2011 Summer momentus hybrid hard disk drive (HHDD) moment

This is the fourth in a series of posts (others are here, here and here) that I have been doing for over a year now taking a moment now and then to share some of my experiences with using hybrid hard disk drives (HHDD) along side my hard disk drives (HDD) and solid state drives (SSD).

It has been  a several months now since applying the latest firmware (SD25) which resulted in even better stability that was further enhanced when upgrading a few months ago to Windows 7 on all systems with the Seagate Momentus XT HHDD installed in them. One additional older system was recently upgraded from a slower, lower capacity 3.5 inch form factor SATA HDD to a physically smaller 2.5 inch HHDD. The net result is that system now boots in a fraction of the time, shuts down faster, work on it is much more productive and capacity was increased by three and half times.

Why use an HHDD when you could get an SSD?

With flash SSD devices continuing to become more affordable for a given price capacity point, why did I not simply install some of those devices instead of using the HHDDs?

With the money saved from buying the 500GB Momentus XT on Amazon.com (under $100 USD) vs. buying a smaller capacity SSD, I was also able to double the amount of DRAM in that system furthering its useful life plus buying some time to decide what to replace it with while having extra funds for other projects.

Sure I would like to have more and larger capacity SSDs to go along with those I already have, however there is balancing budget with needs and improving productivity (needs vs. wants).

To expand more on why the HHDD at this time vs. SSD, want some more SSD devices to coexist with those I already have and use for different functions. Looking to stretch my budget further, the HHDDs are a great balance of being almost and in some cases as fast as SSDs while at the cost of a high capacity HDD. In other words Im getting the best of both worlds which is a 7,200 RPM 2.5 inch 500GB HDD (e.g. for space capacity) that has 4GB of single layer cell (SLC) flash (e.g. SSD) and 32MB of DRAM as buffers (for read and write performance) to help speed up read and write operations.

Given for what Im using them for, I do not need the consistent higher performance of an SSD across all of my data which brings up the other benefit, Im able to retain more data on the device as a buffer or cache instead of having to go to a NAS or other storage repository to get it. Even though the amount of data being stored on the HHDD is increasing, not all of it gets backed up locally or to my cloud provider as there is already a copy(s) elsewhere. Instead, a small subset of data that is changing or very important gets routinely protected locally and remotely to the cloud enabling easier and faster restores when needed. Now if you have a large budget or someone is willing to buy or give you one, sure, go ahead and get one of the high capacity SSDs (preferably SLC based if concerned about endurance) however there are some good MLC ones out there as well.

Step back a bit, what is an HHDD?

Hybrid hard disk drives (HHDDs) such as the Seagate Momentus XT are, as their name implies, a combination of large- to medium-capacity HDDs with FLASH SSDs. The result is a mix of performance and capacity in a cost effective footprint. HHDDs have not seen much penetration in the enterprise space and may not see much more, given how many vendors are investing in the firmware and associated software technology to achieve hybrid results using a mix of SSDs and high capacity disk drives along with the lack of awarness that they exist.

Where HHDDs could have some additional traction is in secondary or near-line solutions that need some performance enhancements while having a large amount of capacity in a cost-effective footprint. For now, HHDDs are appearing mainly in desktops, laptops, and workstations that need lots of capacity with some performance but without the high price of SSDs. Before I installed the HHDDs in my laptops, I initially used one as a backup and data movement device, and I found that large, gigabyte-sized files could be transferred as fast as with SSDs and much faster than via my WiFi based network and NAS. The easiest way to characterize where HHDDs fit is where you want an SSD for performance, but your applications do not always need speed and you need a large amount of storage capacity at an affordable price.

SSDs are part of the future, however HDDs have a lot of life in them including increased capacities, both are best used where their strengths can be maximized, thus HHDDs are a great compliment or stepping stone for some applications. Note, Seagate recently announced that they have shipped over one million HHDDs in just over a years time.

I do find it interesting though when I hear from those who claim that the HDD is dead and that SSD is the future yet they do not have SSDs in their systems let alone do they have or talk about HHDDs, hmmmm.

Ok, nuff said for now.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2011 StorageIO and UnlimitedIO All Rights Reserved

StorageIO Momentus Hybrid Hard Disk Drive (HHDD) Moments

This is the third in a series of posts that I have done about Hybrid Hard Disk Drives (HHDDs) along with pieces about Hard Disk Drives (HDD) and Solid State Devices (SSDs). Granted the HDD received its AARP card several years ago when it turned 50 and is routinely declared dead (or read here) even though it continues to evolve along SSD maturing and both expanding into different markets as well as usage roles.

For those who have not read previous posts about Hybrid Hard Disk Drives (HHDDs) and the Seagate Momentus XT you can find them here and here.

Since my last post, I have been using the HHDDs extensively and recently installed the latest firmware. The release of new HHDD firmware by Seagate for the Momentus XT (SD 25) like its predecessor SD24 cleaned up some annoyances and improved on overall stability. Here is a Seagate post by Mark Wojtasiak discussing SD25 and feedback obtained via the Momentus XT forum from customers.

If you have never done a HDD firmware update, its not as bad or intimidating as might be expected. The Seagate firmware update tools make it very easy, that is assuming you have a recent good backup of your data (one that can be restored) and about 10 to 15 minutes of time for a couple of reboots.

Speaking of stability, the Momentus XT HHDDs have been performing well helping to speed up accessing large documents on various projects including those for my new book. Granted an SSD would be faster across the board, however the large capacity at the price point of the HHDD is what makes it a hybrid value proposition. As I have said in previous posts, if you have the need for speed all of the time and time is money, get an SSD. Likewise if you need as much capacity as you can get and performance is not your primary objective, then leverage the high capacity HDDs. On the other hand, if you need a balance of some performance boost with capacity boost and a good value, then check out the HHDDs.

Image of Momentus XT courtesy of www.Seagate.com

Lets shift gears from that of the product or technology to that of common questions that I get asked about HHDDs.

Common questions I get asked about HHDDs include:

What is a Hybrid Hard Disk Drive?

A Hybrid Hard Disk Drive includes a combination of rotating HDD, solid state flash persistent memory along with volatile dynamic random access memory (DRAM) in an integrated package or product. The value proposition and benefit is a balance of performance and capacity at a good price for those environments, systems or applications that do not need all SSD performance (and cost) vs. those that need some performance in addition to large capacity.

How the Seagate Momentus XT differs from other Hybrid Disks?
One approach is to take a traditional HDD and pair it with a SSD using a controller packaged in various ways. For example on a large scale, HDDs and SSDs coexist in the same tiered storage system being managed by the controllers, storage processors or nodes in the solution including automated tiering and cache promotion or demotion. The main difference however between other storage systems, tiering and pairing and HHDDs is that in the case of the Momentus XT the HDD, SLC flash (SSD functionality) and RAM cache and their management are all integrated within the disk drive enclosure.

Do I use SSDs and HDDs or just HHDDs?
I have HHDDs installed internally in my laptops. I also have HDDs which are installed in servers, NAS and disk to disk (D2D) backup devices and Digital Video Recorders (DVRs) along with external SSD and Removable Hard Disk Drives (RHDDs). The RHDDs are used for archive and master or gold copy data protection that go offsite complimenting how I also use cloud backup services as part of my data protection strategy.

What are the technical specifications of a HHDD such as the Seagate Momentus XT?
3Gbs SATA interface, 2.5 inch 500GB 7,200 RPM HDD with 32MB RAM cache and integrated 4GByte SLC flash all managed via internal drive processor. Power consumption varies depending what the device is doing such as initial power up, idle, normal or other operating modes. You can view the Seagate Momentus XT 500GB (ST95005620AS which is what I have) specifications here as well as the product manual here.


One of my HHDDs on a note pad (paper) and other accessories

Do you need a special controller or management software?
Generally speaking no, the HHDD that I have been using plugged and played into my existing laptops internal bay replacing the HDD that came with those systems. No extra software was needed for Windows, no data movement or migration tools needed other than when initially copying from the source HDD to the new HHDD. The HHDD do their own caching, read ahead and write behind independent of the operating system or controller. Now the reason I say generally speaking is that like many devices, some operating systems or controllers may be able to leverage advanced features so check your particular system capabilities.

How come the storage system vendors are not talking about these HHDDs?
Good question which I assume it has a lot to do with the investment (people, time, engineering, money and marketing) that they have or are making in controller and storage system software functionality to effectively create hybrid tiered storage systems using SSD and HDDs on different scales. There have been some packaged HHDD systems or solutions brought to market by different vendors that combine HDD and SSD into a single physical package glued together with some software and controllers or processors to appear as a single system. I would not be surprised to see discrete HHDDs (where the HDD and flash SSD and RAM are all one integrated product) appear in lower end NAS or multifunction storage systems as well as for backup, dedupe or other system that requires large amounts of capacity space and performance boost now and then.

Why do I think this? Simple, say you have five HHDDs each with 500GB of capacity configured as a RAID5 set resulting in 2TByte of capacity. Using as a hypothetical example the Momentus XT yields 5 x 4GByte or 20GByte of flash cache helps accelerate write operations during data dumps, backup or other updates. Granted that is an overly simplified example and storage systems can be found with hundreds of GByte of cache, however think in terms of value or low cost balancing performance and capacity to cost for different usage scenarios. For example, applications such as bulk or scale out file and object storage including cloud or big data, entertainment, Server (Citrix/Xen, Microsoft/HyperV, VMware/vSphere) and Desktop virtualization or VDI, Disk to Disk (D2D) backup, business analytics among others. The common tenets of those applications and usage scenario is a combination of I/O and storage consolidation in a cost effective manner addressing the continuing storage capacity to I/O performance gap.

Data Center and I/O Bottlenecks

Storage and I/O performance gap

Do you have to backup HHDDs?
Yes, just as you would want to backup or protect any SSD or HHD device or system.

How does data get moved between the SSD and the HDD?
Other than the initial data migration from the old HDD (or SSD) to the HHDD, unless you are starting with a new system, once your data and applications exist on the HHDD, it automatically via the internal process of the device manages the RAM, flash and HDD activity. Unlike in a tiered storage system where data blocks or files may be moved between different types of storage devices, inside the HHDD, all data gets written to the HDD, however the flash and RAM are used as buffers for caching depending on activity needs. If you have sat through or listened to a NetApp or HDS use of cache for tiering discussion what the HHDDs do is similar in concept however on a smaller scale at the device level, potentially even in a complimentary mode in the future? Other functions performed inside the HHDD by its processor includes reading and writing, managing the caches, bad block replacement or re vectoring on the HDD, wear leveling of the SLC flash and other routine tasks such as integrity checks and diagnostics. Unlike paired storage solutions where data gets moved between tiers or types of devices, once data is stored in the HHDD, it is managed by the device similar to how a SSD or HDD would move blocks of data to and from the specific media along with leveraging RAM cache as a buffer.

Where is the controller that manages the SSD and HDD?
The HHDD itself is the controller per say in that the internal processor that manages the HDD also directly access the RAM and flash.

What type of flash is used and will it wear out?
The XT uses SLC (single level cell) flash which with wear leveling has a good duty cycle (life span) and is what is typically found in higher end flash SSD solutions vs. lower cost MLC (multi level cell)

Have I lost any data from it yet?
No, at least nothing that was not my own fault from saving the wrong file in the wrong place and having to recover from one of my recent D2D copies or the cloud. Oh, regarding what have I done with the HDDs that were replaced by the HHDDs? They are now an extra gold master backup copy as of a particular point in time and are being kept in a safe secure facility, encrypted of course.

Have you noticed a performance improvement?
Yes, performance will vary however in many cases I have seen performance comparable to SSD on both reads and writes as long as the HDDs keep up with the flash and RAM cache. Even as larger amounts of data are written, I have seen better performance than compared to HDDs. The caveat however is that initially you may see little to marginal performance improvement however over time, particularly on the same files, performance tends to improve. Working on large tens to hundreds of MByte size documents I noticed good performance when doing saves compared to working with them on a HDD.

What do the HHDDs cost?
Amazon.com has the 500GB model for about $100 which is about $40 to $50 less than when I bought my most recent one last fall. I have heard from other people that you can find them at even lower prices at other venues. In the theme of disclosures, I bought one of my HHDDs from Amazon and Seagate gave me one to test.

Will I buy more HHDDs or switch to SSDs?
Where applicable I will add SSDs as well as HDDs, however where possible and practical, I will also add HHDDs perhaps even replacing the HDDs in my NAS system with HHDDs at some time or maybe trying them in a DVR.

What is the down side to the HHDDs?
Im generating and saving more data on the devices at a faster rate which means that when I installed them I was wondering if I would ever fill up a 500GB drive. I still have hundreds of GBytes free or available for use, however I also am able to cary more reference data or information than in the past. In addition to more reference data including videos, audio, images, slide decks and other content, I have also been able to keep more versions or copies of documents which has been handy on the book project. Data that changes gets backed up D2D as well as to my cloud provider including while traveling. Leveraging compression and dedupe, given that many chapters or other content are similar, not as much data actually gets transmitted when doing cloud backups which has been handy when doing a backup from a airplane flying over the clouds. A wish for the XT type of HHDD that I have is for vendors such as Seagate to add Self Encrypting Disk (SED) capabilities to them along with applying continued intelligent power management (IPM) enhancements.

Why do I like the HHDD?
Simple, it solves both business and technology challenges while being an enabler, it gives me a balance of performance for productivity and capacity in a cost effective manner while being transparent to the systems it works with.

Here are some related links to additional material:
Data Center I/O Bottlenecks Performance Issues and Impacts
Has SSD put Hard Disk Drives (HDDs) On Endangered Species List?
Seagate Momentus XT SD 25 firmware
Seagate Momentus XT SD25 firmware update coming this week
A Storage I/O Momentus Moment
Another StorageIO Hybrid Momentus Moment
As the Hard Disk Drive (HDD) continues to spin
Has SSD put Hard Disk Drives (HDDs) On Endangered Species List?
Funeral for a Friend
As the Hard Disk Drive (HDD) continues to spin
Seagate Momentus XT product specifications
Seagate Momentus XT product manual
Technology Tiering, Servers Storage and Snow Removal
Self Encrypting Disks (SEDs)

Ok, nuff said for now

Cheers Gs

Greg Schulz – Author The Green and Virtual Data Center (CRC), Resilient Storage Networks (Elsevier) and coming summer 2011 Cloud and Virtual Data Storage Networking (CRC)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2011 StorageIO and UnlimitedIO All Rights Reserved

As the Hard Disk Drive HDD continues to spin

As the Hard Disk Drive HDD continues to spin

server storage data infrastructure i/o iop hdd ssd trends

Updated 2/10/2018

Despite having been repeatedly declared dead at the hands of some new emerging technology over the past several decades, the Hard Disk Drive (HDD) continues to spin and evolve as it moves towards its 60th birthday.

More recently HDDs have been declared dead due to flash SSD that according to some predictions, should have caused the HDD to be extinct by now.

Meanwhile, having not yet died in addition to having qualified for its AARP membership a few years ago, the HDD continues to evolve in capacity, smaller form factor, performance, reliability, density along with cost improvements.

Back in 2006 I did an article titled Happy 50th, hard drive, but will you make it to 60?

IMHO it is safe to say that the HDD will be around for at least a few more years if not another decade (or more).

This is not to say that the HDD has outlived its usefulness or that there are not other tiered storage mediums to do specific jobs or tasks better (there are).

Instead, the HDD continues to evolve and is complimented by flash SSD in a way that HDDs are complimenting magnetic tape (another declared dead technology) each finding new roles to support more data being stored for longer periods of time.

After all, there is no such thing as a data or information recession!

What the importance of this is about technology tiering and resource alignment, matching the applicable technology to the task at hand.

Technology tiering (Servers, storage, networking, snow removal) is about aligning the applicable resource that is best suited to a particular need in a cost as well as productive manner. The HDD remains a viable tiered storage medium that continues to evolve while taking on new roles coexisting with SSD and tape along with cloud resources. These and other technologies have their place which ideally is finding or expanding into new markets instead of simply trying to cannibalize each other for market share.

Here is a link to a good story by Lucas Mearian on the history or evolution of the hard disk drive (HDD) including how a 1TB device that costs about $60 today would have cost about a trillion dollars back in the 1950s. FWIW, IMHO the 1 trillion dollars is low and should be more around 2 to 5 trillion for the one TByte if you apply common costs for management, people, care and feeding, power, cooling, backup, BC, DR and other functions.

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

IMHO, it is safe to say that the HDD is here to stay for at least a few more years (if not decades) or at least until someone decides to try a new creative marketing approach by declaring it dead (again).

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Fall 2010 StorageIO News Letter

StorageIO News Letter Image
Fall 2010 Newsletter

Welcome to the Fall 2010 edition of the Server and StorageIO Group (StorageIO) newsletter. This follows the August 2010 edition building on the great feedback received from recipients.

You can access this news letter via various social media venues (some are shown below) in addition to StorageIO web sites and subscriptions. Click on the following links to view the Fall 2010 edition as an HTML or PDF or, to go to the newsletter page to view previous editions.

Follow via Goggle Feedburner here or via email subscription here.

You can also subscribe to the news letter by simply sending an email to newsletter@storageio.com

Enjoy this edition of the StorageIO newsletter, let me know your comments and feedback.

Cheers gs

Nuff said for now

Cheers gs

Greg Schulz – Author The Green and Virtual Data Center (CRC) and Resilient Storage Networks (Elsevier)
twitter @storageio

Another StorageIO Hybrid Momentus Moment

Its been a few months since my last post (read it here) about Hybrid Hard Disk Drive (HHDD) such as the Seagate Momentus XT that I have been using.

The Momentus XT HHDD I have been using is a 500GB 7,200RPM 2.5 inch SATA Hard Disk Drive (HDD) with 4GB of embedded FLASH (aka SSD) and 32MB of DRAM memory for buffering hence the hybrid name.

I have been using the XT HHDD mainly for transferring large multi GByte size files between computers and for doing some disk to disk (D2D) backups while becoming more comfortable with it. While not as fast as my 64GB all flash SSD, the XT HHDD is as fast as my 7,200RPM 160GB Momentus HDD and in some cases faster on burst reads or writes. The notion of having a 500GB HDD that was affordable to support D2D was attractive however the ability to get some performance boost now and then via the embedded 4GB FLASH opens many different possibilities particularly when combined with compression.

Recently I switched the role of the Momentus XT HHDD from that of being a utility drive to becoming the main disk in one of my laptops. Despite many forums or bulletin boards touting issues or problems with the Seagate Momentus XT causing system hangs or Windows Blue Screen of Death (BSoD), I continued on with the next phase of testing.

Making the switch to XT HHDD as a primary disk

I took a few precaution including eating some of my own dog food that I routinely talk about. For example, I made sure that the Lenovo T61 where the Momentus XT was going to be installed was backed up. In addition, I synced my traveling laptop so that it was the primary so that I could continue working during the conversion not to mention having an extra copy in addition to normal on and offsite backups.

Ok, lets get back to the conversion or migration from a regular HDD to the HHDD.

Once I knew I had a good backup, I used the Seagate Discwizard (e.g. Acronis based) tool for imaging the existing T61 HDD to the Momentus XT HHDD. Using Discwizard (you could use other tools as well) I configured it to initialize the HHDD which was attached via a Seagate Goflex USB to SATA cable kit as well as image or copy the contents of the T61 HDD partitions to the Momentus XT. During the several hours it took to copy and create a new bootable disk image on the HHDD I continued working on my travel or standby laptop.

After the image copy was completed and verified, it was time to reboot and see how Windows (XP SP3) liked the HHDD which all seemed to be normal. There were some parts of the boot that seemed a bit faster, however not 100 percent conclusive. The next step was to shutdown the laptop and physically swap the old internal HDD with the HHDD and reboot. The subsequent boot did seem faster and programs accessing large files also seemed to run a bit faster.

Keep in mind that the HHDD is still a spinning 7,200RPM disk drive so comparisons to a full time SSD would be apples to oranges as would the cost capacity difference between those devices. However, for what I wanted to see and use, the limited 4GB of flash does seem to provide a performance boost and if I needed full time super fast performance, I could buy a larger capacity SSD and install it. Im going to hold off on buying any more larger capacity flash SSD for the time being however.

Do I see HHDD appearing in SMB, SME or enterprise storage systems anytime soon? Probably not, at least not in primary storage systems. However perhaps in some D2D backup, archive or dedupe and VTL devices or other appliances.

Momentus XT Speed Bumps

Now, to be fair, there have been some bumps in the road!

The first couple of days were smooth sailing other than hearing the mystery chirp the HHDD makes a couple of times a day. Low and behold after a couple of days, just as many forums had indicated, a mystery system hang occurred (and no, not like Windows might normally do so for those Microsoft cynics). Other than the inconvenience of a reboot, no data was lost as files being updated were saved or had been backed up not to mention after the reboot, everything was intact anyway. So far just an inconvenience or so I thought.

Almost 24 hours later, same thing except this time I got to see the BSoD which candidly, I very rarely see despite hearing stories from others. Ok, this was annoying, however as long as I did not lose any data, other than lost time from a reboot, lets chalk this up to a learning experience and see where it goes. Now guess what, about 12 hours later, once again, the system froze up and this time I was in the middle of a document edit. This time I did lose about 8 minutes of typing data that had not been auto saved (I have since changed my auto save from 10 minutes to 5 minutes).

With this BSoD incident, I took some notes and using the X61s, started checking some web sites and verified the BIOS firmware on the T61 which was up to date. However I noticed that the Seagate Momentus XT HHDD was at firmware 22 while there was a 23 version available. Reading through some web sites and forums, I was on the fence on trying firmware 23 given that it appears a newer firmware version for the HHDD is in the works. Deciding to forge forward with the experiment, after all, no real data loss had occurred, and I still had the X61s not to mention the original T61 HDD to fall back to worse case.

Going to the Seagate web site, I downloaded the firmware 23 install kit and ran it to their instructions which was a breeze and then did the reboot.

It has not been quite a week yet, however knocking on wood, while I keep expecting to see one, no BSoD or system freezes have occurred. However having said that and knocking on wood, Im also making sure things are backed up protected and ready if needed. Likewise, if I start to see a rash of BSoD, my plan is to fall back to the original T61 HDD, bring it up to date and use it until a newer HHDD firmware version is available to resume testing.

What is next for my Seagate Momentus XT HHDD?

Im going to wait to see if the BSoD and mystery system hangs disappear as well as for the arrival of the new firmware followed by some more testing. However, when Im confident with it, the next step is to put the XT HHDD into the X61s which is used primarily for travel purpose.

Why wait? Simple, while I can tolerate a reboot or crash or data loss or disruption while in the office given access to copies as well as standby or backup systems to work from, when traveling options are more limited. Sure if there is data loss, I can go to my cloud provider and rapidly recall a file or multiple ones as needed or for critical data, recover from a portable encrypted USB device. Consequently I want more confidence in the XT HHDD before deploying it for travel mode which it is probably safe to do as of now, however I want to see how stable it is in the office before taking it on the road.

What does this all mean?

  • Simple, have a backup of your data and systems
  • Test and verify those backups or standby systems periodically
  • Have a fall back plan for when trying new things
  • Keep productivity in mind, at some point you may have to fall back
  • If something is important enough to protect, have multiple copies
  • Be ready to eat your own dog food or what you talk about
  • Do not be scared, however be prepared, look before you leap

How about you are you using a HHDD yet and if so, what are your experiences? I am curious to hear if anyone has tried using a HHDD in their VMware lab environments yet in place of a regular HDD or before spending a boat load of money for a similar sized SSD.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Is the new HDS VSP really the MVSP?

Today HDS announced with much fan fare that must have been a million dollar launch budget the VSP (successor to the previous USPV and USPVM).

Im also thinking that the HDS VSP (not to be confused with HP SVSP that HP OEMs via LSI) could also be called the the HDS MVSP.

Now if you are part of the HDS SAN, LAN, MAN, WAN or FAN bandwagon, MVSP could mean Most Valuable Storage Platform or Most Virtualized Storage Product. MVSP might be also called More Virtualized Storage Products by others.

Yet OTOH, MVSP could be More Virtual Story Points (e.g. talking points) for HDS building upon and when comparing to their previous products.

For example among others:

More cache to drive cash movement (e.g. cash velocity or revenue)
More claims and counter claims of industry unique or fists
More cloud material or discussion topics
More cross points
More data mobility
More density
More FUD and MUD throwing by competitors
More functionality
More packets of information to move, manage and store
More pages in the media
More partitioning of resources
More partners to sell thorough or too
More PBytes
More performance and bandwidths
More platforms virtualized
More platters
More points of resiliency
More ports to connect to or through
More posts from bloggers
More power management, Eco and Green talking points
More press releases
More processors
More products to sell
More profits to be made
More protocols (Fibre Channel, FICON, FCoE, NAS) supported
More pundits praises
More SAS, SATA and SSD (flash drives) devices supported
More scale up, scale out, and scale within
More security
More single (Virtual and Physical) pane of glass managements
More software to sell and be licensed by customers
More use of virtualization, 3D and other TLAs
More videos to watch or be stored

Im sure more points can be thought of, however that is a good start for now including some to have a bit of fun with.

Read more about HDS new announcement here, here, here and here:

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

What is DFR or Data Footprint Reduction?

What is DFR or Data Footprint Reduction?

What is DFR or Data Footprint Reduction?

Updated 10/9/2018

What is DFR or Data Footprint Reduction?

Data Footprint Reduction (DFR) is a collection of techniques, technologies, tools and best practices that are used to address data growth management challenges. Dedupe is currently the industry darling for DFR particularly in the scope or context of backup or other repetitive data.

However DFR expands the scope of expanding data footprints and their impact to cover primary, secondary along with offline data that ranges from high performance to inactive high capacity.

Consequently the focus of DFR is not just on reduction ratios, its also about meeting time or performance rates and data protection windows.

This means DFR is about using the right tool for the task at hand to effectively meet business needs, and cost objectives while meeting service requirements across all applications.

Examples of DFR technologies include Archiving, Compression, Dedupe, Data Management and Thin Provisioning among others.

Read more about DFR in Part I and Part II of a two part series found here and here.

Where to learn more

Learn more about data footprint reducton (DFR), data footprint overhead and related topics via the following links:

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

That is all for now, hope you find these ongoing series of current or emerging Industry Trends and Perspectives posts of interest.

Ok, nuff said, for now.

Cheers Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

A Storage I/O Momentus Moment

I recently asked for and received from Seagate (See recent post about them moving their paper head quarters to Ireland here) a Momentus XT 500GB 7200 RPM 2.5 Hybrid Hard Disk Drive (HHDD) to use in an upcoming project. That project is not to test a bunch of different Hard Disk Drives (HDDs), HHDDs, Removable HDD (RHDDs) or Solid State Devices (read more about SSDs here and here or storage optimization here) in order to produce results for someone for a fee or some other consideration.

Do not worry, I am not jumping on the bandwagon of calling my office collection of computers, storage, networks and software the StorageIO Independent hands on test lab. Instead, my objective is to actually use the Momentus XT in conjunction with other storage I/O devices ranging from notebook or laptop, desktop or server, NAS and cloud based storage in conjunction with regular projects that Im working on both in the office as well as while traveling to various out and about activities.

More often than not these days, common thinking or perception is that if anybody is talking about a product or technology it must be a paid for activity as why would anyone write or talk about something without getting or expecting something in exchange (granted there are some exceptions). Given this era of transparency talk, lets walk the talk and here is my disclosure which for those who have read my content before hopefully you will realize that disclosures should be simple, straight forward, easy, fun and common sense based instead of having to dance around or hide what may be being done.

Disclosure moment:
This is not a paid for or sponsored blog (read my disclosure statement here) and in fact is no way connected to in conjunction with, endorsed, sanctioned or approved by Seagate for that matter nor have they been and currently are not a client. I did however ask them for and they offered to send to me a single 500GB Momentus XT Hybrid Hard Disk Drive (HHDD) with no enclosure, accessories, adapter, cables, software or other packaging to be used for a project I am working on. However I did buy from Amazon.com a Seagate GoFlex USB 3.0 to SATA 3 connection cable kit that I had been eyeing for some other projects. Nuff said about that.

What am I doing with a Seagate Momentus XT
As to the project I am working on, it has nothing to do with Seagate or any other vendors or clients for that matter as it is a new book that I will tell you more about in future posts. What I can share with you for now is that it is a follow on to my most previous books ( The Green and Virtual Data Center (CRC) and Resilient Storage Networks (Elsevier) ). The new book will also be published by CRC Taylor and Francis.

Now for those who are interested in why would I request a Momentus XT Hybrid Hard Disk Drive (HHDD) from Seagate while turning down others offers of free hardware, software, services, trips and the like it is many fold. First I already own some Momentus (as perhaps you do and may not realize it) HDDs thus thought it would be fun and relatively straight forward to make some general comparisons. I needed some additional storage and I/O improvements to compliment and coexist with what I already have.

Does this mean that the book is going to be about flash Solid State Devices (SSD) since I am using a Momentus XT HHDD? The short answer is NO, it will be much more broadly focused however certainly various types of storage I/O control, public and private clouds, management, gaining control, networking, virtualization as well as other hardware, software, services techniques and technologies will be discussed building on my two previous books.

In addition, I want to see how compatible and useful in every day activities the HHDDs are as opposed to running a couple of standard iometer or other so called lab bench tests. After all, when you buy storage or any IT solutions, do you buy them to be used in your lab to run tests, or, do you buy them to do actual day to day tasks?

I also have been a fan of the HHDD as well as flash and DRAM based SSDs for many years (make that decades for SSDs) and see the opportunity to increase how I am actually using HDDs, HHDDs, SSDs as well as Removable Hard Disk Drives (RHDD) in conjunction with NAS, DAS and other storage to support my book writing as well as other projects that I have bought in the past.

What is the Seagate Momentus XT
The Seagate Momentus series of HDDs are positioned as desktop, notebook and laptop devices that vary in rotational speed (RPM), physical form factor, storage capacity as well as price. The XT is a Hybrid Hard Disk Drive (HHDD) that is essentially a best of breed (hence Hybrid) type device incorporating the high capacity and low cost of a traditional 2.5 7200 RPM HDD with performance boost of flash SSD memory. For example some initial testing of working with very large files have found that the XT can in some instances be as fast as a SSD while holding 10x the capacity with a favorable price.

In other words, an effective balance of cost per GByte capacity, cost per IOP and energy efficiency per IOP. This does not mean however that an XT should be used everywhere or for a replacement to DRAM or flash SSD quite to the contrary as those devices are good tools for specific needs or applications. Instead, the XT provides a good balance of performance and capacity to bridge the gap between traditional spinning HDDs price per capacity and performance per cost of SSD. (For those interested, here is a link to what Seagate is doing with SSD e.g. Pulsar in addition to HHDD and HDD).

Value proposition and business (or consumer) benefits moment
What is the benefit, why not just go all flash?

Simple and that is price unless your specific needs fit into the capacity space of an SSD and you need both the higher performance and lower energy draw (with subsequent heat generation). Note that I did not say heat elimination as during a recent quick test of copying 6GB of data to a flash based SSD it was warm just as the XT device was, however also a bit cooler than a comparable 7200 RPM 2.5 drive. If you can afford the full SSD flash or dram based device as well as it fits your needs and compatibility, go for it. However also make sure that you will see the full expected benefit of adding a SSD to your specific solutions as not all implementations are the same (e.g. do your homework).

Why not just go all HDD?

Simple, economics and performance which is why as I said back in 2005 that HHDDs had a very bright future and will IMHO drive a wedge between the traditional HDD and emerging flash based SSD markets at least for non consumer devices on a near term basis given their compatibility capabilities.

In other words, you could think of it as a compromise, or as a best of breed. For example I can see where for compatible not to mention cost and customer comfort ability of a known entity HHDD will gain some popularity in desktops, laptops, notebooks as well as other devices where a performance boost is needed however not at the expense of throwing out capacity or tight economic budgets.

I can also see some interesting scenarios for hosting virtual machines (VMs) to support server Virtualization with VMware, HyperV or Xen based solutions among others. Another scenario is for bulk storage or archive and backup solutions where the HHDD with their extended cache in the form of flash can help to boost performance of read or write operations on VTLs and dedupe devices, archive platforms, backup or other similar functions. Sure the Momentus XT is positioned as a desktop, notebook type device however has that ever stopped vendors or solution providers from using those types of devices in different roles other than what they were designed for? I am just sayin.

Speeds, feeds and buzzword bingo moment
Seagate has many different types of disk drives that can be found here. In general, the Momentus XT is a 2.5 small form factor (SFF) Hybrid Hard Disk Drive (HHDD) available in 500GB, 320GB and 250GB capacity (I have the 500GB model ST95005620AS) with 4GB SLC NAND (flash) SSD memory, 32MB of drive level cache, an underlying 7200RPM disk drive with SATA 3Gb/s interface including as well as Native Command Queuing (NCQ). Now if you want to say that the XT implements tiered storage in a single device (DRAM, flash and HDD) go ahead. Following are a couple of links of where you can learn more.

Seagate Seatools disk drive diagnostic software (free here)

Seagate FreeAgent Goflex Upgrade Cable (USB 3.0 to SATA 3 STAE104) (Seagate site and Amazon)

Seagate Momentus XT site with general information, product overview and data sheets as well as on Amazon

What does a Momentus XT have to do with writing a book?
If you have ever written a book, or for that matter, done a large development project of any type then things should be a bit familiar. These types of projects include the needs to keep organized as well as protected multiple copies of documents (a dedupers dream) including text, graphics or figures, spreadsheets not to mention project tracking material among others. Likewise as is the case with other authors who work for a living, much of these books are written, edited, proofed or thought about while traveling to different vents, client sites, conferences, meetings or on vacation for that matter. Hence the need to have multiple copies of data on different devices to help guard against when something happens (note that I did not say if).

This is nothing new as each of my last two solo book projects as well as when I was a coauthor contributing content to other books including The Resilient Enterprise (Veritas/Symantec). Much of the content was created while traveling relying on portable storage and backup while on the road. Something someone pointed out to me recently is that this is an example of eating your own dog food or eliminating the shoe makers children syndrome (where the shoe maker creates shoes for others however not for his own children).

Initial moments and general observations
From time to time I will post some notes and observations about how the Momentus XT is performing or behaving which if all goes as planned and so far has, it should be very transparent coexisting with some of my Removable Hard Disk Drives (RHDD) such as the Imation Odyssey which I bought several years ago for offsite bulk removable storage of data that goes to a secure vault somewhere.

Initial deployment other than a stupid mistake on my part has been smooth. What was the stupid mistake you ask? Simple, when I attached the drive via a USB 3.0 cable to SATA 3 connector to one of my XP SP3 systems, Windows saw the device however it did not show up in the list of available devices. Ok, I know I know, it was late in the evening however that is no excuse for realizing that the disk had not yet been initialized let alone formatted. A quick check using Seatools (free here) showed all was well. I then launched Windows Disk Manager, did the initialize, followed by format and all was good from that point on. Wow, wonder how much credibility I will lose over that gaff with the techno elite (that is a joke and a bit of humor btw).

I have already done some initial familiarization and compatibility testing with some of my other drives including a 2.5 64GB SATA flash SSD as well as a 2.5 7200RPM HDD both that I use for bulk data movement activities. At some point I also plan on attaching the XT to my Iomega IX4 NAS to try various things as I have done with other external devices in the past.

Granted these were not ideal conditions as I was in hurry and wanted to get some quick info. Given the probably less than ideal configuration as the format after the HDD was first initialized took about an hour using a FAT32 plug and play configuration. With NTFS and other optimizations I assume it can be better however this was again just to get an initial glimpse of the device in use.

Given that it is a HHDD that uses flash as a big buffer with a 500GB HDD plus 32MB of cache as a backing store, it was interesting attaching it to the computer, then waiting a few minutes, then launching a file copy. Where a normal HDD would start slightly vibrating due to rotation, it was a few moments before any vibration or noise was detected on the Momentus XT which should be of no surprise as the flash was doing its job acting as a buffer until the HDD spun up for work.

I did some initial file copying back and forth between different computers while LAN and NAS were busy doing other things including backups to the Mozy cloud. No discrete time or performance benchmarks to talk about yet, however overall, the XT not surprisingly does seem to be a bit faster than another external 7200 RPM 2.5 drive I use for bulk data moves both on reads and writes. Likewise, given that it is a hybrid HDD leveraging flash as an extended cache with an underlying HDD plus 32MB of cache, it may not always be as fast as my external 2.5 64GB flash SSD, however that is also a common apples to oranges comparison mistake (more on that in a future post).

For example, copying over 6GBytes of data (5 large files of various size) from a 7200 RPM 2.5 160GB Momentus drive in a laptop to the HHDD XT and a flash SSD both took about 8 to 9 minutes where as the normal copy to a 2.5 5400 RPM HDD takes at least 14 to 15 minutes if not longer. Note that these are very rough and far from accurate or reflective comparisons rather a quick gauge of benefits (e.g. getting data moved faster). When I get around to it, will do some more accurate comparisons and put into a follow up post. However I can see already where the XT has the performance similar to the SSD however with almost 10x the capacity which means it could possibly have an interesting role in supporting disk to disk (D2D) backups which I will give a try.

Eventually I will be removing the USB connector kit and actually installing the Momentus into a computer or two (not at the same time) however I am currently walking before running. Im still up in the air as to if I would install the XT into a computer with Windows XP SP3, or simply do a new install of Windows 7 on it to which Im open to thoughts, comments, feedback or applicable suggestions (besides switching to a Macbook or iPad).

Wrap up and fun moment

In the above photo, there is the Seagate Momentus (ST95005620AS), a Goflex USB 3.0 to SATA conversion attachment cable (docking device), a fortune cookie, couple of US quarters and Canadian two dollar coins (See out and about update), paper clips and fishing bobber on a note pad. Why the coins to show relative size and diversity across different geographies as this device will be traveling (it missed out on recent European trip to Holland).

Why the paper clips? Simple, why not, you never know when you will need one for something such as a MacGyver moment, or for pushing the tiny reset button on a device among other activities.

How about the fortune cookie? For good luck and I might need a quick snack while having a cup of coffee not to mention Chinese as well as Asian in general is one of my favorites cuisines to prepare or cook not to mention eat.

Oh, what about the fishing bobber? Why not, it was just laying around and you could also that Im fishing for information to see how the device fits into normal use or that it is there for fun or to add color to the photo.

Oh, and the note pad? Hmm, well, if you cannot figure that one out besides being a back drop, lets just say that the Momentus line in general as well as XT specifically are targeted for notebook, desktop, laptop or other deployment scenarios. If you still dont see the connection, ok fine, feel free to post a comment and I will happily clarify it for you.

That is all for the moment, however I will be following up with more soon.

In the meantime, enjoy your summer if in the northern hemisphere (or winter if in the south).

Take lots of photos, videos and make audio recordings to fill up those USB flash thumb drives (consumer SSD), SD memory cards, computer hard drives, cloud and online web hosting sites so that have you something to remember your special out and about moments by.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Two companies on parallel tracks moving like trains offset by time: EMC and NetApp

View from VIA Rail Canada taken using Gregs iFlip

I see some similarities and parallels between two competing companies. Those companies happen to be in the same sector (e.g. IT data storage) however offset by time (about a decade or) subject to continued execution by both.

Those two companies are EMC and NetApp.

Some people might assert that these two companies are complete opposites. Perhaps claiming that one is on the up swing while the other on the down path (have heard claims and counter claims of both being on the other path). I will leave the discussion or debate of which is on the up and which is on the down path to the twittervile and blogsphere ultimate tag team mud wrestling arena or You Tube video rooms.

I see EMC and NetApp a bit differently which you can take it for what that is, simply an opinion or perspective having been the competitor and partner of both when I was on the vendor side of the table and later covering the two as an industry analyst.

Without going too far down the memory lane route, in a nut shell, I recall when EMC was still a fledgling startup who wanted to sell me (I was on the customer side then) rebrand Fujitsu disk drives to attach to my VAX/VMS systems and memory for our mainframes. Come to think about it, Emulex was also selling disk drives back then before reinventing themselves later as an HBA and hub vendor.

Later as a vendor, around late 94 or early 95, it was the up and coming small little bay area NAS filer appliance vendor (e.g. the toaster era) that we partnered with including a very brief OEM deal involving repackaging their product which was NetApp or Network Appliance as they were formerly known then. Once that ended after a year or so NetApp become a competitor as was EMC who at the time had as the main act the Symmetrix and about to do the EPOCH backup and McData acquisitions as well as landing the HP OEM deal for open systems.

Ironically NetApp was out to knock off Auspex which happened fairly quickly while EMC was struggling to get its NAS act together with the early DART behemoth while successfully knocking out IBM and other entrenched high-end solutions. In a twist of fate, the company I was working for ended up selling off all of their RAID (initially a few, then later all of them) patents to EMC for some cash and later transitioned out of the hardware business becoming simply a VAR of EMC (that was MTI).

While at INRANGE which later merged into CNT before acquired by McData (I left before that) and then Brocade, both EMC and NetApp were partners across different product lines.

What they have in common

Ok, enough of the memory lane stuff; lets get back to where the similarities exist.

Back in the mid 90s, EMC was essentially a one trick pony with a very software feature function rich large storage system that sold for a premium generating lots of cash from its use of cache. Likewise, NetApp is a vendor that while it has many product offerings and has some acquisitions, still relies very much on their flagship NAS storage systems that are also feature function (e.g. software) rich that leverage cache to generate cash.

Both companies are growing in terms of revenues, installed base, partners/OEMs and product diversity. Likewise each company needs to continue expansion into those as well as other adjacent areas.

Can NetApp catch EMC? Maybe, maybe not, however IMHO the question should be are there other areas that NetApp can extend its reach into causing EMC to react to those, like how EMC took advantage of opportunities causing IBM and others to react.

Here are some other similarities I see of and for EMC and NetApp:

  • Both have great outreach programs where information is provided without having to ask or dig in a proactive way, yet when something is needed, they give it without fanfare
  • Both are engaging at multiple levels, from customer, to financial and investors, to var, to partner, trade groups, to trade and other media, to analysts to social networking and beyond
  • Both are passionate about their companies, cultures, products, solutions and customers
  • Both can walk the talk, however both also like to talk and see the other balk
  • Both lead by example and not afraid to tell you what they think about something
  • Both embrace social media in connection with traditional mediums for communication with people as opposed to a giant megaphone for talking at or spamming people (when will other vendors figure that out?)
  • Both also are willing to hear what you have to say even if they do not agree with it
  • Neither is scared of the other (or at least not in public)
  • Both cause the other to play and execute a stronger game
  • Both are not above throwing a mud ball or fire cracker at the other
  • Both are not above burying the hatchet and getting along when or where needed
  • Both compete vigorously on some fronts, yet partner (publicly or privately) on other fronts
  • Both have been direct focused with some vars and some OEMs
  • Both started somewhere else and now going and moving to different places and in some ways returning to their roots or at least making sure they are not forgotten
  • Both are synonymous with their core focus products and background
  • One comes from an open systems focus working to prove itself in the enterprise
  • One comes from the enterprise establishing itself in SOHO, SMB and other spaces
  • Both have many solutions, some would say long in the tooth, others would say revolutionary
  • Both are growing via organic growth as well as acquisition and partnering
  • Both have celebrity leaders and team role players to support and back then up
  • Both also have deep benches and technical folks in the trenches to get things done
  • Both have developed leadership along with rank and file employees internal
  • Both have gone outside and brought in leadership and skilled players to expand their employee ranks
  • Both are very much involved with server virtualization (Microsoft and VMware)
  • Both are very much involved in storage virtualization and associated management
  • Both are involved with cloud solutions for enabling public or private storage
  • Both are independent storage vendors not part of a larger server organization
  • Both have interoperability programs with other vendors servers and software and networks
  • Both also get beat up about their pricing models for extensive software feature function portfolios associated with respective storage solutions
  • Both get criticized by customers or the industry as is often the case of market leaders

What I see EMC needing to do

  • Articulate where their multiple products and services fit and play into their different target market opportunities while worrying less about the color hue of logos or video backgrounds
  • Avoiding competing with itself or becoming its own major or main competitor
  • Clarify cloud (public and private) cloud confusion transitioning into cloud cash and opportunity
  • Minimize or cut channel contention and confusion internally and across partners
  • Remember where they came from and core competences however avoid a death grip on them
  • Look to the future, leverage lessons learned that helped EMC succeed where others failed
  • EMC needs NetApp as a strong NAS competitor as each plays stronger when against the other. This is like watching world-class athletes, artists or musicians that step up their games or works when paired with another

What I see NTAP needing to do

  • Doing an acquisition in an adjacent space, perhaps even a reverse merger of sorts to move up and out into a broader space that compliments their core offerings. For example, something outside of the normal comfort zone which arguably Datadomain would have been close to their comfort zone. Likewise acquiring a software player such as Commvault would be similar to EMC having acquired Legato, Documentum and so forth. That is NetApp would have to do a series of those. So why not something really big like a reverse merger or partial acquisition of say Symantecs data protection and management group (aka the old Veritas suite including backup, management tools, clustered file server software, volume managers etc).
  • In addition to adjacent acquisition, opportunities plays such as the recent Bycast move makes sense however then those need to be integrated and rolled out similar to what EMC has done with so many of their purchases.
  • Minimize or cut channel contention and confusion both internal across products and with partners.
  • NetApp started at the lower end SMB, grew into the SME and now enterprise place, however they tried with the StorVault and backed out of that market leaving it to EMC Iomega, Cisco, HP, Dell and others. Maybe they do not need a low-end play, however I rather liked the low-end StorVault story as well as where it was going. Oh well, needless to say I ended up buying an EMC Iomega IX4 as the StorVault left the market. Hmm, does that mean NetApp should acquire SNAP or Drobo or some other low-end SOHO play? Only if the price is right and there is an existing customer base and channel in place otherwise it would be a distraction from the core business. BTW, did I mention EMC Legato, oh excuse me, Networker came from the desktop and SMB environment however grew to the enterprise (yes I know, that is debatable) however now is difficult to put into SOHO environments.
  • Does NetApp need a stronger block storage play, perhaps a 3PAR acquisition? Maybe, perhaps not depending on if they are competing for today’s market or tomorrows.
  • Does NetApp need to be acquired? I think they can stay independent; however they need to expand their presence and footprint from a product, partner and customer perspective.
  • NetApp needs a strong NAS competitor in the likes of an EMC as the competition IMHO makes each stronger as well as providing competition which should play well for customers. Not to mention the back and forth mud ball and fire cracker tossing can be entertaining for some.

What is your take?

Are EMC and NetApp two companies on parallel tracks offset by time and perhaps execution?

Cast your vote and see what others have indicated in the following poll.

View from VIA Rail Canada taken using Gregs iFlip

Ok, nuff said.

Cheers gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, vSAN and VMware vExpert. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO All Rights Reserved

Seagate to say goodbye to Cayman Islands, Hello Ireland

Seagate (NASDQ: STX) corporation, the parent of the company many people in IT and data storage in particular know as Seagate the disk drive manufacturer is moving their paper headquarters from the Cayman Islands where they have been based since 2000 to Ireland.

Let me rephrase that as Seagate is not moving their Scotts Valley California headquarters of operations or any design, manufacturing or marketing to Ireland that is not already there. Rather, Seagate as a manufacturing company is moving where it is incorporated (paper corporate headquarters) from the Cayman Islands to the Emerald Island of Ireland.

Confused yet?
Do not worry, it is confusing at first. I ended up having to reread through the Seagate corporate material and remembering back to the late 1990s it all started to make sense. Seagate has over 50,000 employees located at facilities around the world including manufacturing, support, design, research and development, sales and marketing along with corporate administration among others.

Their business while focused on data storage currently is very much centered on magnetic disk drives with a much diversified portfolio including products obtained via their acquisition of Maxtor. The Seagate product portfolio includes among others high end enterprise class Fibre Channel and SAS 15,500 RPM (15.5K) high performance to high capacity SAS and SATA devices, 10K small form factor (SFF) to mid market, SMB, USB based SOHO, prosumer or consumer along with portable and specialized devices among many others including emerging SSD and hybrid devices.

However back in the late 1990s, Seagate ventured off into some other areas for a time being including owning (in part) Veritas (since divested and now part of Symantec), Xiotech (now back on its own under venture ownership including some tied to Seagate) among some other transactions. In a series of moves, merger and acquisition, divestures, restructuring, paper corporate headquarters that reads like something out of a Hollywood movie, Seagate ended up moving its place of incorporation to the Cayman Islands.

Seagate as it was known had essentially become the manufacturing company owned by a paper holding company incorporated off shore for business and tax purposes. Want to learn more, read the companies annual reports and other filings some of which can be found here.

The Business End of the Move
Without getting into the deep details of international finance, tax law or articles of business incorporation, many companies are actually incorporated in a location different from where they actualy have their headquarters. In the United States, that is often Delaware where corporations file their paper work for articles of incorporations and then locate their headquarters or primary place of business elsewhere.

Seagate SEC filings outlining move
Seagate SEC filing outlining proposed move

Outside of the United States, the Cayman Islands among other locations have been a popular location for companies to file their paper work and have a paper headquarters due to favorable tax rates and other business benefits. Perhaps you have even watched a movie or two where part of the plot involved some business transaction of a paper company located in the Cayman Island as a means of shelter business dealings. In the case of Seagate, in 2000 during a restricting their corporate (paper) headquarters was moved to the Cayman due to its favorable business climate including lower tax structure.

Dive Cayman Islands

Disclosure: While I am a certified and experienced PADI SCUBA Divemaster having visited many different venues, Cayman Island is not one of them. Likewise, while I have distant relatives never meet, I would live to visit Ireland sometime.

Why is Seagate saying goodbye to the nice warm climate of the Cayman Islands heading off to the emerald Isle?

Visit Ireland

Simple, a more favorable business climate that include international business and taxation benefits as well as Ireland is not coming under scrutiny as a tax haven by the U.S. and other governments as have the Cayman Islands (along with other locations). Let me also be clear that Seagate is not new to Ireland having had a presence there for some time (See here).

What does all of this mean?
From a technology perspective pretty much nothing as this appears to be mainly a business and financial move for the shareholders of Seagate. As for impact on shareholders, other than reading through some documents if so inclined, probably not much impact if any at all.

As for IT customers, their solution providers who are customers of Seagate this probably does not mean anything at all as it should be business as usual.

What about others parties, governments, countries or entities?

Tough to say if this is a trend of companies that will begin moving their paper headquarters from the Caymans to elsewhere so as to escape being in the spotlight of U.S. and other governments looking for additional revenues.

Perhaps a boon to Ireland if more companies decide to move their paper as well as actual company operations there as many have done over the past decades. Otherwise for the rest of us, it can make for interesting reading, conversations, speculation, debate and discussion.

And that is all that I have to say about this for now, what say you?

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Spring 2010 StorageIO Newsletter

Welcome to the spring 2010 edition of the Server and StorageIO (StorageIO) news letter.

This edition follows the inaugural issue (Winter 2010) incorporating feedback and suggestions as well as building on the fantastic responses received from recipients.

A couple of enhancements included in this issue (marked as New!) include a Featured Related Site along with Some Interesting Industry Links. Another enhancement based on feedback is to include additional comment that in upcoming issues will expand to include a column article along with industry trends and perspectives.

StorageIO News Letter Image
Spring 2010 Newsletter

You can access this news letter via various social media venues (some are shown below) in addition to StorageIO web sites and subscriptions. Click on the following links to view the spring 2010 newsletter as HTML or PDF or, to go to the newsletter page.

Follow via Goggle Feedburner here or via email subscription here.

You can also subscribe to the news letter by simply sending an email to newsletter@storageio.com

Enjoy this edition of the StorageIO newsletter, let me know your comments and feedback.

Also, a very big thank you to everyone who has helped make StorageIO a success!.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

Technology Tiering, Servers Storage and Snow Removal

Granted it is winter in the northern hemisphere and thus snow storms should not be a surprise.

However between December 2009 and early 2010, there has been plenty of record activity from in the U.K. (or here), to the U.S. east coast including New York, Boston and Washington DC, across the midwest and out to California, it made for a white christmas and SANta fun along with snow fun in general in the new year.

2010 Snow Storm via www.star-telegram.com

What does this have to do with Information Factories aka IT resources including public or private clouds, facilities, server, storage, networking along with data management let alone tiering?

What does this have to do with tiered snow removal, or even snow fun?

Simple, different tools are needed for addressing various types of snow from wet and heavy to light powdery or dustings to deep downfalls. Likewise, there are different types of servers, storage, data networks along with operating systems, management tools and even hyper visors to deal with various application needs or requirements.

First, lets look at tiered IT resources (servers, storage, networks, facilities, data protection and hyper visors) to meet various efficiency, optimization and service level needs.

Do you have tiered IT resources?

Let me rephrase that question to do you have different types of servers with various performance, availability, connectivity and software that support various applications and cost levels?

Thus the whole notion of tiered IT resources is to be abe to have different resources that can be aligned to the task at hand in order to meet performance, availability, capacity, energy along with economic along with service level agreement (SLA) requirements.

Computers or servers are targeted for different markets including Small Office Home Office (SOHO), Small Medium Business (SMB), Small Medium Enterprise (SME) and ultra large scale or extreme scaling, including high performance super computing. Servers are also positioned for different price bands and deployment scenarios.

General categories of tiered servers and computers include:

  • Laptops, desktops and workstations
  • Small floor standing towers or rack mounted 1U and 2U servers
  • Medium sizes floor standing towers or larger rack mounted servers
  • Blade Centers and Blade Servers
  • Large size floor standing servers, including mainframes
  • Specialized fault tolerant, rugged and embedded processing or real time servers

Servers have different names email server, database server, application server, web server, and video or file server, network server, security server, backup server or storage server associated with them depending on their use. In each of the previous examples, what defines the type of server is the type of software is being used to deliver a type of service. Sometimes the term appliance will be used for a server; this is indicative of the type of service the combined hardware and software solution are providing. For example, the same physical server running different software could be a general purpose applications server, a database server running for example Oracle, IBM, Microsoft or Teradata among other databases, an email server or a storage server.

This can lead to confusion when looking at servers in that a server may be able to support different types of workloads thus it should be considered a server, storage, networking or application platform. It depends on the type of software being used on the server. If, for example, storage software in the form a clustered and parallel file system is installed on a server to create highly scalable network attached storage (NAS) or cloud based storage service solution, then the server is a storage server. If the server has a general purpose operating system such as Microsoft Windows, Linux or UNIX and a database on it, it is a database server.

While not technically a type of server, some manufacturers use the term tin wrapped software in an attempt to not be classified as an appliance, server or hardware vendor but want their software to be positioned more as a turnkey solution. The idea is to avoid being perceived as a software only solution that requires integration with hardware. The solution is to use off the shelf commercially available general purpose servers with the vendors software technology pre integrated and installed ready for use. Thus, tin wrapped software is a turnkey software solution with some tin, or hardware, wrapped around it.

How about the same with tiered storage?

That is different tiers (Figure 1) of fast high performance disk including RAM or flash based SSD, fast Fibre Channel or SAS disk drives, or high capacity SAS and SATA disk drives along with magnetic tape as well as cloud based backup or archive?

Tiered Storage Resources
Figure 1: Tiered Storage resources

Tiered storage is also sometimes thought of in terms large enterprise class solutions or midrange, entry level, primary, secondary, near line and offline. Not to be forgotten, there are also tiered networks that support various speeds, convergence, multi tenancy and other capabilities from IO Virtualization (IOV) to traditional LAN, SAN, MAN and WANs including 1Gb Ethernet (1GbE), 10GbE up to emerging 40GbE and 100GbE not to mention various Fibre Channel speeds supporting various protocols.

The notion around tiered networks is like with servers and storage to enable aligning the right technology to be used for the task at hand economically while meeting service needs.

Two other common IT resource tiering techniques include facilities and data protection. Tiered facilities can indicate size, availability, resiliency among other characteristics. Likewise, tiered data protection is aligning the applicable technology to support different RTO and RPO requirements for example using synchronous replication where applicable vs. asynchronous time delayed for longer distance combined with snapshots. Other forms of tiered data protection include traditional backups either to disk, tape or cloud.

There is a new emerging form of tiering in many IT environments and that is tiered virtualization or specifically tiered server hyper visors in virtual data centers with similar objectives to having different server, storage, network, data protection or facilities tiers. Instead of an environment running all VMware, Microsoft HyperV or Xen among other hyper visors may be deployed to meet different application service class requirements. For example, VMware may be used for premium features and functionality on some applications, where others that do not need those features along with requiring lower operating costs leverage HyperV or Zen based solutions. Taking the tiering approach a step further, one could also declare tiered databases for example Oracle legacy vs. MySQL or Microsoft SQLserver among other examples.

What about IT clouds, are those different types of resources, or, essentially an extension of existing IT capabilities for example cloud storage being another tier of data storage?

There is another form of tiering, particularly during the winter months in the northern hemisphere where there is an abundance of snow this time of the year. That is, tiered snow management, removal or movement technologies.

What about tiered snow removal?

Well lets get back to that then.

Like IT resources, there are different technologies that can be used for moving, removing, melting or managing snow.

For example, I cant do much about getting ready of snow other than pushing it all down the hill and into the river, something that would take time and lots of fuel, or, I can manage where I put snow piles to be prepared for next storm, plus, to help put it where the piles of snow will melt and help avoid spring flood. Some technologies can be used for relocating snow elsewhere, kind of like archiving data onto different tiers of storage.

Regardless of if snowstorm or IT clouds (public or private), virtual, managed service provider (MSP), hosted or traditional IT data centers, all require physical servers, storage, I/O and data networks along with software including management tools.

Granted not all servers, storage or networking technology let alone software are the same as they address different needs. IT resources including servers, storage, networks, operating systems and even hyper visors for virtual machines are often categorized and aligned to different tiers corresponding to needs and characteristics (Figure 2).

Tiered IT Resources
Figure 2: Tiered IT resources

For example, in figure 3 there is a light weight plastic shovel (Shove 1) for moving small amounts of snow in a wide stripe or pass. Then there is a narrow shovel for digging things out, or breaking up snow piles (Shovel 2). Also shown are a light duty snow blower (snow thrower) capable of dealing with powdery or non wet snow, grooming in tight corners or small areas.

Tiered Snow tools
Figure 3: Tiered Snow management and migration tools

For other light dustings, a yard leaf blower does double duty for migrating or moving snow in small or tight corners such as decks, patios or for cleanup. Larger snowfalls, or, where there is a lot of area to clear involves heavier duty tools such as the Kawasaki mule with 5 foot curtis plow. The mule is a multifunction, multi protocol tool capable of being used for hauling items, towing, pulling or recreational tasks.

When all else fails, there is a pickup truck to get or go out and about, not to mention to pull other vehicles out of ditches or piles of snow when they become stuck!

Snow movement
Figure 4: Sometimes the snow light making for fast, low latency migration

Snow movement
Figure 5: And sometimes even snow migration technology goes off line!

Snow movement

And that is it for now!

Enjoy the northern hemisphere winter and snow while it lasts, make the best of it with the right tools to simplify the tasks of movement and management, similar to IT resources.

Keep in mind, its about the tools and when along with how to use them for various tasks for efficiency and effectiveness, and, a bit of snow fun.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

What do NAS NASA NASCAR have in common?

What do NAS NASA NASCAR have in common?

server storage I/O data infrastructure trends

Updated 2/10/2018

The other day it dawned on me what do NAS, NASA NASCAR have in common?

Several things in addition to all starting with the letters NAS it turns out.

For example, they all deal with round objects, NAS or Network Attached storage involved with circular spinning disk drives, NASA or National Aeronautical Space Administration besides involved with aircraft that have tires that go round and round, or airplanes circling waiting for landing.

In the case of NASA they are also involved with sending craft or devices to circle other planets or moons and land or crash into them. Sometimes NAS along with other storage systems have disk drives that crash, similar to how NASCAR events see accidents.
NAS

Ceder Lake 3M NASCAR at dirt track - Photo (C) 2008 Karen Schulz all rights reserved

Ceder Lake dirt track 3M NASCAR night (Photo (C) 2008 Karen Schulz)

NASCAR is also involved with vehicles that dont or at least should not fly, however they do go round and round on a track, often paved however sometimes mud or dirt tracks plus high tech exists with computers and various data models, not to mention the NASCAR air force.

In addition to being involved with round objects and activities, all three are also involved in computing, generating, processing, storing and retrieving for analysis of data, not to mention high performance requirements.

NAS based storage can also be relied upon for serving the needs of NASA and NASCAR data and informational needs.

And FWIW, just for fun, look at what you get when you spell NAS, NASA or NASCAR backwards:

RACSAN
ASAN
SAN

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Not much actually other than to stimulate some thought, discussion as well as perhaps have some fun with technology during the holiday season.

Im sure if I put some more thought to it, more similarities would or will come to mind.

However, for now, thats it for a quick thought, what similarities do you see or know about with NAS, NASA and NASCAR?

Ok, nuf fun for now, time to work on some other posts, content and projects.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

EMC Storage and Management Software Getting FAST

EMC has announced the availability of the first phase of FAST (Fully Automated Storage Tiering) functionality for their Symmetrix VMAX, CLARiiON and Celerra storage systems.

FAST was first previewed earlier this year (see here and here).

Key themes of FAST are to leverage policies for enabling automation to support large scale environments, doing more with what you have along with enabling virtual data centers for traditional, private and public clouds as well as enhancing IT economics.

This means enabling performance and capacity planning analysis along with facilitating load balancing or other infrastructure optimization activities to boost productivity, efficiency and resource usage effectiveness not to mention enabling Green IT.

Is FAST revolutionary? That will depend on who you talk or listen to.

Some vendors will jump up and down similar to donkey in shrek wanting to be picked or noticed claiming to have been the first to implement LUN or file movement inside of storage systems, or, as operating system or file system or volume manager built in. Others will claim to have done it via third party information lifecycle management (ILM) software including hierarchal storage management (HSM) tools among others. Ok, fair enough, than let their games begin (or continue) and I will leave it up to the variou vendors and their followings to debate whos got what or not.

BTW, anyone remember system manage storage on IBM mainframes or array based movement in HP AutoRAID among others?

Vendors have also in the past provided built in or third party add on tools for providing insight and awareness ranging from capacity or space usage and allocation storage resource management (SRM) tools, performance advisory activity monitors or charge back among others. For example, hot files analysis and reporting tool have been popular in the past, often operating system specific for identifying candidate files for placement on SSD or other fast storage. Granted the tools provided insight and awareness, there was still the time and error prone task of decision making and subsequently data movement, not to mention associated down time.

What is new here with FAST is the integrated approach, tools that are operating system independent, functionality in the array, available for different product family and price bands as well as that are optimized for improving user and IT productivity in medium to high-end enterprise scale environments.

One of the knocks on previous technology is either the performance impact to an application when data was moved, or, impact to other applications when data is being moved in the background. Another issue has been avoiding excessive thrashing due to data being moved at the expense of taking performance cycles from production applications. This would also be similar to having too many snapshots or raid rebuild that are not optimized running in the background on a storage system lacking sufficient performance capability. Another knock has been that historically, either 3rd party host or appliance based software was needed, or, solutions were designed and targeted for workgroup, departmental or small environments.

What is FAST and how is it implemented
FAST is technology for moving data within storage systems (and external for Celerra) for load balancing, capacity and performance optimization to meet quality of service (QoS) performance, availability, capacity along with energy and economic initiatives (figure1) across different tiers or types of storage devices. For example, moving data from slower SATA disks where a performance bottleneck exists to faster Fibre Channel or SSD devices. Similarly, cold or infrequently data on faster more expensive storage devices can be marked as candidates for migration to lower cost SATA devices based on customer policies.

EMC FAST
Figure 1 FAST big picture Source EMC

The premise is that policies are defined based on activity along with capacity to determine when data becomes a candidate for movement. All movement is performed in the background concurrently while applications are accessing data without disruptions. This means that there are no stub files or application pause or timeouts that occur or erratic I/O activity while data is being migrated. Another aspect of FAST data movement which is performed in the actual storage systems by their respective controllers is the ability for EMC management tools to identify hot or active LUNs or volumes (files in the case of Celerra) as candidates for moving (figure 2).

EMC FAST
Figure 2 FAST what it does Source EMC

However, users specify if they want data moved on its own or under supervision enabling a deterministic environment where the storage system and associated management tools makes recommendations and suggestions for administrators to approve before migration occurs. This capacity can be a safeguard as well as a learn mode enabling organizations to become comfortable with the technology along with its recommendations while applying knowledge of current business dynamics (figure 3).

EMC FAST
Figure 3 The Value proposition of FAST Source EMC

FAST is implemented as technology resident or embedded in the EMC VMAX (aka Symmetrix), CLARiiON and Cellera along with external management software tools. In the case of the block (figure 4) storage systems including DMX/VMAX and CLARiiON family of products that support FAST, data movement is on a LUN or volume basis and within a single storage system. For NAS or file based Cellera storage systems, FAST is implanted using FMA technology enabling either in the box or externally to other storage systems on a file basis.

EMC FAST
Figure 4 Example of FAST activity Source EMC

What this means is that data at the LUN or volume level can be moved across different tiers of storage or disk drives within a CLARiiON instance, or, within a VMAX instance (e.g. amongst the nodes). For example, Virtual LUNs are a building block that is leveraged for data movement and migration combined with external management tools including Navisphere for the CLARiiON and Symmetrix management console along with Ionix all of which has been enhanced.

Note however that initially data is not moved externally between different CLARiiONs or VMAX systems. For external data movement, other existing EMC tools would be deployed. In the case of Celerra, files can be moved within a specific CLARiiON as well as externally across other storage systems. External storage systems that files can be moved across using EMC FMA technology includes other Celleras, Centera and ATMOS solutions based upon defined policies.

What do I like most and why?

Integration of management tools providing insight with ability for user to setup polices as well as approve or intercede with data movement and placement as their specific philosophies dictate. This is key, for those who want to, let the system manage it self with your supervision of course. For those who prefer to take their time, then take simple steps by using the solution for initially providing insight into hot or cold spots and then helping to make decisions on what changes to make. Use the solution and adapt it to your specific environment and philosophy approach, what a concept, a tool that works for you, vs you working for it.

What dont I like and why?

There is and will remain some confusion about intra and inter box or system data movement and migration, operations that can be done by other EMC technology today for those who need it. For example I have had questions asking if FAST is nothing more than EMC Invista or some other data mover appliance sitting in front of Symmetrix or CLARiiONs and the answer is NO. Thus EMC will need to articulate that FAST is both an umbrella term as well as a product feature set combining the storage system along with associated management tools unique to each of the different storage systems. In addition, there will be confusion at least with GA of lack of support for Symmetrix DMX vs supported VMAX. Of course with EMC pricing is always a question so lets see how this plays out in the market with customer acceptance.

What about the others?

Certainly some will jump up and down claiming ratification of their visions welcoming EMC to the game while forgetting that there were others before them. However, it can also be said that EMC like others who have had LUN and volume movement or cloning capabilities for large scale solutions are taking the next step. Thus I would expect other vendors to continue movement in the same direction with their own unique spin and approach. For others who have in the past made automated tiering their marketing differentiation, I would suggest they come up with some new spins and stories as those functions are about to become table stakes or common feature functionality on a go forward basis.

When and where to use?

In theory, anyone with a Symmetrix/VMAX, CLARiiON or Celerra that supports the new functionality should be a candidate for the capabilities, that is, at least the insight, analysis, monitoring and situation awareness capabilities Note that does not mean actually enabling the automated movement initially.

While the concept is to enable automated system managed storage (Hmmm, Mainframe DejaVu anyone), for those who want to walk before they run, enabling the insight and awareness capabilities can provide valuable information about how resources are being used. The next step would then to look at the recommendations of the tools, and if you concur with the recommendations, then take remedial action by telling the system when the movement can occur at your desired time.

For those ready to run, then let it rip and take off as FAST as you want. In either situation, look at FAST for providing insight and situational awareness of hot and cold storage, where opportunities exist for optimizing and gaining efficiency in how resources are used, all important aspects for enabling a Green and Virtual Data Center not to mention as well as supporting public and private clouds.

FYI, FTC Disclosure and FWIW

I have done content related projects for EMC in the past (see here), they are not currently a client nor have they sponsored, underwritten, influenced, renumerated, utilize third party off shore swiss, cayman or south american unnumbered bank accounts, or provided any other reimbursement for this post, however I did personally sign and hand to Joe Tucci a copy of my book The Green and Virtual Data Center (CRC) ;).

Bottom line

Do I like what EMC is doing with FAST and this approach? Yes.

Do I think there is room for improvement and additional enhancements? Absolutely!

Whats my recommendation? Have a look, do your homework, due diligence and see if its applicable to your environment while asking others vendors what they will be doing (under NDA if needed).

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved