Part 3 – Which HDD for content applicaitons – Test Configuration

Which HDD for content applications – HDD Test Configuration

HDD Test Configuration server storage I/O trends

Updated 1/23/2018

Which enterprise HDD to use with a content server platform hdd test configuratoin

Insight for effective server storage I/O decision making
Server StorageIO Lab Review

Which enterprise HDD to use for content servers

This is the third in a multi-part series (read part two here) based on a white paper hands-on lab report I did compliments of Servers Direct and Seagate that you can read in PDF form here. The focus is looking at the Servers Direct (www.serversdirect.com) converged Content Solution platforms with Seagate Enterprise Hard Disk Drive (HDD’s). In this post the focus expands to hardware and software defining as well as configuring the test environments along with applications workloads.

Defining Hardware Software Environment

Servers Direct content platforms are software defined and hardware defined to your specific solution needs. For my test-drive, I used a pair of 2U Content Solution platforms, one for a client System Test Initiator (STI) (3), the other as server SUT shown in figure-1 (next page). With the STI configured and SUT setup Seagate Enterprise class 2.5” 12Gbps SAS HDD’s were added to the configuration.

(Note 3) System Test Initiator (STI) was hardware defined with dual Intel Xeon E5-2695 v3 (2.30 GHz) processors, 32GB RAM running Windows Server 2012 R2 with two network connections to the SUT. Network connections from the STI to SUT included an Intel GbE X540-AT2 as well as an Intel XL710 Q2 40 GbE Converged Network Adapter (CNA). In addition to software defining the STI with Windows Server 2012 R2, Dell Benchmark Factory (V7.1 64b bit 496) part of the Database Administrators (DBA) Toad Tools (including free versions) was also used. For those familiar with HammerDB, Sysbench among others, Benchmark Factory is an alternative that supports various workloads and database connections with robust reporting, scripting and automation. Other installed tools included Spotlight on Windows, Iperf 2.0.5 for generating network traffic and reporting results, as well as Vdbench with various scripts.

SUT setup (4)  included four Enterprise 10K and two 15K Performance drives with enhanced performance caching feature enabled, along with two Enterprise Capacity 2TB HDD’s, all were attached to an internal 12Gbps SAS RAID controller. With the STI configured and SUT setup Seagate Enterprise class 2.5” 12Gbps SAS HDD’s were added to the configuration.

(Note 4) System Under Test (SUT) dual Intel Xeon E5-2697 v3 (2.60 GHz) providing 54 logical processors, 64GB of RAM (expandable to 768GB with 32GB DIMMs, or 3TB with 128GB DIMMs) and two network connections. Network connections from the STI to SUT consisting of an Intel 1 GbE X540-AT2 as well as an Intel XL710 Q2 40 GbE CNA. The GbE LAN connection was used for management purposes while the 40 GbE was used for data traffic. System disk was a 6Gbs SATA flash SSD. Seagate Enterprise class HDD’s were installed into the 16 available 2.5” small form factor (SFF) drive slots. Eight (left most) drive slots were connected to an Intel RMS3CC080 12 Gbps SAS RAID internal controller. The “Blue” drives in the middle were connected to both an NVMe PCIe card and motherboard 6 Gbps SATA controller using an SFF-8637 connector. The four right most drives were also connected to the motherboard 6 Gbps SATA controller.

System Test Configuration
Figure-1 STI and SUT hardware as well as software defined test configuration

This included four Enterprise 10K and two 15K Performance drives with enhanced performance caching feature enabled, along with two Enterprise Capacity 2TB HDD’s, all were attached to an internal 12Gbps SAS RAID controller. Five 6 Gbps SATA Enterprise Capacity 2TB HDD’s were setup using Microsoft Windows as a spanned volume. System disk was a 6Gbps flash SSD and an NVMe flash SSD drive was used for database temp space.

What About NVM Flash SSD?

NAND flash and other Non-Volatile Memory (NVM) memory and SSD complement content solution. A little bit of flash SSD in the right place can have a big impact. The focus for theses tests is HDD’s, however some flash SSDs were used as system boot and database temp (e.g. tempdb) space. Refer to StorageIO Lab reviews and visit www.thessdplace.com

Seagate Enterprise HDD’s Used During Testing

Various Seagate Enterprise HDD specifications use in the testing are shown below in table-1.

 

Qty

 

Seagate HDD’s

 

Capacity

 

RPM

 

Interface

 

Size

 

Model

Servers Direct Price Each

Configuration

4

Enterprise 10K
Performance

1.8TB

10K with cache

12 Gbps SAS

2.5”

ST1800MM0128
with enhanced cache

$875.00 USD

HW(5) RAID 10 and RAID 1

2

Enterprise
Capacity 7.2K

2TB

7.2K

12 Gbps SAS

2.5”

ST2000NX0273

$399.00 USD

HW RAID 1

2

Enterprise 15K
Performance

600GB

15K with cache

12 Gbps SAS

2.5”

ST600MX0082
with enhanced cache

$595.00 USD

HW RAID 1

5

Enterprise
Capacity 7.2K

2TB

7.2K

6 Gbps SATA

2.5”

ST2000NX0273

$399.00 USD

SW(6) RAID Span Volume

Table-1 Seagate Enterprise HDD specification and Servers Direct pricing

URLs for additional Servers Direct content platform information:
https://serversdirect.com/solutions/content-solutions
https://serversdirect.com/solutions/content-solutions/video-streaming
https://www.serversdirect.com/File%20Library/Data%20Sheets/Intel-SDR-2P16D-001-ds2.pdf

URLs for additional Seagate Enterprise HDD information:
https://serversdirect.com/Components/Drives/id-HD1558/Seagate_ST2000NX0273_2TB_Hard_Drive

https://serversdirect.com/Components/Drives/id-HD1559/Seagate_ST600MX0082_SSHD

Seagate Performance Enhanced Cache Feature

The Enterprise 10K and 15K Performance HDD’s tested had the enhanced cache feature enabled. This feature provides a “turbo” boost like acceleration for both reads and write I/O operations. HDD’s with enhanced cache feature leverage the fact that some NVM such as flash in the right place can have a big impact on performance (7).

In addition to their performance benefit, combing a best of or hybrid storage model (combing flash with HDD’s along with software defined cache algorithms), these devices are “plug-and-play”. By being “plug-and-play” no extra special adapters, controllers, device drivers, tiering or cache management software tools are required.

(Note 5) Hardware (HW) RAID using Intel server on-board LSI based 12 Gbps SAS RAID card, RAID 1 with two (2) drives, RAID 10 with four (4) drives. RAID configured in write-through mode with default stripe / chunk size.

(Note 6) Software (SW) RAID using Microsoft Windows Server 2012 R2 (span). Hardware RAID used write-through cache (e.g. no buffering) with read-ahead enabled and a default 256KB stripe/chunk size.

(Note 7) Refer to Enterprise SSHD and Flash SSD Part of an Enterprise Tiered Storage Strategy

The Seagate Enterprise Performance 10K and 15K with enhanced cache feature are a good example of how there is more to performance in today’s HDD’s than simply comparing RPM’s, drive form factor or interface.

Where To Learn More

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Careful and practical planning are key steps for testing various resources as well as aligning the applicable tools, configuration to meet your needs.

Continue reading part four of this multi-part series here where the focus expands to database application workloads.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Which Enterprise HDD for Content Applications General I/O Performance

Which HDD for Content Applications general I/O Performance

hdd general i/o performance server storage I/O trends

Updated 1/23/2018

Which enterprise HDD to use with a content server platform general I/O performance Insight for effective server storage I/O decision making
Server StorageIO Lab Review

Which enterprise HDD to use for content servers

This is the sixth in a multi-part series (read part five here) based on a white paper hands-on lab report I did compliments of Servers Direct and Seagate that you can read in PDF form here. The focus is looking at the Servers Direct (www.serversdirect.com) converged Content Solution platforms with Seagate Enterprise Hard Disk Drive (HDD’s). In this post the focus is around general I/O performance including 8KB and 128KB IOP sizes.

General I/O Performance

In addition to running database and file (large and small) processing workloads, Vdbench was also used to collect basic small (8KB) and large (128KB) sized I/O operations. This consisted of random and sequential reads as well as writes with the results shown below. In addition to using vdbench, other tools that could be used include Microsoft Diskspd, fio, iorate and iometer among many others.

These workloads used Vdbench configured (13) to do direct I/O to a Windows file system mounted device using as much of the available disk space as possible. All workloads used 16 threads and were run concurrently similar to database and file processing tests.

(Note 13) Sample vdbench configuration for general I/O, note different settings were used for various tests

Table-7 shows workload results for 8KB random IOPs 75% reads and 75% writes including IOPs, bandwidth and response time.

 

ENT 15K RAID1

ENT 10K RAID1

ENT CAP RAID1

ENT 10K R10
(4 Drives)

ECAP SW RAID (5 Drives)

 

75% Read

25% Read

75% Read

25% Read

75% Read

25% Read

75% Read

25% Read

75% Read

25% Read

I/O Rate (IOPs)

597.11

559.26

514

475

285

293

979

984

491

644

MB/sec

4.7

4.4

4.0

3.7

2.2

2.3

7.7

7.7

3.8

5.0

Resp. Time (Sec.)

25.9

27.6

30.2

32.7

55.5

53.7

16.3

16.3

32.6

24.8

Table-7 8KB sized random IOPs workload results

Figure-6 shows small (8KB) random I/O (75% read and 25% read) across different HDD configurations. Performance including activity rates (e.g. IOPs), bandwidth and response time for mixed reads / writes are shown. Note how response time increases with the Enterprise Capacity configurations vs. other performance optimized drives.

general 8K random IO
Figure-6 8KB random reads and write showing IOP activity, bandwidth and response time

Table-8 below shows workload results for 8GB sized I/Os 100% sequential with 75% reads and 75% writes including IOPs, MB/sec and response time in seconds.

ENT 15K RAID1

ENT 10K RAID1

ENT CAP RAID1

ENT 10K R10
(4 Drives)

ECAP SW RAID (5 Drives)

75% Read

25% Read

75% Read

25% Read

75% Read

25% Read

75% Read

25% Read

75% Read

25% Read

I/O Rate (IOPs)

3,778

3,414

3,761

3,986

3,379

1,274

11,840

8,368

2,891

1,146

MB/sec

29.5

26.7

29.4

31.1

26.4

10.0

92.5

65.4

22.6

9.0

Resp. Time (Sec.)

2.2

3.1

2.3

2.4

2.7

10.9

1.3

1.9

5.5

14.0

Table-8 8KB sized sequential workload results

Figure-7 shows small 8KB sequential mixed reads and writes (75% read and 75% write), while the Enterprise Capacity 2TB HDD has a large amount of space capacity, its performance in a RAID 1 vs. other similar configured drives is slower.

8KB Sequential
Figure-7 8KB sequential 75% reads and 75% write showing bandwidth activity

Table-9 shows workload results for 100% sequential, 100% read and 100% write 128KB sized I/Os including IOPs, bandwidth and response time.

ENT 15K RAID1

ENT 10K RAID1

ENT CAP RAID1

ENT 10K R10
(4 Drives)

ECAP SW RAID (5 Drives)

Read

Write

Read

Write

Read

Write

Read

Write

Read

Write

I/O Rate (IOPs)

1,798

1,771

1,716

1,688

921

912

3,552

3,486

780

721

MB/sec

224.7

221.3

214.5

210.9

115.2

114.0

444.0

435.8

97.4

90.1

Resp. Time (Sec.)

8.9

9.0

9.3

9.5

17.4

17.5

4.5

4.6

19.3

20.2

Table-9 128KB sized sequential workload results

Figure-8 shows sequential or streaming operations of larger I/O (100% read and 100% write) requests sizes (128KB) that would be found with large content applications. Figure-8 highlights the relationship between lower response time and increased IOPs as well as bandwidth.

128K Sequential
Figure-8 128KB sequential reads and write showing IOP activity, bandwidth and response time

Where To Learn More

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Some content applications are doing small random I/Os for database, key value stores or repositories as well as meta data processing while others are doing large sequential I/O. 128KB sized I/O may be large for your environment, on the other hand, with an increasing number of applications, file systems, software defined storage management tools among others, 1 to 10MB or even larger I/O sizes are becoming common. Key is selecting I/O sizes and read write as well as random sequential along with I/O or queue depths that align with your environment.

Continue reading part seven the final post in this multi-part series here where the focus is around how HDD’s continue to evolve including performance beyond traditional RPM based execrations along with wrap up.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

HDDs evolve for Content Application servers

HDDs evolve for Content Application servers

hdds evolve server storage I/O trends

Updated 1/23/2018

Enterprise HDDs evolve for content server platform

Insight for effective server storage I/O decision making
Server StorageIO Lab Review

Which enterprise HDD to use for content servers

This is the seventh and final post in this multi-part series (read part six here) based on a white paper hands-on lab report I did compliments of Servers Direct and Seagate that you can read in PDF form here. The focus is looking at the Servers Direct (www.serversdirect.com) converged Content Solution platforms with Seagate Enterprise Hard Disk Drive (HDD’s). The focus of this post is comparing how HDD continue to evolve over various generations boosting performance as well as capacity and reliability. This also looks at how there is more to HDD performance than the traditional focus on Revolutions Per Minute (RPM) as a speed indicator.

Comparing Different Enterprise 10K And 15K HDD Generations

There is more to HDD performance than RPM speed of the device. RPM plays an important role, however there are other things that impact HDD performance. A common myth is that HDD’s have not improved on performance over the past several years with each successive generation. Table-10 shows a sampling of various generations of enterprise 10K and 15K HDD’s (14) including different form factors and how their performance continues to improve.

different 10K and 15K HDDs
Figure-9 10K and 15K HDD performance improvements

Figure-9 shows how performance continues to improve with 10K and 15K HDD’s with each new generation including those with enhanced cache features. The result is that with improvements in cache software within the drives, along with enhanced persistent non-volatile memory (NVM) and incremental mechanical drive improvements, both read and write performance continues to be enhanced.

Figure-9 puts into perspective the continued performance enhancements of HDD’s comparing various enterprise 10K and 15K devices. The workload is the same TPC-C tests used earlier in a similar (14) (with no RAID). 100 simulated users are shown in figure-9 accessing a database on each of the different drives all running concurrently. The older 15K 3.5” Cheetah and 2.5” Savio used had a capacity of 146GB which used a database scale factor of 1500 or 134GB. All other drives used a scale factor 3000 or 276GB. Figure-9 also highlights the improvements in both TPS performance as well as lower response time with new HDD’s including those with performance enhanced cache feature.

The workloads run are same as the TPC-C ones shown earlier, however these drives were not configured with any RAID. The TPC-C activity used Benchmark Factory with similar setup and configuration to those used earlier including on a multi-socket, multi-core Windows 2012 R2 server supporting a Microsoft SQL Server 2012 database with a database for each drive type.

ENT 10K V3 2.5"

ENT (Cheetah) 15K 3.5"

Users

1

20

50

100

Users

1

20

50

100

TPS (TPC-C)

14.8

50.9

30.3

39.9

TPS (TPC-C)

14.6

51.3

27.1

39.3

Resp. Time (Sec.)

0.0

0.4

1.6

1.7

Resp. Time (Sec.)

0.0

0.3

1.8

2.1

ENT 10K 2.5" (with cache)

ENT (Savio) 15K 2.5"

Users

1

20

50

100

Users

1

20

50

100

TPS (TPC-C)

19.2

146.3

72.6

71.0

TPS (TPC-C)

15.8

59.1

40.2

53.6

Resp. Time (Sec.)

0.0

0.1

0.7

0.0

Resp. Time (Sec.)

0.0

0.3

1.2

1.2

ENT 15K V4 2.5"

Users

1

20

50

100

TPS (TPC-C)

19.7

119.8

75.3

69.2

Resp. Time (Sec.)

0.0

0.1

0.6

1.0

ENT 15K (enhanced cache) 2.5"

Users

1

20

50

100

TPS (TPC-C)

20.1

184.1

113.7

122.1

Resp. Time (Sec.)

0.0

0.1

0.4

0.2

Table-10 Continued Enterprise 10K and 15K HDD performance improvements

(Note 14) 10K and 15K generational comparisons were run on a separate comparable server to what was used for other test workloads. Workload configuration settings were the same as other database workloads including using Microsoft SQL Server 2012 on a Windows 2012 R2 system with Benchmark Factory driving the workload. Database memory sized was reduced however to only 8GB vs. 16GB used in other tests.

Where To Learn More

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

A little bit of flash in the right place with applicable algorithms goes a long way, an example being the Seagate Enterprise HDD’s with enhanced cache feature. Likewise, HDD’s are very much alive complementing SSD and vice versa. For high-performance content application workloads flash SSD solutions including NVMe, 12Gbps SAS and 6Gbps SATA devices are cost effective solutions. HDD’s continue to be cost-effective data storage devices for both capacity, as well as environments that do not need the performance of flash SSD.

For some environments using a combination of flash and HDD’s complementing each other along with cache software can be a cost-effective solution. The previous workload examples provide insight for making cost-effective informed storage decisions.

Evaluate today’s HDD’s on their effective performance running workloads as close as similar to your own, or, actually try them out with your applications. Today there is more to HDD performance than just RPM speed, particular with the Seagate Enterprise Performance 10K and 15K HDD’s with enhanced caching feature.

However the Enterprise Performance 10K with enhanced cache feature provides a good balance of capacity, performance while being cost-effective. If you are using older 3.5” 15K or even previous generation 2.5” 15K RPM and “non-performance enhanced” HDD’s, take a look at how the newer generation HDD’s perform, looking beyond the RPM of the device.

Fast content applications need fast content and flexible content solution platforms such as those from Servers Direct and HDD’s from Seagate. Key to a successful content application deployment is having the flexibility to hardware define and software defined the platform to meet your needs. Just as there are many different types of content applications along with diverse environments, content solution platforms need to be flexible, scalable and robust, not to mention cost effective.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

As the platters spin, HDD’s for cloud, virtual and traditional storage environments

HDDs for cloud, virtual and traditional storage environments

Storage I/O trends

Updated 1/23/2018

As the platters spin is a follow-up to a recent series of posts on Hard Disk Drives (HDD’s) along with some posts about How Many IOPS HDD’s can do.

HDD and storage trends and directions include among others

HDD’s will continue to be declared dead into the next decade, just as they have been for over a decade, meanwhile they are being enhanced, continued to be used in evolving roles.

hdd and ssd

SSD will continue to coexist with HDD, either as separate or converged HHDD’s. Where, where and how they are used will also continue to evolve. High IO (IOPS) or low latency activity will continue to move to some form of nand flash SSD (PCM around the corner), while storage capacity including some of which has been on tape stays on disk. Instead of more HDD capacity in a server, it moves to a SAN or NAS or to a cloud or service provider. This includes for backup/restore, BC, DR, archive and online reference or what some call active archives.

The need for storage spindle speed and more

The need for faster revolutions per minute (RPM’s) performance of drives (e.g. platter spin speed) is being replaced by SSD and more robust smaller form factor (SFF) drives. For example, some of today’s 2.5” SFF 10,000 RPM (e.g. 10K) SAS HDD’s can do as well or better than their larger 3.5” 15K predecessors can for both IOPS and bandwidth. This is also an example where the RPM speed of a drive may not be the only determination for performance as it has been in the past.


Performance comparison of four different drive types, click to view larger image.

The need for storage space capacity and areal density

In terms of storage enhancements, watch for the appearance of Shingled Magnetic Recording (SMR) enabled HDD’s to help further boost the space capacity in the same footprint. Using SMR HDD manufactures can put more bits (e.g. areal density) into the same physical space on a platter.


Traditional vs. SMR to increase storage areal density capacity

The generic idea with SMR is to increase areal density (how many bits can be safely stored per square inch) of data placed on spinning disk platter media. In the above image on the left is a representative example of how traditional magnetic disk media lays down tracks next to each other. With traditional magnetic recording approaches, the tracks are placed as close together as possible for the write heads to safely write data.

With new recording formats such as SMR along with improvements to read/write heads, the tracks can be more closely grouped together in an overlapping way. This overlapping way (used in a generic sense) is like how the shingles on a roof overlap, hence Shingled Magnetic Recording. Other magnetic recording or storage enhancements in the works include Heat Assisted Magnetic Recording (HAMR) and Helium filed drives. Thus, there is still plenty of bits and bytes room for growth in HDD’s well into the next decade to co-exist and complement SSD’s.

DIF and AF (Advanced Format), or software defining the drives

Another evolving storage feature that ties into HDD’s is Data Integrity Feature (DIF) that has a couple of different types. Depending on which type of DIF (0, 1, 2, and 3) is used; there can be added data integrity checks from the application to the storage medium or drive beyond normal functionality. Here is something to keep in mind, as there are different types or levels of DIF, when somebody says they support or need DIF, ask them which type or level as well as why.

Are you familiar with Advanced Format (AF)? If not you should be. Traditionally outside of special formats for some operating systems or controllers, that standard open system data storage block, page or sector has been 512 bytes. This has served well in the past, however; with the advent of TByte and larger sized drives, a new mechanism is needed. The need is to support both larger average data allocation sizes from operating systems and storage systems, as well as to cut the overhead of managing all the small sectors. Operating systems and file systems have added new partitioning features such as GUID Partition Table (GPT) to support 1TB and larger SSD, HDD and storage system LUN’s.

These enhancements are enabling larger devices to be used in place of traditional Master Boot Record (MBR) or other operating system partition and allocation schemes. The next step, however, is to teach operating systems, file systems, and hypervisors along with their associated tools or drives how to work with 4,096 byte or 4 Kbyte sectors. The advantage will be to cut the overhead of tracking all of those smaller sectors or file system extents and clusters. Today many HDD’s support AF however by default may have 512-byte emulation mode enabled due to lack of operating system or other support.

Intelligent Power Management, moving beyond drive spin down

Intelligent Power Management (IPM) is a collection of techniques that can be applied to vary the amount of energy consumed by a drive, controller or processor to do its work. These include in the case of an HDD slowing the spin rate of platters, however, keep in mind that mass in motion tends to stay in motion. This means that HDD’s once up and spinning do not need as much relative power as they function like a flywheel. Where their power draw comes in is during reading and write, in part to the movement of reading/write heads, however also for running the processors and electronics that control the device. Another big power consumer is when drives spin up, thus if they can be kept moving, however at a lower rate, along with disabling energy used by read/write heads and their electronics, you can see a drop in power consumption. Btw, a current generation 3.5” 4TB 6Gbs SATA HDD consumes about 6-7 watts of power while in active use, or less when in idle mode. Likewise a current generation high performance 2.5” 1.2TB HDD consumes about 4.8 watts of energy, a far cry from the 12-16 plus watts of energy some use as HDD fud.

Hybrid Hard Disk Drives (HHDD) and Solid State Hybrid Drives (SSDHD)

Hybrid HDD’s (HHDD’s) also known as Solid State Hybrid Drives (SSHD) have been around for a while and if you have read my earlier posts, you know that I have been a user and fan of them for several years. However one of the drawbacks of the HHDD’s has been lack of write acceleration, (e.g. they only optimize for reads) with some models. Current and emerging HDDD’s are appearing with a mix of nand flash SLC (used in earlier versions), MLC and eMLC along with DRAM while enabling write optimization. There are also more drive options available as HHDD’s from different manufactures both for desktop and enterprise class scenarios.

The challenge with HHDD’s is that many vendors either do not understand how they fit and compliment their tiering or storage management software tools or simply do not see the value proposition. I have had vendors and others tell me that the HHDD’s don’t make sense as they are too simple, how can they be a fit without requiring tiering software, controllers, SSD and HDD’s to be viable?

Storage I/O trends

I also see a trend similar to when the desktop high-capacity SATA drives appeared for enterprise-class storage systems in the early 2000s. Some of the same people did not see where or how a desktop class product or technology could ever be used in an enterprise solution.

Hmm, hey wait a minute, I seem to recall similar thinking when SCSI drives appeared in the early 90s, funny how some things do not change, DejaVu anybody?

Does that mean HHDD’s will be used everywhere?

Not necessarily, however, there will be places where they make sense, others where either an HDD or SSD will be more practical.

Networking with your server and storage

Drive native interfaces near-term will remain as 6Gbs (going to 12Gbs) SAS and SATA with some FC (you might still find a parallel SCSI drive out there). Likewise, with bridges or interface cards, those drives may appear as USB or something else.

What about SCSI over PCIe, will that catch on as a drive interface? Tough to say however I am sure we can find some people who will gladly try to convince you of that. FC based drives operating at 4Gbs FC (4GFC) are still being used for some environments however most activity is shifting over to SAS and SATA. SAS and SATA are switching over from 3Gbs to 6Gbs with 12Gbs SAS on the roadmaps.

So which drive is best for you?

That depends; do you need bandwidth or IOPS, low latency or high capacity, small low profile thin form factor or feature functions? Do you need a hybrid or all SSD or a self-encrypting device (SED) also known as Instant Secure Erase (ISE), these are among your various options.

Disk drives

Why the storage diversity?

Simple, some are legacy soon to be replaced and disposed of while others are newer. I also have a collection so to speak that get used for various testing, research, learning and trying things out. Click here and here to read about some of the ways I use various drives in my VMware environment including creating Raw Device Mapped (RDM) local SAS and SATA devices.

Other capabilities and functionality existing or being added to HDD’s include RAID and data copy assist; securely erase, self-encrypting, vibration dampening among other abilities for supporting dense data environments.

Where To Learn More

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Do not judge a drive only by its interface, space capacity, cost or RPM alone. Look under the cover a bit to see what is inside in terms of functionality, performance, and reliability among other options to fit your needs. After all, in the data center or information factory not everything is the same.

From a marketing and fun to talk about new technology perspective, HDD’s might be dead for some. The reality is that they are very much alive in physical, virtual and cloud environments, granted their role is changing.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Industry Trends and Perspectives: Tiered Storage, Systems and Mediums

This is part of an ongoing series of short industry trends and perspectives blog posts briefs.

These short posts compliment other longer posts along with traditional industry trends and perspective white papers, research reports, solution brief content found at www.storageio.com/reports.

Two years ago we read about how the magnetic disk drive would be dead in a couple of years at the hand of flash SSD. Guess what, it is a couple of years later and the magnetic disk drive is far from being dead. Granted high performance Fibre Channel disks will continue to be replaced by high performance, small form factor 2.5" SAS drives along with continued adoption of high capacity SAS and SATA devices.

Likewise, SSD or flash drives continue to be deployed, however outside of iPhone, iPod and other consumer or low end devices, nowhere near the projected or perhaps hoped for level. Rest assured the trend Im seeing and hearing from IT customers is that some will continue to look for places to strategically deploy SSD where possible, practical and affordable, there will continue to be a roll for disk and even tape devices on a go forward basis.

Also watch for more coverage and discussion around the emergence of the Hybrid Hard Disk Drive (HHDD) that was discussed about four to five years ago. The HHDD made an appearance and then quietly went away for some time, perhaps more R and D time in the labs while flash SSD garnered the spotlight.

There could be a good opportunity for HHDD technology leveraging the best of both worlds that is continued pricing decreases for disk with larger capacity using smaller yet more affordable amounts of flash in a solution that is transparent to the server or storage controller making for easier integration.

Related and companion material:
Blog: ILM = Has It Losts its Meaning
Blog: SSD and Storage System Performance
Blog: Has SSD put Hard Disk Drives (HDDs) On Endangered Species List
Blog: Optimize Data Storage for Performance and Capacity Efficiency

That is all for now, hope you find this ongoing series of current and emerging Industry Trends and Perspectives interesting.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

What do NAS NASA NASCAR have in common?

What do NAS NASA NASCAR have in common?

server storage I/O data infrastructure trends

Updated 2/10/2018

The other day it dawned on me what do NAS, NASA NASCAR have in common?

Several things in addition to all starting with the letters NAS it turns out.

For example, they all deal with round objects, NAS or Network Attached storage involved with circular spinning disk drives, NASA or National Aeronautical Space Administration besides involved with aircraft that have tires that go round and round, or airplanes circling waiting for landing.

In the case of NASA they are also involved with sending craft or devices to circle other planets or moons and land or crash into them. Sometimes NAS along with other storage systems have disk drives that crash, similar to how NASCAR events see accidents.
NAS

Ceder Lake 3M NASCAR at dirt track - Photo (C) 2008 Karen Schulz all rights reserved

Ceder Lake dirt track 3M NASCAR night (Photo (C) 2008 Karen Schulz)

NASCAR is also involved with vehicles that dont or at least should not fly, however they do go round and round on a track, often paved however sometimes mud or dirt tracks plus high tech exists with computers and various data models, not to mention the NASCAR air force.

In addition to being involved with round objects and activities, all three are also involved in computing, generating, processing, storing and retrieving for analysis of data, not to mention high performance requirements.

NAS based storage can also be relied upon for serving the needs of NASA and NASCAR data and informational needs.

And FWIW, just for fun, look at what you get when you spell NAS, NASA or NASCAR backwards:

RACSAN
ASAN
SAN

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Not much actually other than to stimulate some thought, discussion as well as perhaps have some fun with technology during the holiday season.

Im sure if I put some more thought to it, more similarities would or will come to mind.

However, for now, thats it for a quick thought, what similarities do you see or know about with NAS, NASA and NASCAR?

Ok, nuf fun for now, time to work on some other posts, content and projects.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.