR3 slot speed things up or slow them down? Viking has some basic performance information on their site (here). However generally should be the same or similar to reach a SAS or SATA SSD drive, although keep SSD metrics and performance in the proper context. Also keep in mind that the DDR3 DIMM slot is only being used for power and not real data movement.

    Is the SATADIMM using 3Gbs or 6Gbs SATA? Good questions, today is 6Gb SATA (remember that SATA can attach to a SAS port however not vise versa). Lets see if Viking responds in the comments with more including RAID support (hardware or software) along with other insight such as UNMAP, TRIM, Advanced Format (AF) 4KByte blocks among other things.

    Have I actually tried SATADIMM yet? No, not yet. However would like to give it a test drive and workout if one were to show up on my doorstep along with disclosure and share the results if applicable.

    industry trend

    Future of nand flash in DRAM DIMM sockets

    Keep in mind that someday nand flash will actually seem not only in a Webex or Powerpoint demo preso (e.g. similar to what Diablo Technology is previewing), as well as in real use for example what Micron earlier this year predicted for flash on DDR4 (more DDR3 vs. DDR4 here).

    Is SATADIMM the best nand flash SSD approach for every solution or environment? No, however it does give some interesting options for those who are PCIe card, or HDD and SSD drive slot constrained that also have available DDR3 DIMM sockets. As to price, check with Viking, wish I could say tell them Greg from StorageIO sent you for a good value, however not sure what they would say or do.

    Related more reading:
    How much storage performance do you want vs. need?
    Can RAID extend the life of nand flash SSD?
    Can we get a side of context with them IOPS and other storage metrics?
    SSD & Real Estate: Location, Location, Location
    What is the best kind of IO? The one you do not have to do
    SSD, flash and DRAM, DejaVu or something new?

    Ok, nuff said (for now).

    Cheers
    Gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)

    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    As the platters spin, HDD’s for cloud, virtual and traditional storage environments

    HDDs for cloud, virtual and traditional storage environments

    Storage I/O trends

    Updated 1/23/2018

    As the platters spin is a follow-up to a recent series of posts on Hard Disk Drives (HDD’s) along with some posts about How Many IOPS HDD’s can do.

    HDD and storage trends and directions include among others

    HDD’s will continue to be declared dead into the next decade, just as they have been for over a decade, meanwhile they are being enhanced, continued to be used in evolving roles.

    hdd and ssd

    SSD will continue to coexist with HDD, either as separate or converged HHDD’s. Where, where and how they are used will also continue to evolve. High IO (IOPS) or low latency activity will continue to move to some form of nand flash SSD (PCM around the corner), while storage capacity including some of which has been on tape stays on disk. Instead of more HDD capacity in a server, it moves to a SAN or NAS or to a cloud or service provider. This includes for backup/restore, BC, DR, archive and online reference or what some call active archives.

    The need for storage spindle speed and more

    The need for faster revolutions per minute (RPM’s) performance of drives (e.g. platter spin speed) is being replaced by SSD and more robust smaller form factor (SFF) drives. For example, some of today’s 2.5” SFF 10,000 RPM (e.g. 10K) SAS HDD’s can do as well or better than their larger 3.5” 15K predecessors can for both IOPS and bandwidth. This is also an example where the RPM speed of a drive may not be the only determination for performance as it has been in the past.


    Performance comparison of four different drive types, click to view larger image.

    The need for storage space capacity and areal density

    In terms of storage enhancements, watch for the appearance of Shingled Magnetic Recording (SMR) enabled HDD’s to help further boost the space capacity in the same footprint. Using SMR HDD manufactures can put more bits (e.g. areal density) into the same physical space on a platter.


    Traditional vs. SMR to increase storage areal density capacity

    The generic idea with SMR is to increase areal density (how many bits can be safely stored per square inch) of data placed on spinning disk platter media. In the above image on the left is a representative example of how traditional magnetic disk media lays down tracks next to each other. With traditional magnetic recording approaches, the tracks are placed as close together as possible for the write heads to safely write data.

    With new recording formats such as SMR along with improvements to read/write heads, the tracks can be more closely grouped together in an overlapping way. This overlapping way (used in a generic sense) is like how the shingles on a roof overlap, hence Shingled Magnetic Recording. Other magnetic recording or storage enhancements in the works include Heat Assisted Magnetic Recording (HAMR) and Helium filed drives. Thus, there is still plenty of bits and bytes room for growth in HDD’s well into the next decade to co-exist and complement SSD’s.

    DIF and AF (Advanced Format), or software defining the drives

    Another evolving storage feature that ties into HDD’s is Data Integrity Feature (DIF) that has a couple of different types. Depending on which type of DIF (0, 1, 2, and 3) is used; there can be added data integrity checks from the application to the storage medium or drive beyond normal functionality. Here is something to keep in mind, as there are different types or levels of DIF, when somebody says they support or need DIF, ask them which type or level as well as why.

    Are you familiar with Advanced Format (AF)? If not you should be. Traditionally outside of special formats for some operating systems or controllers, that standard open system data storage block, page or sector has been 512 bytes. This has served well in the past, however; with the advent of TByte and larger sized drives, a new mechanism is needed. The need is to support both larger average data allocation sizes from operating systems and storage systems, as well as to cut the overhead of managing all the small sectors. Operating systems and file systems have added new partitioning features such as GUID Partition Table (GPT) to support 1TB and larger SSD, HDD and storage system LUN’s.

    These enhancements are enabling larger devices to be used in place of traditional Master Boot Record (MBR) or other operating system partition and allocation schemes. The next step, however, is to teach operating systems, file systems, and hypervisors along with their associated tools or drives how to work with 4,096 byte or 4 Kbyte sectors. The advantage will be to cut the overhead of tracking all of those smaller sectors or file system extents and clusters. Today many HDD’s support AF however by default may have 512-byte emulation mode enabled due to lack of operating system or other support.

    Intelligent Power Management, moving beyond drive spin down

    Intelligent Power Management (IPM) is a collection of techniques that can be applied to vary the amount of energy consumed by a drive, controller or processor to do its work. These include in the case of an HDD slowing the spin rate of platters, however, keep in mind that mass in motion tends to stay in motion. This means that HDD’s once up and spinning do not need as much relative power as they function like a flywheel. Where their power draw comes in is during reading and write, in part to the movement of reading/write heads, however also for running the processors and electronics that control the device. Another big power consumer is when drives spin up, thus if they can be kept moving, however at a lower rate, along with disabling energy used by read/write heads and their electronics, you can see a drop in power consumption. Btw, a current generation 3.5” 4TB 6Gbs SATA HDD consumes about 6-7 watts of power while in active use, or less when in idle mode. Likewise a current generation high performance 2.5” 1.2TB HDD consumes about 4.8 watts of energy, a far cry from the 12-16 plus watts of energy some use as HDD fud.

    Hybrid Hard Disk Drives (HHDD) and Solid State Hybrid Drives (SSDHD)

    Hybrid HDD’s (HHDD’s) also known as Solid State Hybrid Drives (SSHD) have been around for a while and if you have read my earlier posts, you know that I have been a user and fan of them for several years. However one of the drawbacks of the HHDD’s has been lack of write acceleration, (e.g. they only optimize for reads) with some models. Current and emerging HDDD’s are appearing with a mix of nand flash SLC (used in earlier versions), MLC and eMLC along with DRAM while enabling write optimization. There are also more drive options available as HHDD’s from different manufactures both for desktop and enterprise class scenarios.

    The challenge with HHDD’s is that many vendors either do not understand how they fit and compliment their tiering or storage management software tools or simply do not see the value proposition. I have had vendors and others tell me that the HHDD’s don’t make sense as they are too simple, how can they be a fit without requiring tiering software, controllers, SSD and HDD’s to be viable?

    Storage I/O trends

    I also see a trend similar to when the desktop high-capacity SATA drives appeared for enterprise-class storage systems in the early 2000s. Some of the same people did not see where or how a desktop class product or technology could ever be used in an enterprise solution.

    Hmm, hey wait a minute, I seem to recall similar thinking when SCSI drives appeared in the early 90s, funny how some things do not change, DejaVu anybody?

    Does that mean HHDD’s will be used everywhere?

    Not necessarily, however, there will be places where they make sense, others where either an HDD or SSD will be more practical.

    Networking with your server and storage

    Drive native interfaces near-term will remain as 6Gbs (going to 12Gbs) SAS and SATA with some FC (you might still find a parallel SCSI drive out there). Likewise, with bridges or interface cards, those drives may appear as USB or something else.

    What about SCSI over PCIe, will that catch on as a drive interface? Tough to say however I am sure we can find some people who will gladly try to convince you of that. FC based drives operating at 4Gbs FC (4GFC) are still being used for some environments however most activity is shifting over to SAS and SATA. SAS and SATA are switching over from 3Gbs to 6Gbs with 12Gbs SAS on the roadmaps.

    So which drive is best for you?

    That depends; do you need bandwidth or IOPS, low latency or high capacity, small low profile thin form factor or feature functions? Do you need a hybrid or all SSD or a self-encrypting device (SED) also known as Instant Secure Erase (ISE), these are among your various options.

    Disk drives

    Why the storage diversity?

    Simple, some are legacy soon to be replaced and disposed of while others are newer. I also have a collection so to speak that get used for various testing, research, learning and trying things out. Click here and here to read about some of the ways I use various drives in my VMware environment including creating Raw Device Mapped (RDM) local SAS and SATA devices.

    Other capabilities and functionality existing or being added to HDD’s include RAID and data copy assist; securely erase, self-encrypting, vibration dampening among other abilities for supporting dense data environments.

    Where To Learn More

    Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

    Software Defined Data Infrastructure Essentials Book SDDC

    What This All Means

    Do not judge a drive only by its interface, space capacity, cost or RPM alone. Look under the cover a bit to see what is inside in terms of functionality, performance, and reliability among other options to fit your needs. After all, in the data center or information factory not everything is the same.

    From a marketing and fun to talk about new technology perspective, HDD’s might be dead for some. The reality is that they are very much alive in physical, virtual and cloud environments, granted their role is changing.

    Ok, nuff said, for now.

    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

    Putting some VMware ESX storage tips together: (Part II)

    In the first part of this post I showed how to use a tip from Dunacn Epping to fake VMware into thinking that a HHDD (Hybrid Hard Disk Drive) was a SSD.

    Now lets look at using a tip from Dave Warburton to make an internal SATA HDD into an RDM for one of my Windows-based VMs.

    My challenge was that I have a VM with a guest that I wanted to have a Raw Device Mapping (RDM) internal SATA HDD accessible to it, expect the device was an internal SATA device. Given that using the standard tools and reading some of the material available, it would have been easy to give up and quit since the SATA device was not attached to an FC or iSCSI SAN (such as my Iomega IX4 I bought from Amazon.com).

    Image of internal RDM with vMware
    Image of internal SATA drive being added as a RDM with vClient

    Thanks to Dave’s great post that I found, I was able to create a RDM of an internal SATA drive, present it to the existing VM running Windows 7 ultimate and it is now happy, as am I.

    Pay close attention to make sure that you get the correct device name for the steps in Dave’s post (link is here).

    For the device that I wanted to use, the device name was:

    From the ESX command line I found the device I wanted to use which is:

    t10.ATA_____ST1500LM0032D9YH148_____Z110S6M5

    Then I used the following ESX shell command per Dave’s tip to create an RDM of an internal SATA HDD:

    vmkfstools -z /vmfs/devices/disks/ t10.ATA_____ST1500LM0032D9YH148_____Z110S6M5
     /vmfs/volumes/dat1/rdm_ST1500L.vmdk

    Then the next steps were to update an existing VM using vSphere client to use the newly created RDM.

    Hint, Pay very close attention to your device naming, along with what you name the RDM and where you find it. Also, recommend trying or practicing on a spare or scratch device first, if something is messed up. I practiced on a HDD used for moving files around and after doing the steps in Dave’s post, added the RDM to an existing VM, started the VM and accessed the HDD to verify all was fine (it was). After shutting down the VM, I removed the RDM from it as well as from ESX, and then created the real RDM.

    As per Dave’s tip, vSphere Client did not recognize the RDM per say, however telling it to look at existing virtual disks, select browse the data stores, and low and behold, the RDM I was looking for was there. The following shows an example of using vSphere to add the new RDM to one of my existing VMs.

    In case you are wondering, why I want to make a non SAN HDD as a RDM vs. doing something else? Simple, the HDD in question is a 1.5TB HDD that has backups on that I want to use as is. The HDD is also bit locker protected and I want the flexibility to remove the device if I have to being accessible via a non-VM based Windows system.


    Image of my VMware server with internal RDM and other items

    Could I have had accomplished the same thing using a USB attached device accessible to the VM?

    Yes, and in fact that is how I do periodic updates to removable media (HDD using Seagate Goflex drives) where I am not as concerned about performance.

    While I back up off-site to Rackspace and AWS clouds, I also have a local disk based backup, along with creating periodic full Gold or master off-site copies. The off-site copies are made to removable Seagate Goflex SATA drives using a USB to SATA Goflex cable. I also have the Goflex eSATA to SATA cable that comes in handy to quickly attach a SATA device to anything with an eSATA port including my Lenovo X1.

    As a precaution, I used a different HDD that contained data I was not concerned about if something went wrong to test to the process before doing it with the drive containing backup data. Also as a precaution, the data on the backup drive is also backed up to removable media and to my cloud provider.

    Thanks again to both Dave and Duncan for their great tips; I hope that you find these and other material on their sites as useful as I do.

    Meanwhile, time to get some other things done, as well as continue looking for and finding good work a rounds and tricks to use in my various projects, drop me a note if you see something interesting.

    Ok, nuff said for now.

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    Putting some VMware ESX storage tips together (Part I)

    Have you spent time searching the VMware documentation, on-line forums, venues and books to decide how to make a local dedicated direct attached storage (DAS) type device (e.g. SATA or SAS) be Raw Device Mappings (RDM)? Part two of this post looks at how to make an RDM using an internal SATA HDD.

    Or how about how to make a Hybrid Hard disk drive (HHDD) that is faster than a regular Hard Disk Drive (HDD) on reads, however more capacity and less cost than a Solid State Device (SSD) actually appear to VMware as a SSD?

    Recently I had these and some other questions and spent some time looking around, thus this post highlights some great information I have found for addressing the above VMware challenges and some others.

    VMware vExpert image

    The SSD solution is via a post I found on fellow VMware vExpert  Duncan Epping’s yellow-brick site which if you are into VMware or server virtualization in general, and particular a fan of high-availability in general or virtual specific, add Duncan’s site to your reading list. Duncan also has some great books to add to your bookshelves including VMware vSphere 5.1 Clustering Deepdive (Volume 1) and VMware vSphere 5 Clustering Technical Deepdive that you can find at Amazon.com.

    VMware vSphere 5 Clustering Technical Deepdive book image

    Duncan’s post shows how to fake into thinking that a HDD was a SSD for testing or other purposes. Since I have some Seagate Momentus XT HHDDs that combine the capacity of a traditional HDD (and cost) with the read performance closer to a SSD (without the cost or capacity penalty), I was interested in trying Duncan’s tip (here is a link to his tip). Essential Duncan’s tip shows how to use esxcli storage nmp satp and esxcli storage core commands to make a non-SSD look like a SSD.

    The commands that were used from the VMware shell per Duncan’s tip:

    esxcli storage nmp satp rule add –satp VMW_SATP_LOCAL –device mpx.vmhba0:C0:T1:L0 –option “enable_local enable_ssd”
    esxcli storage core claiming reclaim -d mpx.vmhba0:C0:T1:L0
    esxcli storage core device list –device=mpx.vmhba0:C0:T1:L0

    After all, if the HHDD is actually doing some of the work to boost and thus fool the OS or hypervisor that it is faster than a HDD, why not tell the OS or hypervisor in this case VMware ESX that it is a SSD. So far have not seen nor do I expect to notice anything different in terms of performance as that already occurred going from a 7,200RPM (7.2K) HDD to the HHDD.

    If you know how to decide what type of a HDD or SSD a device is by reading its sense code and model number information, you will recognize the circled device as a Seagate Momentus XT HHDD. This particular model is Seagate Momentus XT II 750GB with 8GB SLC nand flash SSD memory integrated inside the 2.5-inch drive device.

    Normally the Seagate HHDDs appear to the host operating system or whatever it is attached to as a Momentus 7200 RPM SATA type disk drive. Since there are not special device drivers, controllers, adapters or anything else, essentially the Momentus XT type HHDD are plug and play. After a bit of time they start learning and caching things to boost read performance (read more about boosting read performance including Windows boot testing here).

    Image of VMware vSphere vClient storage devices
    Screen shot showing Seagate Momentus XT appearing as a SSD

    Note that the HHDD (a Seagate Momentus XT II) is a 750GB 2.5” SATA drive that boost read performance with the current firmware. Seagate has hinted that there could be a future firmware version to enable write caching or optimization however, I have waited for a year.

    Disclosure: Seagate gave me an evaluation copy of my first HHDD a couple of years ago and I then went on to buy several more from Amazon.com. I have not had a chance to try any Western Digital (WD) HHDDs yet, however I do have some of their HDDs. Perhaps I will hear something from them sometime in the future.

    For those who are SSD fans or that actually have them, yes, I know SSD’s are faster all around and that is why I have some including in my Lenovo X1. Thus for write intensive go with a full SSD today if you can afford them as I have with my Lenovo X1 which enables me to save large files faster (less time waiting). However if you want the best of both worlds for lab or other system that is doing more reads vs. writes as well as need as much capacity as possible without breaking the budget, check out the HHDDs.

    Thanks for the great tip and information Duncan, in part II of this post, read how to make an RDM using an internal SATA HDD.

     

    Ok, nuff said (for now)…

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    RAID and IOPS and IO observations

    Storage I/O trends

    There are at least two different meanings for IOPs, which for those not familiar with the information technology (IT) and data storage meaning is Input/output Operations Per second (e.g. data movement activity). Another meaning for IOP that is the international organization for a participatory society (iopsociety.org), and their fundraising activity found here.

    I recently came across a piece (here and here) talking about RAID and IOPs that had some interesting points; however, some generalizations could use some more comments. One of the interesting comments and assertions is that RAID writes increase with the number of drives in the parity scheme. Granted the specific implementation and configuration could result in an it depends type response.

    StorageIO industry trends cloud, virtualization and big data

    Here are some more perspectives to the piece (here and here) as the sites comments seem to be restricted.

    Keep in mind that such as with RAID 5 (or 6) performance, your IO size will have a bearing on if you are doing those extra back-end IOs. For example if you are writing a 32KB item that is accomplished by a single front-end IO from an applications server, and your storage system, appliance, adapter, software implementing and performing the RAID (or erasure coding for that matter) has a chunk size of say 8KB (e.g. the amount of data written to each back-end drive). Then a 5 drive R5 (e.g. 4+1) would in fact have five back-end IOPS (32KB / 8KB = 4 + 1 (8KB Parity)).

    StorageIO industry trends cloud, virtualization and big data

    Otoh of the front end IOP were only 16KB (using whole numbers for simplicity, otherwise round-up), in the case of a write, there would be three back-end writes with the R5 (e.g. 2 + 1). Keep in mind the controller/software managing the RAID would (or should) try to schedule back-end IO with cache, read-head, write-behind, write-back, other forms of optimization etc.

    In the piece (here and here), a good point is the understanding and factoring in IOPS is important, as is also latency or response time in addition to bandwidth or throughput, along with availability, they are all inter-related.

    Also very important is to keep in mind the size of the IOP, read and write, random, sequential etc.

    RAID along with erasure coding is a balancing act between performance, availability, space capacity and economics aligned to different application needs.

    RAID 0 (R0) actually has a big impact on performance, no penalty on writes; however, it has no availability protection benefit and in fact can be a single point of failure (e.g. loss of a HDD or SSD) impacts the entire R0 group. However, for static items, or items that are being journaled and protected on some other medium/RAID/protection scheme, R0 is used more than people realize for scratch/buffer/transient/read cache types of applications. Keep in mind that it is a balance of all performance and capacity with the exposure of no availability as opposed to other approaches. Thus, do not be scared of R0, however also do not get burned or hurt with it either, treat it with respect and can be effective for something’s.

    Also mentioned in the piece was that SSD based servers will perform vastly better than SATA or SAS based ones. I am assuming that the authors meant to say better than SAS or SATA DAS based HDDs?

    Storage I/O trends

    Keep in mind that unless you are using a PCIe nand flash SSD card as a target or cache or RAID card, most SSD drives today are either SAS or SATA (being the more common) along with moving from 3Gb SAS or SATA to 6Gb SAS & SATA.

    Also while HDD and SSDs can do a given number of reads or writes per second, those will vary based on the size of the IO, read, write, random, sequential. However what can have the biggest impact and where I have seen too many people or environments get into a performance jam is when assuming that those IOP numbers per HDD or SSD are a given. For example assuming that 100-140, IOPs (regardless of size, type, etc.) can be achieved as a limiting factor is the type of interface and controller/adapter being used.

    I have seen fast HDDs and SSDs deliver sub-par performance or not meeting expectations fast interfaces such as iSCSI/SAS/SATA/FC/FCoE/IBA or other interfaces due to bottlenecks in the adapter card, storage system / appliance / controller / software. In some cases you may see more effective IOPs or reads, writes or both, while on other implementations you may see lower than expected due to internal implementation bottlenecks or architectural designs. Hint, watch out for solutions where the vendor tries to blame poor performance on the access network (e.g. SAS, iSCSI, FC, etc.) particular if you know that those are not bottlenecks.

    Here are some related content:
    Are Hard Disk Drives (HDDs) getting too big?
    How can direct attached storage (DAS) make a comeback if it never left?
    EMC VFCache re spinning SSD and intelligent caching
    SSD and Green IT moving beyond green washing
    Optimize Data Storage for Performance and Capacity Efficiency
    Is SSD dead? No, however some vendors might be
    RAID Relevance Revisited
    Industry Trends and Perspectives: RAID Rebuild Rates
    What is the best kind of IO? The one you do not have to do
    More storage and IO metrics that matter
    IBM buys flash solid state device (SSD) industry veteran TMS

    In terms of fund-raising, if you feel so compelled, send a gift, donation, sponsorship, project, buy some books, piece of work, assignment, research project, speaking, keynote, web cast, video or seminar event my way and just like professional fund-raisers, or IOPS vendors, StorageIO accept visa, Master Card, American express, Pay Pal, check and traditional POs.

    As for this site and comments, outside of those caught in the spam trap, courteous perspectives and discussions are welcome.

    Ok, nuff said.

    Cheers Gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    As the Hard Disk Drive HDD continues to spin

    As the Hard Disk Drive HDD continues to spin

    server storage data infrastructure i/o iop hdd ssd trends

    Updated 2/10/2018

    Despite having been repeatedly declared dead at the hands of some new emerging technology over the past several decades, the Hard Disk Drive (HDD) continues to spin and evolve as it moves towards its 60th birthday.

    More recently HDDs have been declared dead due to flash SSD that according to some predictions, should have caused the HDD to be extinct by now.

    Meanwhile, having not yet died in addition to having qualified for its AARP membership a few years ago, the HDD continues to evolve in capacity, smaller form factor, performance, reliability, density along with cost improvements.

    Back in 2006 I did an article titled Happy 50th, hard drive, but will you make it to 60?

    IMHO it is safe to say that the HDD will be around for at least a few more years if not another decade (or more).

    This is not to say that the HDD has outlived its usefulness or that there are not other tiered storage mediums to do specific jobs or tasks better (there are).

    Instead, the HDD continues to evolve and is complimented by flash SSD in a way that HDDs are complimenting magnetic tape (another declared dead technology) each finding new roles to support more data being stored for longer periods of time.

    After all, there is no such thing as a data or information recession!

    What the importance of this is about technology tiering and resource alignment, matching the applicable technology to the task at hand.

    Technology tiering (Servers, storage, networking, snow removal) is about aligning the applicable resource that is best suited to a particular need in a cost as well as productive manner. The HDD remains a viable tiered storage medium that continues to evolve while taking on new roles coexisting with SSD and tape along with cloud resources. These and other technologies have their place which ideally is finding or expanding into new markets instead of simply trying to cannibalize each other for market share.

    Here is a link to a good story by Lucas Mearian on the history or evolution of the hard disk drive (HDD) including how a 1TB device that costs about $60 today would have cost about a trillion dollars back in the 1950s. FWIW, IMHO the 1 trillion dollars is low and should be more around 2 to 5 trillion for the one TByte if you apply common costs for management, people, care and feeding, power, cooling, backup, BC, DR and other functions.

    Where To Learn More

    View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

    Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

    Software Defined Data Infrastructure Essentials Book SDDC

    What This All Means

    IMHO, it is safe to say that the HDD is here to stay for at least a few more years (if not decades) or at least until someone decides to try a new creative marketing approach by declaring it dead (again).

    Ok, nuff said, for now.

    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

    Is the new HDS VSP really the MVSP?

    Today HDS announced with much fan fare that must have been a million dollar launch budget the VSP (successor to the previous USPV and USPVM).

    Im also thinking that the HDS VSP (not to be confused with HP SVSP that HP OEMs via LSI) could also be called the the HDS MVSP.

    Now if you are part of the HDS SAN, LAN, MAN, WAN or FAN bandwagon, MVSP could mean Most Valuable Storage Platform or Most Virtualized Storage Product. MVSP might be also called More Virtualized Storage Products by others.

    Yet OTOH, MVSP could be More Virtual Story Points (e.g. talking points) for HDS building upon and when comparing to their previous products.

    For example among others:

    More cache to drive cash movement (e.g. cash velocity or revenue)
    More claims and counter claims of industry unique or fists
    More cloud material or discussion topics
    More cross points
    More data mobility
    More density
    More FUD and MUD throwing by competitors
    More functionality
    More packets of information to move, manage and store
    More pages in the media
    More partitioning of resources
    More partners to sell thorough or too
    More PBytes
    More performance and bandwidths
    More platforms virtualized
    More platters
    More points of resiliency
    More ports to connect to or through
    More posts from bloggers
    More power management, Eco and Green talking points
    More press releases
    More processors
    More products to sell
    More profits to be made
    More protocols (Fibre Channel, FICON, FCoE, NAS) supported
    More pundits praises
    More SAS, SATA and SSD (flash drives) devices supported
    More scale up, scale out, and scale within
    More security
    More single (Virtual and Physical) pane of glass managements
    More software to sell and be licensed by customers
    More use of virtualization, 3D and other TLAs
    More videos to watch or be stored

    Im sure more points can be thought of, however that is a good start for now including some to have a bit of fun with.

    Read more about HDS new announcement here, here, here and here:

    Ok, nuff said.

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    Seagate to say goodbye to Cayman Islands, Hello Ireland

    Seagate (NASDQ: STX) corporation, the parent of the company many people in IT and data storage in particular know as Seagate the disk drive manufacturer is moving their paper headquarters from the Cayman Islands where they have been based since 2000 to Ireland.

    Let me rephrase that as Seagate is not moving their Scotts Valley California headquarters of operations or any design, manufacturing or marketing to Ireland that is not already there. Rather, Seagate as a manufacturing company is moving where it is incorporated (paper corporate headquarters) from the Cayman Islands to the Emerald Island of Ireland.

    Confused yet?
    Do not worry, it is confusing at first. I ended up having to reread through the Seagate corporate material and remembering back to the late 1990s it all started to make sense. Seagate has over 50,000 employees located at facilities around the world including manufacturing, support, design, research and development, sales and marketing along with corporate administration among others.

    Their business while focused on data storage currently is very much centered on magnetic disk drives with a much diversified portfolio including products obtained via their acquisition of Maxtor. The Seagate product portfolio includes among others high end enterprise class Fibre Channel and SAS 15,500 RPM (15.5K) high performance to high capacity SAS and SATA devices, 10K small form factor (SFF) to mid market, SMB, USB based SOHO, prosumer or consumer along with portable and specialized devices among many others including emerging SSD and hybrid devices.

    However back in the late 1990s, Seagate ventured off into some other areas for a time being including owning (in part) Veritas (since divested and now part of Symantec), Xiotech (now back on its own under venture ownership including some tied to Seagate) among some other transactions. In a series of moves, merger and acquisition, divestures, restructuring, paper corporate headquarters that reads like something out of a Hollywood movie, Seagate ended up moving its place of incorporation to the Cayman Islands.

    Seagate as it was known had essentially become the manufacturing company owned by a paper holding company incorporated off shore for business and tax purposes. Want to learn more, read the companies annual reports and other filings some of which can be found here.

    The Business End of the Move
    Without getting into the deep details of international finance, tax law or articles of business incorporation, many companies are actually incorporated in a location different from where they actualy have their headquarters. In the United States, that is often Delaware where corporations file their paper work for articles of incorporations and then locate their headquarters or primary place of business elsewhere.

    Seagate SEC filings outlining move
    Seagate SEC filing outlining proposed move

    Outside of the United States, the Cayman Islands among other locations have been a popular location for companies to file their paper work and have a paper headquarters due to favorable tax rates and other business benefits. Perhaps you have even watched a movie or two where part of the plot involved some business transaction of a paper company located in the Cayman Island as a means of shelter business dealings. In the case of Seagate, in 2000 during a restricting their corporate (paper) headquarters was moved to the Cayman due to its favorable business climate including lower tax structure.

    Dive Cayman Islands

    Disclosure: While I am a certified and experienced PADI SCUBA Divemaster having visited many different venues, Cayman Island is not one of them. Likewise, while I have distant relatives never meet, I would live to visit Ireland sometime.

    Why is Seagate saying goodbye to the nice warm climate of the Cayman Islands heading off to the emerald Isle?

    Visit Ireland

    Simple, a more favorable business climate that include international business and taxation benefits as well as Ireland is not coming under scrutiny as a tax haven by the U.S. and other governments as have the Cayman Islands (along with other locations). Let me also be clear that Seagate is not new to Ireland having had a presence there for some time (See here).

    What does all of this mean?
    From a technology perspective pretty much nothing as this appears to be mainly a business and financial move for the shareholders of Seagate. As for impact on shareholders, other than reading through some documents if so inclined, probably not much impact if any at all.

    As for IT customers, their solution providers who are customers of Seagate this probably does not mean anything at all as it should be business as usual.

    What about others parties, governments, countries or entities?

    Tough to say if this is a trend of companies that will begin moving their paper headquarters from the Caymans to elsewhere so as to escape being in the spotlight of U.S. and other governments looking for additional revenues.

    Perhaps a boon to Ireland if more companies decide to move their paper as well as actual company operations there as many have done over the past decades. Otherwise for the rest of us, it can make for interesting reading, conversations, speculation, debate and discussion.

    And that is all that I have to say about this for now, what say you?

    Ok, nuff said.

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    RAID Relevance Revisited

    Following up from some previous posts on the topic, a continued discussion point in the data storage industry is the relevance (or lack there) of RAID (Redundant Array of Independent Disks).

    These discussions tend to evolve around how RAID is dead due to its lack of real or perceived ability to continue scaling in terms of performance, availability, capacity, economies or energy capabilities needed or when compared to those of newer techniques, technologies or products.

    RAID Relevance

    While there are many new and evolving approaches to protecting data in addition to maintaining availability or accessibility to information, RAID despite the fan fare is far from being dead at least on the technology front.

    Sure, there are issues or challenges that require continued investing in RAID as has been the case over the past 20 years; however those will also be addressed on a go forward basis via continued innovation and evolution along with riding technology improvement curves.

    Now from a marketing standpoint, ok, I can see where the RAID story is dead, boring, and something new and shiny is needed, or, at least change the pitch to sound like something new.

    Consequently, when being long in the tooth and with some of the fore mentioned items among others, older technologies that may be boring or lack sizzle or marketing dollars can and often are declared dead on the buzzword bingo circuit. After all, how long now has the industry trade group RAID Advisory Board (RAB) been missing in action, retired, spun down, archived or ILMed?

    RAID remains relevant because like other dead or zombie technologies it has reached the plateau of productivity and profitability. That success is also something that emerging technologies envy as their future domain and thus a classic marketing move is to declare the incumbent dead.

    The reality is that RAID in all of its various instances from hardware to software, standard to non-standard with extensions is very much alive from the largest enterprise to the SMB to the SOHO down into consumer products and all points in between.

    Now candidly, like any technology that is about 20 years old if not older after all, the disk drive is over 50 years old and been declared dead for how long now?.RAID in some ways is long in the tooth and there are certainly issues to be addressed as have been taken care of in the past. Some of these include the overhead of rebuilding large capacity 1TB, 2TB and even larger disk drives in the not so distant future.

    There are also issues pertaining to distributed data protection in support of cloud, virtualized or other solutions that need to be addressed. In fact, go way way back to when RAID appeared commercially on the scene in the late 80s and one of the value propositions among others was to address the reliability of emerging large capacity multi MByte sized SCSI disk drives. It seems almost laughable today that when a decade later, when the 1GB disk drives appeared in the market back in the 90s that there was renewed concern about RAID and disk drive rebuild times.

    Rest assured, I think that there is a need and plenty of room for continued innovate evolution around RAID related technologies and their associated storage systems or packaging on a go forward basis.

    What I find interesting is that some of the issues facing RAID today are similar to those of a decade ago for example having to deal with large capacity disk drive rebuild, distributed data protecting and availability, performance, ease of use and so the list goes.

    However what happened was that vendors continued to innovate both in terms of basic performance accelerated rebuild rates with improvements to rebuild algorithms, leveraged faster processors, busses and other techniques. In addition, vendors continued to innovate in terms of new functionality including adopting RAID 6 which for the better part of a decade outside of a few niche vendors languished as one of those future technologies that probably nobody would ever adopt, however we know that to be different now and for the past several years. RAID 6 is one of those areas where vendors who do not have it are either adding it, enhancing it, or telling you why you do not need it or why it is no good for you.

    An example of how RAID 6 is being enhanced is boosting performance on normal read and write operations along with acceleration of performance during disk rebuild. Also tied to RAID 6 and disk drive rebuild are improvements in controller design to detect and proactively make repairs on the fly to minimize or eliminate errors or diminished the need for drive rebuilds, similar to what was done in previous generations. Lets also not forget the improvements in disk drives boosting performance, availability, capacity and energy improvements over time.

    Funny how these and other enhancements are similar to those made to RAID controllers hardware and software fine tuning them in the early to mid 2000s in support for high capacity SATA disk drives that had different RAS characteristics of higher performance lower capacity enterprise drives.

    Here is my point.

    RAID to some may be dead while others continue to rely on it. Meanwhile others are working on enhancing technologies for future generations of storage systems and application requirements. Thus in different shapes, forms, configurations, feature; functionality or packaging, the spirit of RAID is very much alive and well remaining relevant.

    Regardless of if a solution using two or three disk mirroring for availability, or RAID 0 fast SSD or SAS or FC disks in a stripe configuration for performance with data protection via rapid restoration from some other low cost medium (perhaps RAID 6 or tape), or perhaps single, dual or triple parity protection, or if using small block or multiMByte or volume based chunklets, let alone if it is hardware or software based, local or disturbed, standard or non standard, chances are there is some theme of RAID involved.

    Granted, you do not have to call it RAID if you prefer!

    As a closing thought, if RAID were no longer relevant, than why do the post RAID, next generation, life beyond RAID or whatever you prefer to call them technologies need to tie themselves to the themes of RAID? Simple, RAID is still relevant in some shape or form to different audiences as well as it is a great way of stimulating discussion or debate in a constantly evolving industry.

    BTW, Im still waiting for the revolutionary piece of hardware that does not require software, and the software that does not require hardware and that includes playing games with server less servers using hypervisors :) .

    Provide your perspective on RAID and its relevance in the following poll.

    Here are some additional related and relevant RAID links of interests:

    Stay tuned for more about RAIDs relevance as I dont think we have heard the last on this.

    Ok, nuff said.

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved