HPE Announces AMD Powered Gen 10 ProLiant DL385 For Software Defined Workloads

HPE Announces AMD Powered Gen 10 ProLiant DL385 For Software Defined Workloads

server storage I/O data infrastructure trends

By Greg Schulzwww.storageioblog.com November 20, 2017

HPE Announced today a new AMD EPYC 7000 Powered Gen 10 ProLiant DL385 for Software Defined Workloads including server virtualization, software-defined data center (SDDC), software-defined data infrastructure (SDDI), software-defined storage among others. These new servers are part of a broader Gen10 HPE portfolio of ProLiant DL systems.

HPE AMD EPYC Gen10 DL385
24 Small Form Factor Drive front view DL385 Gen 10 Via HPE

The value proposition being promoted by HPE of these new AMD powered Gen 10 DL385 servers besides supporting software-defined, SDDI, SDDC, and related workloads are security, density and lower price than others. HPE is claiming with the new AMD EPYC system on a chip (SoC) processor powered Gen 10 DL385 that it is offering up to 50 percent lower cost per virtual machine (VM) than traditional server solutions.

About HPE AMD Powered Gen 10 DL385

HPE AMD EPYC 7000 Gen 10 DL385 features:

  • 2U (height) form factor
  • HPE OneView and iLO management
  • Flexible HPE finance options
  • Data Infrastructure Security
  • AMD EPYC 7000 System on Chip (SoC) processors
  • NVMe storage (Embedded M.2 and U.2/8639 Small Form Factor (SFF) e.g. drive form factor)
  • Address server I/O and memory bottlenecks

These new HPE servers are positioned for:

  • Software Defined, Server Virtualization
  • Virtual Desktop Infrastructure (VDI) workspaces
  • HPC, Cloud and other general high-density workloads
  • General Data Infrastructure workloads that benefit from memory-centric or GPUs

Different AMD Powered DL385 ProLiant Gen 10 Packaging Options

Common across AMD EPYC 7000 powered Gen 10 DL385 servers are 2U high form factor, iLO management software and interfaces, flexible LAN on Motherboard (LOM) options, MicroSD (optional dual MicroSD), NVMe (embedded M.2 and SFF U.2) server storage I/O interface and drives, health and status LEDs, GPU support, single or dual socket processors.

HPE AMD EPYC Gen10 DL385 Look Inside
HPE DL385 Gen10 Inside View Via HPE

HPE AMD EPYC Gen10 DL385 Rear View
HPE DL385 Gen10 Rear View Via HPE

Other up to three storage drive bays, support for Large Form Factor (LFF) and Small Form Factor (SFF) devices (HDD and SSD) including SFF NVMe (e.g., U.2) SSD. Up to 4 x Gbe NICs, PCIe riser for GPU (optional second riser requires the second processor). Other features and options include HPE SmartArray (RAID), up to 6 cooling fans, internal and external USB 3. Optional universal media bay that can also add a front display, optional Optical Disc Drive (ODD), optional 2 x U.2 NVMe SFF SSD. Note media bay occupies one of three storage drive bays.

HPE AMD EPYC Gen10 DL385 Form Factor
HPE DL385 Form Factor Via HPE

Up to 3 x Drive Bays
Up to 12 LFF drives (2 per bay)
Up to 24 SFF drives ( 3 x 8 drive bays, 6 SFF + 2 NVMe U.2 or 8 x NVMe)

AMD EPYC 7000 Series

The AMD EPYC 7000 series is available in the single and dual socket. View additional AMD EPYC speeds and feeds in this data sheet (PDF), along with AMD server benchmarks here.

HPE AMD EPYC Specifications
HPE DL385 Gen 10 AMD EPYC Specifications Via HPE

AMD EPYC 7000 General Features

  • Single and dual socket
  • Up to 32 cores, 64 threads per socket
  • Up to 16 DDR4 DIMMS over eight channels per socket (e.g., up to 2TB RAM)
  • Up to 128 PCIe Gen 3 lanes (e.g. combination of x4, x8, x16 etc)
  • Future 128GB DIMM support

AMD EPYC 7000 Security Features

  • Secure processor and secure boot for malware rootkit protection
  • System memory encryption (SME)
  • Secure Encrypted Virtualization (SEV) hypervisors and guest virtual machine memory protection
  • Secure move (e.g., encrypted) between enabled servers

Where To Learn More

Learn more about Data Infrastructure and related server technology, trends, tools, techniques, tradecraft and tips with the following links.

  • AMD EPYC 7000 System on Chip (SoC) processors
  • Gen10 HPE portfolio and ProLiant DL systems.
  • Various Data Infrastructure related news commentary, events, tips and articles
  • Data Center and Data Infrastructure industry links
  • Data Infrastructure server storage I/O network Recommended Reading List Book Shelf
  • Software Defined Data Infrastructure Essentials (CRC 2017) Book
  • What This All Means

    With the flexible options including HDD, SSD as well as NVMe accessible SSDs, large memory capacity along with computing cores, these new solutions provide good data infrastructure server density (e.g., CPU, memory, I/O, storage) per cubic foot or meter per cost.

    I look forward to trying one of these systems out for software-defined scenarios including virtualization, software-defined storage (SDS) among others workload scenarios. Overall the HPE announcement of the new AMD EPYC 7000 Powered Gen 10 ProLiant DL385 looks to be a good option for many environments.

    Ok, nuff said, for now.

    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

    October 2017 Server StorageIO Data Infrastructure Update Newsletter



    Server StorageIO October 2017 Data Infrastructure Update Newsletter

    Volume 17, Issue 10 (October 2017)

    Hello and welcome to the October 2017 issue of the Server StorageIO data infrastructure update newsletter.

    Software-Defined Data Infrastructure Essentials SDDI SDDC

    October has been a busy month pertaining data infrastructure including server storage I/O related trends, activities, news, perspectives and related topics, so let’s have a look at them.

    In This Issue

    Enjoy this edition of the Server StorageIO data infrastructure update newsletter.

    Cheers GS

    Data Infrastructure and IT Industry Activity Trends

    Some recent Industry Activities, Trends, News and Announcements include:

    Startup Aparavi launched with a SaaS platform for managing long-term data retention. As part of a move to streamline the acquisition of Brocade by Broadcom (formerly known as Avago), the Brocade data center Ethernet networking business is being sold to Extreme networks. Datacore also updated their software defined storage solutions in October.

    Cisco announced new storage networking products and acquisition of Brodsoft (cloud calling and contact center solutions). As part of continued support for Fibre Channel based data infrastructure environments, Cisco has announced a 1U MDS 9132T 32 port 32 Gbps Fibre Channel Switch with FCP (SCSI Fibre Channel Protocol) now, and emerging FC-NVMe future support. Also announced are SAN telemetry activity monitoring, insight and event streaming for analysis in MDS 9700 32Gbps module.

    Cisco also announced interoperability for data center and data infrastructure insight, activity monitoring and telemetry with Virtual Instruments Virtual Wisdom technology eliminating the reliance on hardware based probes, along with Fibre Channel N-Port virtualization on Nexus 9300-FX DC switch.

    Commvault announced scale-out data protection with ScaleProtect for Cisco UCS platforms, along with their HyperScale appliance and HyperScale software.

    IBM had several October announcements include LTO 8 related, FlashSystem V9000 updates (e.g. All Flash Array) enclosure as well as hardware based compression, FlashSystem A9000 leveraging 3D TLC NAND flash (lower cost, higher capacity) among others.

    There is plenty of content (blogs, articles, podcasts, webinars, videos, white papers, presentations) on when to do containers, microservices and serverless compute including mesos, kubernetes and docker among others. What about when not to use those approaches or caveats to be aware of, here is such a piece (via Redhat) to have a look at.

    Granted if you are part of the micro services cheerleading bandwagon crowd you might not agree with the authors points, after all, everything is not the same in data centers and data infrastructures. Speaking of serverless, containers, here is a good post about Docker Swarm vs. Kubernetes management over at Upcloud.

    In Microsoft and Azure related activity, despite some early speculation in some venues that Storage Spaces Direct (S2D) was being discontinued as it was not part of Server release 1709, the reality is S2D is very much alive.

    Microsoft LTSC and SAC release cycles
    Image via Microsoft.com

    However some clarification is needed that might have lead to some initial speculation due to lack of understanding the new Microsoft release cycle.

    Microsoft has gone to Semi Annual Channel (SAC) releases that introduce new features in advance of the Long Term Support Channel (LTSC). LTSC are what you might be familiar with Windows and Windows Server releases that are updates spread out over time for a given major version (e.g. going from Server 2012 to Server 2012 R2 and so forth). The current Windows Server LTSC is the base introduced fall of 2016 along with incremental updates.

    By comparison, think of SAC as a branch channel for early adopters to get new features and with 1709 (e.g. September 2017), the focus is on containers. A mistake that has been made is to assume that a SAC release is actually a new major LTSC release, thus probably why some thought S2D was dead as it is not in SAC 1709. Indications from Microsoft are that there will be S2D enhancements in the next SAC, as well as future LTSC.

    For those interested in IoT, check out this Microsoft Azure IoT Hub and device twin document. Here is a post by Thomas Mauer looking at 10 hidden Hyper-V features to know about.

    In other activity, Minio announced experimental AWS S3 API support for Backblaze storage service. Software Defined Serverless Storage startup OpenIO gets $5M USD in additional funding. Quantum and other LTO Organization vendors have announced support for the new LTO version 8 tape drives and media. In addition to LTO 8, new roadmaps including out to LTO 12 are outlined here, and VMware vCloud Air is hosted by OVH. Western Digital Corporation (WDC) announced Microwave Assisted Magnetic Recording (MAMR) enabled Hard Disk Drives (HDD) that will enable future, larger capacity devices to be brought to market.

    Check out other industry news, comments, trends perspectives here.

    Server StorageIO Commentary in the news

    Recent Server StorageIO industry trends perspectives commentary in the news.

    Via HPE Insights: Comments on Public cloud versus on-prem storage
    Via arsTechnica: Comments on cloud backup disaster recovery
    Via Gizmodo: Comments on WDC 40TB HDD
    Via CDW: Comments on Is Your Network About To Fail?
    Via EnterpriseStorageForum: Comments on Trends for Data Storage with Big Data Analytics
    Via EnterpriseStorageForum: Comments on 8 ways to save on cloud storage
    Via EnterpriseStorageForum: Comments on Google Cloud Platform and Storage

    View more Server, Storage and I/O trends and perspectives comments here

    Server StorageIOblog Posts

    Recent and popular Server StorageIOblog posts include:

    In Case You Missed It #ICYMI

    View other recent as well as past StorageIOblog posts here

    Server StorageIO Data Infrastructure Tips and Articles

    Recent Server StorageIO industry trends perspectives commentary in the news.

    Via EnterpriseStorageForum: Comments on Who Will Rule the Storage World?
    Via InfoGoto: Comments on Google Cloud Platform Gaining Data Storage Momentum
    Via InfoGoto: Comments on Singapore High Rise Data Centers
    Via InfoGoto: Comments on New Tape Storage Capacity
    Via EnterpriseStorageForum: Comments on 8 ways to save on cloud storage
    Via EnterpriseStorageForum: Comments on Google Cloud Platform and Storage

    View more Server, Storage and I/O trends and perspectives comments here

    Server StorageIO Recommended Reading (Watching and Listening) List

    In addition to my own books including Software Defined Data Infrastructure Essentials (CRC Press 2017), the following are Server StorageIO recommended reading, watching and listening list items. The list includes various IT, Data Infrastructure and related topics.

    Intel Recommended Reading List (IRRL) for developers is a good resource to check out.

    Its October which means that it is also Blogtober, check out some of the blogs and posts occurring during October here.

    For those involved with VMware, check out Frank Denneman VMware vSphere 6.5 host resource guide-book here at Amazon.com.

    Docker: Up & Running: Shipping Reliable Containers in Production by Karl Matthias & Sean P. Kane via Amazon.com here.

    Essential Virtual SAN (VSAN): Administrator’s Guide to VMware Virtual SAN,2nd ed. by Cormac Hogan & Duncan Epping via Amazon.com here.

    Hadoop: The Definitive Guide: Storage and Analysis at Internet Scale by Tom White via Amazon.com here.

    Cisco IOS Cookbook: Field tested solutions to Cisco Router Problems by Kevin Dooley and Ian Brown Via Amazon.com here.

    Watch for more items to be added to the recommended reading list book shelf soon.

    Events and Activities

    Recent and upcoming event activities.

    Nov. 9, 2017 – Webinar – All You Need To Know about ROBO Data Protection Backup
    Nov. 2, 2017 – Webinar – Modern Data Protection for Hyper-Convergence
    Sep. 21, 2017 – MSP CMG – Minneapolis MN
    Sep. 20, 2017 – Webinar – BC, DR and Business Resiliency (BR) tips
    Sep. 14, 2017 – Fujifilm IT Executive Summit – Seattle WA
    Sep. 12, 2017 – SNIA Software Developers Conference (SDC) – Santa Clara CA
    Sep. 7, 2017 – Wipro SDX – Enabling, Planning Your Software Defined Journey

    See more webinars and activities on the Server StorageIO Events page here.

    Server StorageIO Industry Resources and Links

    Useful links and pages:
    Microsoft TechNet – Various Microsoft related from Azure to Docker to Windows
    storageio.com/links – Various industry links (over 1,000 with more to be added soon)
    objectstoragecenter.com – Cloud and object storage topics, tips and news items
    OpenStack.org – Various OpenStack related items
    storageio.com/downloads – Various presentations and other download material
    storageio.com/protect – Various data protection items and topics
    thenvmeplace.com – Focus on NVMe trends and technologies
    thessdplace.com – NVM and Solid State Disk topics, tips and techniques
    storageio.com/converge – Various CI, HCI and related SDS topics
    storageio.com/performance – Various server, storage and I/O benchmark and tools
    VMware Technical Network – Various VMware related items

    Ok, nuff said, for now.

    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    Data Infrastructure server storage I/O network Recommended Reading #blogtober

    server storage I/O data infrastructure trends recommended reading list

    Updated 7/30/2018

    The following is an evolving recommended reading list of data infrastructure topics including, server, storage I/O, networking, cloud, virtual, container, data protection and related topics that includes books, blogs, podcast’s, events and industry links among other resources.

    Various Data Infrastructure including hardware, software, services related links:

    Links A-E
    Links F-J
    Links K-O
    Links P-T
    Links U-Z
    Other Links

    In addition to my own books including Software Defined Data Infrastructure Essentials (CRC Press 2017), the following are Server StorageIO recommended reading list items . The recommended reading list includes various IT, Data Infrastructure and related topics.

    Intel Recommended Reading List (IRRL) for developers is a good resource to check out.

    Duncan Epping (@DuncanYB), Frank Denneman (@FrankDenneman) and Neils Hagoort (@NHagoort) have released their VMware vSphere 6.7 Clustering Deep Dive book available at venues including Amazon.com. This is the latest in a series of Cluster and deep dive books from Frank and Duncan which if you are involved with VMware, SDDC and related software defined data infrastructures these should be on your bookshelf.

    Check out the Blogtober list of check out some of the blogs and posts occurring during October 2017 here.

    Preston De Guise aka @backupbear is Author of several books has an interesting new site Foolsrushin.info that looks at topics including Ethics in IT among others. Check out his new book Data Protection: Ensuring Data Availability (CRC Press 2017) and available via Amazon.com here.

    Brendan Gregg has a great site for Linux performance related topics here.

    Greg Knieriemen has a must read weekly blog, post, column collection of whats going on in and around the IT and data infrastructure related industries, Check it out here.

    Interested in file systems, CIFS, SMB, SAMBA and related topics then check out Chris Hertels book on implementing CIFS here at Amazon.com

    For those involved with VMware, check out Frank Denneman VMware vSphere 6.5 host resource guide-book here at Amazon.com.

    Docker: Up & Running: Shipping Reliable Containers in Production by Karl Matthias & Sean P. Kane via Amazon.com here.

    Essential Virtual SAN (VSAN): Administrator’s Guide to VMware Virtual SAN,2nd ed. by Cormac Hogan & Duncan Epping via Amazon.com here.

    Hadoop: The Definitive Guide: Storage and Analysis at Internet Scale by Tom White via Amazon.com here.

    Systems Performance: Enterprise and the Cloud by Brendan Gregg Via Amazon.com here.

    Implementing Cloud Storage with OpenStack Swift by Amar Kapadia, Sreedhar Varma, & Kris Rajana Via Amazon.com here.

    The Human Face of Big Data by Rick Smolan & Jennifer Erwitt Via Amazon.com here.

    VMware vSphere 5.1 Clustering Deepdive (Vol. 1) by Duncan Epping & Frank Denneman Via Amazon.com here. Note: This is an older title, but there are still good fundamentals in it.

    Linux Administration: A Beginners Guide by Wale Soyinka Via Amazon.com here.

    TCP/IP Network Administration by Craig Hunt Via Amazon.com here.

    Cisco IOS Cookbook: Field tested solutions to Cisco Router Problems by Kevin Dooley and Ian Brown Via Amazon.com here.

    I often mention in presentations a must have for anybody involved with software defined anything, or programming for that matter which is the Niklaus Wirth classic Algorithms + Data Structures = Programs that you can get on Amazon.com here.

    Seven Databases in Seven Weeks including NoSQL

    Another great book to have is Seven Databases in Seven Weeks (here is a book review) which not only provides an overview of popular NoSQL databases such as Cassandra, Mongo, HBASE among others, lots of good examples and hands on guides. Get your copy here at Amazon.com.

    Additional Data Infrastructure and related topic sites

    In addition to those mentioned above, other sites, venues and data infrastructure related resources include:

    aiim.com – Archiving and records management trade group

    apache.org – Various open-source software

    blog.scottlowe.org – Scott Lowe VMware Networking and topics

    blogs.msdn.microsoft.com/virtual_pc_guy – Ben Armstrong Hyper-V blog

    brendangregg.com – Linux performance-related topics

    cablemap.info – Global network maps

    CMG.org – Computer Measurement Group (CMG)

    communities.vmware.com – VMware technical community and resources

    comptia.org – Various IT, cloud, and data infrastructure certifications

    cormachogan.com – Cormac Hogan VMware and vSAN related topics

    csrc.nist.gov – U.S. government cloud specifications

    dmtf.org – Distributed Management Task Force (DMTF)

    ethernetalliance.org – Ethernet industry trade group

    fibrechannel.org – Fibre Channel trade group

    github.com – Various open-source solutions and projects

    Intel Reading List – recommended reading list for developers

    ieee.org – Institute of Electrical and Electronics Engineers

    ietf.org – Internet Engineering Task Force

    iso.org – International Standards Organizations

    it.toolbox.com – Various IT and data infrastructure topics forums

    labs.vmware.com/flings – VMware Fling additional tools and software

    nist.gov – National Institute of Standards and Technology

    nvmexpress.org – NVM Express (NVMe) industry trade group

    objectstoragecenter.com – Various object and cloud storage items

    opencompute.org – Open Compute Project (OCP) servers and related topics

    opendatacenteralliance.org – Open Data Center Alliance (ODCA)

    openfabrics.org – Open-fabric software industry group

    opennetworking.org – Open Networking Foundation (ONF)

    openstack.org – OpenStack resources

    pcisig.com – Peripheral Component Interconnect (PCI) trade group

    reddit.com – Various IT, cloud, and data infrastructure topics

    scsita.org – SCSI trade association (SAS and others)

    SNIA.org – Storage Network Industry Association (SNIA)

    Speakingintech.com – Popular industry and data infrastructure podcast

    Storage Bibliography – Collection of Dr. J. Metz storage related content

    technet.microsoft.com – Microsoft TechNet data infrastructure–related topics

    thenvmeplace.com – various NVMe and related tools, topics and links

    thevpad.com – Collection of various virtualization and related sites

    thessdplace.com – various NVM, SSD, flash, 3D XPoint related topics, tools, links

    tpc.org – Transaction Performance Council benchmark site

    vmug.org – VMware User Groups (VMUG)

    wahlnetwork.com – Chris Whal Networking and related topics

    yellow-bricks.com – Duncan Epping VMware and related topics

    Additional Data Infrastructure Venues

    Additional useful data infrastructure related information can be found at BizTechMagazine, BrightTalk, ChannelProNetwork, ChannelproSMB, ComputerWeekly, Computerworld, CRN, CruxialCIO, Data Center Journal (DCJ), Datacenterknowledge, and DZone. Other good sourses include Edtechmagazine, Enterprise Storage Forum, EnterpriseTech, Eweek.com, FedTech, Google+, HPCwire, InfoStor, ITKE, LinkedIn, NAB, Network Computing, Networkworld, and nextplatform. Also check out Reddit, Redmond Magazine and Webinars, Spiceworks Forums, StateTech, techcrunch.com, TechPageOne, TechTarget Venues (various Search sites, e.g., SearchStorage, SearchSSD, SearchAWS, and others), theregister.co.uk, TheVarGuy, Tom’s Hardware, and zdnet.com, among many others.

    Where To Learn More

    Learn more about related technology, trends, tools, techniques, and tips with the following links.

    Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

    Software Defined Data Infrastructure Essentials Book SDDC

    What This All Means

    The above is an evolving collection of recommended reading including what I have on my physical and virtual bookshelves, as well as list of web sites, blogs and podcasts worth listening, reading or watching. Watch for more items to be added to the book shelf soon, and if you have a suggested recommendation, add it to the comments below.

    By the way, if you have not heard, its #Blogtober, check out some of the other blogs and posts occurring during October here as part of your recommended reading list.

    Ok, nuff said, for now.

    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    PCIe Fundamentals Server Storage I/O Network Essentials

    Updated 8/31/19

    PCIe Fundamentals Server Storage I/O Network Essentials

    PCIe fundamentals data infrastructure trends

    This piece looks at PCIe Fundamentals topics for server, storage, I/O network data infrastructure environments. Peripheral Computer Interconnect (PCI) Express aka PCIe is a Server, Storage, I/O networking fundamentals component. This post is an excerpt from chapter 4 (Chapter 4: Servers: Physical, Virtual, Cloud, and Containers) of my new book Software Defined Data Infrastructure Essentials – Cloud, Converged and Virtual Fundamental Server Storage I/O Tradecraft (CRC Press 2017) Available via Amazon.com and other global venues. In this post, we look various PCIe fundamentals to learn and expand or refresh your server, storage, and I/O and networking tradecraft skills experience.

    PCIe fundamentals Server Storage I/O Fundamentals

    PCIe fundamental common server I/O component

    Common to all servers is some form of a main system board, which can range from a few square meters in supercomputers, data center rack, tower, and micro towers converged or standalone, to small Intel NUC (Next Unit of Compute), MSI and Kepler-47 footprint, or Raspberry Pi-type desktop servers and laptops. Likewise, PCIe is commonly found in storage and networking systems, appliances among other devices.

    For example, a blade server will have multiple server blades or modules, each with its motherboard, which shares a common back plane for connectivity. Another variation is a large server such as an IBM “Z” mainframe, Cray, or another supercomputer that consists of many specialized boards that function similar to a smaller-sized motherboard on a larger scale.

    Some motherboards also have mezzanine or daughter boards for attachment of additional I/O networking or specialized devices. The following figure shows a generic example of a two-socket, with eight-memory-channel-type server architecture.

    PCIe fundamentals SDDC, SDI, SDDI Server fundamentals
    Generic computer server hardware architecture. Source: Software Defined Data Infrastructure Essentials (CRC Press 2017)

    The above figure shows several PCIe, USB, SAS, SATA, 10 GbE LAN, and other I/O ports. Different servers will have various combinations of processor, and Dual Inline Memory Module (DIMM) Dynamic RAM (DRAM) sockets along with other features. What will also vary are the type and some I/O and storage expansion ports, power and cooling, along with management tools or included software.

    PCIe, Including Mini-PCIe, NVMe, U.2, M.2, and GPU

    At the heart of many servers I/O and connectivity solutions are the PCIe industry-standard interface (see PCIsig.com). PCIe is used to communicate with CPUs and the outside world of I/O networking devices. The importance of a faster and more efficient PCIe bus is to support more data moving in and out of servers while accessing fast external networks and storage.

    For example, a server with a 40-GbE NIC or adapter would have to have a PCIe port capable of 5 GB per second. If multiple 40-GbE ports are attached to a server, you can see where the need for faster PCIe interfaces come into play.

    As more VM are consolidated onto PM, as applications place more performance demand either regarding bandwidth or activity (IOPS, frames, or packets) per second, more 10-GbE adapters will be needed until the price of 40-GbE (also 25, 50 or 100 Gbe) becomes affordable. It is not if, but rather when you will grow into the performance needs on either a bandwidth/throughput basis or to support more activity and lower latency per interface.

    PCIe is a serial interface specified for how servers communicate between CPUs, memory, and motherboard-mounted as well as AiC devices. This communication includes support attachment of onboard and host bus adapter (HBA) server storage I/O networking devices such as Ethernet, Fibre Channel, InfiniBand, RapidIO, NVMe (cards, drives, and fabrics), SAS, and SATA, among other interfaces.

    In addition to supporting attachment of traditional LAN, SAN, MAN, and WAN devices, PCIe is also used for attaching GPU and video cards to servers. Traditionally, PCIe has been focused on being used inside of a given server chassis. Today, however, PCIe is being deployed on servers spanning nodes in dual, quad, or CiB, CI, and HCI or Software Defined Storage (SDS) deployments. Another variation of PCIe today is that multiple servers in the same rack or proximity can attach to shared devices such as storage via PCIe switches.

    PCIe components (hardware and software) include:

    • Hardware chipsets, cabling, connectors, endpoints, and adapters
    • Root complex and switches, risers, extenders, retimers, and repeaters
    • Software drivers, BIOS, and management tools
    • HBAs, RAID, SSD, drives, GPU, and other AiC devices
    • Mezzanine, mini-PCIe, M.2, NVMe U.2 (8639 drive form factor)

    There are many different implementations of PCIe, corresponding to generations representing speed improvements as well as physical packing options. PCIe can be deployed in various topologies, including a traditional model where an AiC such as GbE or Fibre Channel HBA connects the server to a network or storage device.

    Another variation is for a server to connect to a PCIe switch, or in a shared PCIe configuration between two or more servers. In addition to different generations and topologies, there are also various PCIe form factors and physical connectors (see the following figure), ranging from AiC of various length and height, as well as M.2 small-form-factor devices and U.2 (8639) drive form-factor device for NVMe, among others.

    Note that the presence of M.2 does not guarantee PCIe NVMe, as it also supports SATA.

    Likewise, different NVMe devices run at various PCIe speeds based on the number of lanes. For example, in the following figure, the U.2 (8639) device (looks like a SAS device) shown is a PCIe x4.

    SDDC, SDI, SDDI PCIe NVMe U.2 8639 drive fundamentals
    PCIe devices NVMe U.2, M.2, and NVMe AiC. (Source: StorageIO Labs.)

    PCIe leverages multiple serial unidirectional point-to-point links, known as lanes, compared to traditional PCI, which used a parallel bus design. PCIe interfaces can have one (x1), four (x4), eight (x8), sixteen (x16), or thirty-two (x32) lanes for data movement. Those PCIe lanes can be full-duplex, meaning data is sent and received at the same time, providing improved effective performance.

    PCIe cards are upward-compatible, meaning that an x4 can work in an x8, an x8 in an x16, and so forth. Note, however, that the cards will not perform any faster than their specified speed; an x4 in an x8 slot will only run at x8. PCIe cards can also have single, dual, or multiple external ports and interfaces. Also, note that there are still some motherboards with legacy PCI slots that are not interoperable with PCIe cards and vice versa.

    Note that PCIe cards and slots can be mechanically x1, x4, x8, x16, or x32, yet electrically (or signal) wired to a slower speed, based on the type and capabilities of the processor sockets and corresponding chipsets being used. For example, you can have a PCIe x16 slot (mechanical) that is wired for x8, which means it will only run at x8 speed.

    In addition to the differences between electrical and mechanical slots, also pay attention to what generation the PCIe slots are, such as Gen 2 or Gen 3 or higher. Also, some motherboards or servers will advertise multiple PCIe slots, but those are only active with a second or additional processor socket occupied by a CPU. For example, a PCIe card that has dual x4 external PCIe ports requiring full PCIe bandwidth will need at least PCIe x8 attachment in the server slot. In other words, for full performance, the external ports on a PCIe card or device need to match the external electrical and mechanical card type and vice versa.

    Recall big “B” as in Bytes vs. little “b” as in bits; for example, a PCIe Gen 3 x4 electrical could provide up to 4 GB/s bandwidth (your mileage and performance will vary), which translates to 8 × 4 GB or 32 Gbits/s. In the following table below, there is a mix of Big “B” Bytes per second and small “b” bits per second.

    Each generation of PCIe has improved on the previous one by increasing the effective speed of the links. Some of the speed improvements have come from faster clock rates while implementing lower overhead encoding (e.g., from 8 b/10 b to 128 b/130 b).

    For example, PCIe Gen 3 raw bit or line rate is 8 GT/s or 8 Gbps or about 2 GBps by using a 128 b/130 b encoding scheme that is very efficient compared to PCIe Gen 2 or Gen 1, which used an 8 b/10 b encoding scheme. With 8 b/10 b, there is a 20% overhead vs. a 1.5% overhead with 128 b/130 b (i.e., of 130 bits sent, 128 bits contain data, and 2 bits are for overhead).

    PCIe Gen 1

    PCIe Gen 2

    PCIe Gen 3

    PCIe Gen 4

    PCIe Gen 5

    Raw bit rate

    2.5 GT/s

    5 GT/s

    8 GT/s

    16 GT/s

    32 GT/s

    Encoding

    8 b/10 b

    8 b/10 b

    128 b/130 b

    128 b/130 b

    128 b/130 b

    x1 Lane bandwidth

    2 Gb/s

    4 Gb/s

    8 Gb/s

    16 Gb/s

    32 Gb/s

    x1 Single lane (one-way)

    ~250 MB/s

    ~500 MB/s

    ~1 GB/s

    ~2 GB/s

    ~4GB/s

    x16 Full duplex (both ways)

    ~8 GB/s

    ~16 GB/s

    ~32 GB/s

    ~64 GB/s

    ~128 GB/s

    Above Table: PCIe Generation and Sample Lane Comparison

    Note that PCIe Gen 3 is the currently generally available shipping technology with PCIe Gen 4 appearing in the not so distant future, with PCIe Gen 5 in the wings appearing a few more years down the road.

    By contrast, older generations of Fibre Channel and Ethernet also used 8 b/10 b, having switched over to 64 b/66 b encoding with 10 Gb and higher. PCIe, like other serial interfaces and protocols, can support full-duplex mode, meaning that data can be sent and received concurrently.

    PCIe Bit Rate, Encoding, Giga Transfers, and Bandwidth

    Let’s clarify something about data transfer or movement both internal and external to a server. At the core of a server, there is data movement within the sockets of the processors and its cores, as well as between memory and other devices (internal and external). For example, the QPI bus is used for moving data between some Intel processors whose performance is specified in giga transfers (GT).

    PCIe is used for moving data between processors, memory, and other devices, including internal and external facing devices. Devices include host bus adapters (HBAs), host channel adapters (HCAs), converged network adapters (CNAs), network interface cards (NICs) or RAID cards, and others. PCIe performance is specified in multiple ways, given that it has a server processor focus which involves GT for raw bit rate as well as effective bandwidth per lane.

    Note to keep in perspective PCIe mechanical as well as electrical lanes in that a card or slot may be advertised as say x8 mechanical (e.g., its physical slot form factor) yet only be x4 electrical (how many of those lanes are used or enabled). Also in the case of an adapter that has two or more ports, if the device is advertised as x8 does that mean it is x8 per port or x4 per port with an x8 connection to the PCIe bus.

    Effective bandwidth per lane can be specified as half- or full-duplex (data moving in one or both directions for send and receive). Also, effective bandwidth can be specified as a single lane (x1), four lanes (x4), eight lanes (x8), sixteen lanes (x16), or 32 lanes (x32), as shown in the above table. The difference in speed or bits moved per second between the raw bit or line rate, and the effective bandwidth per lane in a single direction (i.e., half-duplex) is the encoding that is common to all serial data transmissions.

    When data gets transmitted, the serializer/deserializer, or serdes, convert the bytes into a bit stream via encoding. There are different types of encoding, ranging from 8 b/10 b to 64 b/66 b and 128 b//130 b, shown in the following table.

    Single 1542-byte frame

    64 × 1542-byte frames

    Encoding Scheme

    Overhead

    Data Bits

    Encoding Bits

    Bits Transmitted

    Data Bits

    Encoding Bits

    Bits Transferred

    8 b/10 b

    20%

    12,336

    3,084

    15,420

    789,504

    197,376

    986,880

    64 b/66 b

    3%

    12,336

    386

    12,738

    789,504

    24,672

    814,176

    128 b/130 b

    1.5%

    12,336

    194

    12,610

    789,504

    12,336

    801,840

    Above Table: Low-Level Serial Encoding Data Transmit Efficiency

    In these encoding schemes, the smaller number represents the amount of data being sent, and the difference is the overhead. Note that this is different yet related to what occurs at a higher level with the various network protocols such as TCP/IP (IP). With IP, there is a data payload plus addressing and other integrity and management features in a given packet or frame.

    The 8-b/10-b, 64-b/66-b or 128-b/130-b encoding is at the lower physical layer. Thus, a small change there has a big impact and benefit when optimized. Table 4.2 shows comparisons of various encoding schemes using the example of moving a single 1542-byte packet or frame, as well as sending (or receiving) 64 packets or frames that are 1542 bytes in size.

    Why 1542? That is a standard IP packet including data and protocol framing without using jumbo frames (MTU or maximum transmission units).

    What does this have to do with PCIe? GbE, 10-GbE, 40-GbE, and other physical interfaces that are used for moving TCP/IP packets and frames interface with servers via PCIe.

    This encoding is important as part of server storage I/O tradecraft regarding understanding the impact of performance and network or resource usage. It also means understanding why there are fewer bits per second of effective bandwidth (independent of compression or deduplication) vs. line rate in either half- or full-duplex mode.

    Another item to note is that looking at encoding such as the example given in the above table shows how a relatively small change at a large scale can have a big effective impact benefit. If the bits and bytes encoding efficiency and effectiveness scenario in Table 4.2 do not make sense, then try imagining 13 MINI Cooper automobiles each with eight people in it (yes, that would be a tight fit) end to end on the same road.

    Now imagine a large bus that takes up much less length on the road than the 13 MINI Coopers. The bus holds 128 people, who would still be crowded but nowhere near as cramped as eight people in a MINI, plus 24 additional people can be carried on the bus. That is an example of applying basic 8-b/10-b encoding (the MINI) vs. applying 128-b/130-b encoding (the bus) and is also similar to PCIe G3 and G4, which use 128-b/130-b encoding for data movement.

    PCIe Topologies

    The basic PCIe topology configuration has one or more devices attached to the root complex shown in the following figure via an AiC or onboard device connector. Examples of AiC and motherboard-mounted devices that attach to PCIe root include LAN or SAN HBA, networking, RAID, GPU, NVM or SSD, among others. At system start-up, the server initializes the PCIe bus and enumerates the devices found with their addresses.

    PCIe devices attach (shown in the following figure) to a bus that communicates with the root complex that connects with processor CPUs and memory. At the other end of a PCIe device is an end-point target, a PCIe switch that in turn has end-point targets attached. From a software standpoint, hypervisor or operating system device drivers communicate with the PCI devices that in turn send or receive data or perform other functions.

    SDDC, SDI, SDDI PCIe fundamentals
    Basic PCIe root complex with a PCIe switch or expander.

    Note that in addition to PCIe AiC such as HBAs, GPU, and NVM SSD, among others that install into PCIe slots, servers also have converged storage or disk drive enclosures that support a mix of SAS, SATA, and PCIe. These enclosure backplanes have a connector that attaches to a SAS or SATA onboard port, or a RAID card, as well as to a PCIe riser card or motherboard connector. Depending on what type of drive is installed in the connector, either the SAS, SATA, or NVMe (AiC, U.2, and M2) using PCIe communication paths are used.

    In addition to traditional and switched PCIe, using PCIe switches as well as nontransparent bridging (NTB), various other configurations can be deployed. These include server to server for clustering, failover, or device sharing as well as fabrics. Note that this also means that while traditionally found inside a server, PCIe can today use an extender, retimer, and repeaters extended across servers within a rack or cabinet.

    A nontransparent bridge (NTB) is a point-to-point connection between two PCIe-based systems that provide electrical isolation yet functions as a transport bridge between two different address domains. Hosts on either side of the NTB see their respective memory or I/O address space. The NTB presents an endpoint exposed to the local system where writes are mirrored to memory on the remote system to allow the systems to communicate and share devices using associated device drivers. For example, in the following figure, two servers, each with a unique PCIe root complex, address, and memory map, are shown using NTB to any communication between the systems while maintaining data integrity.

    SDDC, SDI, SDDI PCIe two server fundamentals
    PCIe dual server example using NTB along with switches.

    General PCIe considerations (slots and devices) include:

    • Power consumption (and heat dissipation)
    • Physical and software plug-and-play (good interoperability)
    • Drivers (in-the-box, built into the OS, or add-in)
    • BIOS, UEFI, and firmware being current versions
    • Power draw per card or adapters
    • Type of processor, socket, and support chip (if not an onboard processor)
    • Electrical signal (lanes) and mechanical form factor per slot
    • Nontransparent bridge and root port (RP)
    • PCI multi-root (MR), single-root (SR), and hot plug
    • PCIe expansion chassis (internal or external)
    • External PCIe shared storage

    Various operating system and hypervisor commands are available for viewing and managing PCIe devices. For example, on Linux, the “lspci” and “lshw–c pci” commands displays PCIe devices and associated information. On a VMware ESXi host, the “esxcli hardware pci list” command will show various PCIe devices and information, while on Microsoft Windows systems, “device manager” (GUI) or “devcon” (command line) will show similar information.

    Who Are Some PCIe Fundamentals Vendors and Service Providers

    While not an exhaustive list, here is a sampling of some vendors and service providers involved in various ways with PCIe from solutions to components to services to trade groups include Amphenol (connectors and cables), AWS (cloud data infrastructure services), Broadcom (PCIe components), Cisco (servers), DataOn (servers), Dell EMC (servers, storage, software), E8 (storage software), Excelero (storage software), HPE (storage, servers), Huawei (storage, servers), IBM, Intel (storage, servers, adapters), Keysight (test equipment and tools).

    Others include Lenovo (servers), Liqid (composable data infrastructure), Mellanox (server and storage adapters), Micron (storage devices), Microsemi (PCIe components), Microsoft (Cloud and Software including S2D), Molex (connectors, cables), NetApp, NVMexpress.org (NVM Express trade group organizations), Open Compute Project (server, storage, I/O network industry group), Oracle, PCISIG (PCIe industry trade group), Samsung (storage devices), ScaleMP (composable data infrastructure), Seagate (storage devices), SNIA (industry trade group), Supermicro (servers), Tidal (composable data infrastructure), Vantar (formerly known as HDS), VMware (Software including vSAN), and WD among others.

    Where To Learn More

    Learn more about related technology, trends, tools, techniques, and tips with the following links.

    Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

    Software Defined Data Infrastructure Essentials Book SDDC

    What This All Means

    PCIe fundamentals are resources for building legacy and software-defined data infrastructures (SDDI), software-defined infrastructures (SDI), data centers and other deployments from laptop to large scale, hyper-scale cloud service providers. Learn more about Servers: Physical, Virtual, Cloud, and Containers in chapter 4 of my new book Software Defined Data Infrastructure Essentials (CRC Press 2017) Available via Amazon.com and other global venues. Meanwhile, PCIe fundamentals continues to evolve as a Server, Storage, I/O networking fundamental component.

    Ok, nuff said, for now.
    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    Dell EMC VMware September 2017 Software Defined Data Infrastructure Updates

    Dell EMC VMware September 2017 Software Defined Data Infrastructure Updates

    server storage I/O data infrastructure trends

    Dell EMC VMware September 2017 Software Defined Data Infrastructure Updates

    vmworld 2017

    September was a busy month including VMworld in Las Vegas that featured many Dell EMC VMware (among other) software defined data infrastructure updates and announcements.

    A summary of September VMware (and partner) related announcements include:

    VMware on AWS via Amazon.com
    VMware and AWS via Amazon Web Services

    VMware and AWS

    Some of you might recall VMware earlier attempt at public cloud with vCloud Air service (see Server StorageIO lab test drive here) which has since been depreciated (e.g. retired). This new approach by VMware leverages the large global presence of AWS enabling customers to set up public or hybrid vSphere, vSAN and NSX based clouds, as well as software defined data centers (SDDC) and software defined data infrastructures (SDDI).

    VMware Cloud on AWS exists on a dedicated, single-tenant (unlike Elastic Cloud Compute (EC2) multi-tenant instances or VMs) that supports from 4 to 16 underlying host per cluster. Unlike EC2 virtual machine instances, VMware Cloud on AWS is delivered on elastic bare-metal (e.g. dedicated private servers aka DPS). Note AWS EC2 is more commonly known, AWS also has other options for server compute including Lambda micro services serverless containers, as well as Lightsail virtual private servers (VPS).

    Besides servers with storage optimized I/O featuring low latency NVMe accessed SSDs, and applicable underlying server I/O networking, VMware Cloud on AWS leverages the VMware software stack directly on underlying host servers (e.g. there is no virtualization nesting taking place). This means more robust performance should be expected like in your on premise VMware environment. VM workloads can move between your onsite VMware systems and VMware Cloud on AWS using various tools. The VMware Cloud on AWS is delivered and managed by VMware, including pricing. Learn more about VMware Cloud on AWS here, and here (VMware PDF) and here (VMware Hands On Lab aka HOL).

    Read more about AWS September news and related updates here in this StorageIOblog post.

    VMware PKS
    VMware and Pivotal PKS via VMware.com

    Pivotal Container Service (PKS) and Google Kubernetes Partnership

    During VMworld VMware, Pivotal and Google announced a partnership for enabling Kubernetes container management called PKS (Pivotal Container Service). Kubernetes is evolving as a popular open source container microservice serverless management orchestration platform that has roots within Google. What this means is that what is good for Google and others for managing containers, is now good for VMware and Pivotal. In related news, VMware has become a platinum sponsor of the Cloud Native Compute Foundation (CNCF). If you are not familiar with CNCF, add it to your vocabulary and learn more here at www.cncf.io.

    Other VMworld and September VMware related announcements

    Hyper converged data infrastructure provider Maxta has announced a VMware vSphere Escape Pod (parachute not included ;) ) to facilitate migration from ESXi based to Red Hat Linux hypervisor environments. IBM and VMware for cloud partnership, along with Dell EMC, IBM and VMware joint cloud solutions. White listing of VMware vSphere VMs for enhanced security combine with earlier announced capabilities.

    Note that both VMware with vSphere ESXi and Microsoft with Hyper-V (Windows and Azure based) are supporting various approaches for securing Virtual Machines (VMs) and the hosts they run on. These enhancements are moving beyond simply encrypting the VMDK or VHDX virtual disks the VMs reside in or use, as well as more than password, ssh and other security measures. For example Microsoft is adding support for host guarded fabrics (and machine hosts) as well as shielded VMs. Keep an eye on how both VMware and Microsoft extend the data protection and security capabilities for software defined data infrastructures for their solutions and services.

    Dell EMC Announcements

    At VMworld in September Dell EMC announcements included:

    • Hyper Converged Infrastructure (HCI) and Hybrid Cloud enhancements
    • Data Protection, Goverence and Management suite updates
    • XtremIO X2 all flash array (AFA) availability optimized for vSphere and VDI

    HCI and Hybrid Cloud enhancements include VxRail Appliance, VxRack SDDC (vSphere 6.5, vSAN 6.6, NSX 6.3) along with hybrid cloud platforms (Enterprise Hybrid Cloud and Native Hybrid Cloud) along with vSAN Ready Nodes (vSAN 6.6 and encryption) and VMware Ready System. Note that Dell EMC in addition to supporting VMware hybrid clouds also previously announced solutions for Microsoft Azure Stack back in May.

    Software Defined Data Infrastructure Essentials at VMworld Bookstore

    xxxx

    Software Defined Data Infrastructure Essentials (CRC Press) at VMworld bookstore

    My new book Software Defined Data Infrastructure Essentials (CRC Press) made its public debut in the VMware book store where I did a book signing event. You can get your copy of Software Defined Data Infrastructure Essentials which includes Software Defined Data Centers (SDDC) along with hybrid, multi-cloud, serverless, converged and related topics at Amazon among other venues. Learn more here.

    Where To Learn More

    Learn more about related technology, trends, tools, techniques, and tips with the following links.

    What This All Means

    A year ago at VMworld the initial conversations were started around what would become the VMware Cloud on AWS solution. Also a year ago besides VMware Integrated Containers (VIC) and some other pieces, the overall container and in particular related management story was a bit cloudy (pun intended). However, now the fog and cloud seem to be clearing with the PKS solution, along with details of VMware Cloud on AWS. Likewise vSphere, vSAN and NSX along with associated vRealize tools continue to evolve as well as customer deployment growing. All in all, VMware continues to evolve, let’s see how things progress now over the year until the next VMworld.

    By the way, if you have not heard, its Blogtober, check out some of the other blogs and posts occurring during October here.

    Ok, nuff said, for now.
    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (and vSAN). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    September 2017 Server StorageIO Data Infrastructure Update Newsletter



    Server StorageIO September 2017 Data Infrastructure Update Newsletter

    Volume 17, Issue IX (September 2017)

    Hello and welcome to the September 2017 issue of the Server StorageIO update newsletter.

    With September being generally known as back to school month, the two September event bookends were VMware VMworld and Microsoft Ignite with many other things in between. Needless to say, a lot has happened in and around data infrastructure topic areas since the August newsletter (here if you missed it). Here is a post covering some of the things that I participated with during September including presentations at events in Las Vegas (VMworld), New York City (Wipro SDx Summit), SNIA SDC in Santa Clara, Fujifilm Executive Summitt in Seattle, Minneapolis/St. Paul CMG along with other activities.

    Software-Defined Data Infrastructure Essentials SDDI SDDC

    One of the activities I participated in with while at VMworld in Las Vegas was a book signing event at the VMware bookstore of my new book Software Defined Data Infrastructure Essentials (CRC Press) available at Amazon.com and other global venues.

    September has been a busy month pertaining data infrastructure including server storage I/O related trends, activities, news, perspectives and related topics, so let’s have a look at them.

    In This Issue

    Enjoy this edition of the Server StorageIO data infrastructure update newsletter.

    Cheers GS

    Data Infrastructure and IT Industry Activity Trends

    Some recent Industry Activities, Trends, News and Announcements include:

    The month started out with VMworld in Las Vegas (e.g. one of the event bookends for the month). Rather than a long list of announcements in this newsletter, check out this StorageIOblog post covering VMworld, VMware and Dell EMC and related news. As part of VMworld, VMware and Amazon Web Services (AWS) announced news about their partnership. AWS also had several other enhancements and new product announcements during september that can be found in this StorageIOblog post here.

    AWS, Dell EMC and VMware were not the only ones making news or announcements during September. Startup NVMe based storage startup Apeiron has announced a Splunk appliance to boost log and analytics processing performance. Gigamon has extended its public cloud monitoring, insight awareness and analytics capabilities including support for Microsoft Azure.

    For those looking for the latest new emerging data infrastructure vendors to watch, add Vexta to your list of NVMe based storage systems. Vexta talks a lot about NVMe particular for their backend (e.g. where data stored on NVM based devices accessed via NVMe), access of their storage system is via traditional Fibre Channel (FC) or emerging NVMe over fabric.

    Long time data infrastructure server and storage vendor HDS (Hitachi Data Systems) is no more (at least in name) having re branded themselves as Vantara focusing on IoT and Cloud analytics besides their traditional data center focus. Vantara combines what was HDS, Hitachi Insight Group and Pentaho into a single unit effectively based in what was HDS as a new, repackaged, refocused business unit.

    Another longtime data infrastructure solution and service provider IBM announced a new Linux only zSeries (ZED) mainframe solution. Some might think the Mainframe is dead, others that it can only run Linux as a virtual guest in a virtual machine. On the other hand some might recall that there are native Linux implementations on the ZED including Ubuntu among others.

    Also note that while IBM zOS mainframe operating systems use FICON for storage access, native ZED Linux systems can use open systems based Fibre Channel (FC) e.g. SCSI command set protocols. Is the ZED based Linux for everybody or every environment? Probably not, however for those who have large-scale Linux needs, it might be worth a look to do a total cost of ownership analysis. If nothing else, do your homework, play your cards right and you might have some leverage with the x86 based server crowd when it comes to negotiating leverage.

    Cloud storage gateway vendor Nasuni has landed another $38 Million USD in funding, hopefully that will enable them to start landing some new and larger customer revenues growing their business. Meanwhile storage startup Qumulo has announced extending their global file fabric name space to include spanning AWS.

    Attala Systems has announced next generation software defined storage for data infrastructures for Telco environments. Percona has added an experimental release of their MySQL engine enhancing performance for high volume, write intensive workloads along with improved cost effectiveness.

    Software defined storage vendor Datacore announced enhancements to support fast databases for online transaction processing (OLTP) along with analytics. Meanwhile Linux provider SUSE continues to expand its software defined storage story based around Ceph. Panasas has enhanced its scale out high performance cluster file system global name space for HPC environments with 20 PByte support. Another longtime storage vendor X-IO (formerly known as Xiotech) announced their 4th generation of their Intelligent Storage Element (ISE).

    September wrapped up with Microsoft Ignite conference along with many updated, enhancements and new features for Azure, Azure Stack, Windows among others. Read more about those and other Microsoft September announcements here in this StorageIOblog post.

    Check out other industry news, comments, trends perspectives here.

    Server StorageIO Commentary in the news

    Recent Server StorageIO industry trends perspectives commentary in the news.

    Via CDW: Comments on Is Your Network About To Fail?
    Via EnterpriseStorageForum: Comments on Data Storage and Big Data Analytics
    Via InfoGoto: Comments on Cloud FOMO (Fear of missing out)
    Via InfoGoto: Comments on Building a Modern Data Strategy
    Via InfoGoto: Comments on the future of Multi-Cloud Computing
    Via InfoGoto: Comments on AI, Machine Learning and Data management
    Via InfoGoto: Comments on Your riskiest data might be in plain sight
    Via InfoGoto: Comments on Data Management Too Much To Handle
    Via InfoGoto: Comments on Google Cloud Platform Gaining Data Storage Momentum
    Via InfoGoto: Comments on Singapore High Rise Data Centers
    Via InfoGoto: Comments on New Tape Storage Capacity
    Via EnterpriseStorageForum: Comments on 8 ways to save on cloud storage
    Via EnterpriseStorageForum: Comments on Google Cloud Platform and Storage

    View more Server, Storage and I/O trends and perspectives comments here

    Server StorageIOblog Posts

    Recent and popular Server StorageIOblog posts include:

    In Case You Missed It #ICYMI

    View other recent as well as past StorageIOblog posts here

    Server StorageIO Data Infrastructure Tips and Articles

    Recent Server StorageIO industry trends perspectives commentary in the news.

    Via EnterpriseStorageForum: Comments on Who Will Rule the Storage World?
    Via InfoGoto: Comments on Google Cloud Platform Gaining Data Storage Momentum
    Via InfoGoto: Comments on Singapore High Rise Data Centers
    Via InfoGoto: Comments on New Tape Storage Capacity
    Via EnterpriseStorageForum: Comments on 8 ways to save on cloud storage
    Via EnterpriseStorageForum: Comments on Google Cloud Platform and Storage

    View more Server, Storage and I/O trends and perspectives comments here

    Server StorageIO Recommended Reading (Watching and Listening) List

    In addition to my own books including Software Defined Data Infrastructure Essentials (CRC Press 2017), the following are Server StorageIO recommended reading, watching and listening list items. The list includes various IT, Data Infrastructure and related topics.

    Intel Recommended Reading List (IRRL) for developers is a good resource to check out.

    Its October which means that it is also Blogtober, check out some of the blogs and posts occurring during October here.

    Preston De Guise aka @backupbear is Author of several books has an interesting new site Foolsrushin.info that looks at topics including Ethics in IT among others. Check out his new book Data Protection: Ensuring Data Availability (CRC Press 2017).

    Brendan Gregg has a great site for Linux performance related topics here.

    Greg Knieriemen has a must read weekly blog, post, column collection of whats going on in and around the IT and data infrastructure related industries, Check it out here.

    Interested in file systems, CIFS, SMB, SAMBA and related topics then check out Chris Hertels book on implementing CIFS here at Amazon.com

    For those involved with VMware, check out Frank Denneman VMware vSphere 6.5 host resource guide-book here at Amazon.com.

    I often mention in presentations a must have for anybody involved with software defined anything, or programming for that matter which is the Niklaus Wirth classic Algorithms + Data Structures = Programs that you can get on Amazon.com here.

    Another great book to have is Seven Databases in Seven Weeks which not only provides an overview of popular NoSQL databases such as Cassandra, Mongo, HBASE among others, lots of good examples and hands on guides. Get your copy here at Amazon.com.

    Watch for more more items to be added to the book shelf soon.

    Events and Activities

    Recent and upcoming event activities.

    Nov. 2, 2017 – Webinar – Modern Data Protection for Hyper-Convergence
    Sep. 21, 2017 – MSP CMG – Minneapolis MN
    Sep. 20, 2017 – Webinar – BC, DR and Business Resiliency (BR) tips
    Sep. 14, 2017 – Fujifilm IT Executive Summit – Seattle WA
    Sep. 12, 2017 – SNIA Software Developers Conference (SDC) – Santa Clara CA
    Sep. 7, 2017 – Wipro SDX – Enabling, Planning Your Software Defined Journey
    August 28-30, 2017 – VMworld – Las Vegas

    See more webinars and activities on the Server StorageIO Events page here.

    Server StorageIO Industry Resources and Links

    Useful links and pages:
    Microsoft TechNet – Various Microsoft related from Azure to Docker to Windows
    storageio.com/links – Various industry links (over 1,000 with more to be added soon)
    objectstoragecenter.com – Cloud and object storage topics, tips and news items
    OpenStack.org – Various OpenStack related items
    storageio.com/downloads – Various presentations and other download material
    storageio.com/protect – Various data protection items and topics
    thenvmeplace.com – Focus on NVMe trends and technologies
    thessdplace.com – NVM and Solid State Disk topics, tips and techniques
    storageio.com/converge – Various CI, HCI and related SDS topics
    storageio.com/performance – Various server, storage and I/O benchmark and tools
    VMware Technical Network – Various VMware related items

    Ok, nuff said, for now.

    Cheers
    Gs

    Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    Travel Fun Crossword Puzzle For VMworld 2017 Las Vegas

    Travel Fun Crossword Puzzle For VMworld 2017 Las Vegas

    server storage I/O data infrastructure trends

    Some of you may be traveling to VMworld 2017 in Las Vegas next week to sharpen, expand, refresh or share your VMware and data infrastructure tradecraft (skills, experiences, expertise, knowledge). Here is something fun to sharpen your VMware skills while traveling. Most of these should be pretty easy meaning that you do not have to be a Unicorn, full of vCertifications, vCredentials or a 9, 8, 7, 6, 5, 4, 3, 2 or 1st time vExpert or top 100 vBlogger. However if you need the answers they are below.

    VMworld 2017 crossword puzzle SDDI, SDDC

    Note that you can also click here to get a PDF version that is larger (or click on the image) that also has the answers.

    Software Defined Data Infrastructure Essentials SDDI SDDC

    For those of you who will be in Las Vegas at VMworld next week, stop by the VMworld Book Store at 1PM on Tuesday (the 29th) where I will be doing a book signing event for my new book Software Defined Data Infrastructure Essentials (CRC Press), stop by and say hello. Note there are also Kindle and other electronic versions of my new SDDI Essentials Book on Amazon.com and other venues if you need something to read during your upcoming travels.

    Where To Learn More

    Learn more about related technology, trends, tools, techniques, and tips with the following links.

    Data Infrastructures Protect Preserve Secure and Serve Information
    Various IT and Cloud Infrastructure Layers including Data Infrastructures

    What This All Means

    Have a safe and fun trip on your way to Las Vegas for next weeks VMworld, enjoy the crossword puzzle, and if you need the answers, they are located here (PDF), see you at VMworld 2017 in Last Vegas.

    Ok, nuff said, for now.
    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (and vSAN). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    Like Data They Protect For Now Quantum Revenues Continue To Grow

    For Now Quantum Revenues Continue To Grow

    server storage I/O data infrastructure trends

    For Now Quantum Revenues Continue To Grow. The other day following their formal announced, I received an summary update from Quantum pertaining to their recent Q1 Results (show later below).

    Data Infrastructures Protect Preserve Secure and Serve Information
    Various IT and Cloud Infrastructure Layers including Data Infrastructures

    Quantums Revenues Continue To Grow Like Data

    One of the certainties in life is change and the other is continued growth in data that gets transformed into information via IT and other applications. Data Infrastructures fundamental role is to enable an environment for applications and data to be transformed into information and delivered as services. In other words, Data Infrastructures exist to protect, preserve, secure and serve information along with the applications and data they depend on. Quantums role is to provide solutions and technologies for enabling legacy and cloud or other software defined data infrastructures to protect, preserve, secure and serve data.

    What caught my eye in Quantums announcements was that while not earth shattering growth numbers normally associated with a hot startup, being a legacy data infrasture and storage vendor, Quantum’s numbers are hanging in there.

    At a time when some legacy as well as startups struggle with increased competition from others including cloud, Quantum appears for at least now to be hanging in there with some gains.

    The other thing that caught my eye is that most of the growth not surprisingly is non tape related solutions, particular around their bulk scale out StorNext storage solutions, there is some growth in tape.

    Here is the excerpt of what Quantum sent out:

    
    Highlights for the quarter (all comparisons are to the same period a year ago):
    
    •	Grew total revenue and generated profit for 5th consecutive quarter
    •	Total revenue was up slightly to $117M, with 3% increase in branded revenue
    •	Generated operating profit of $1M with earnings per share of 4 cents, up 2 cents
    •	Grew scale-out tiered storage revenue 10% to $34M, with strong growth in video surveillance and technical workflows
    o	Key surveillance wins included deals with an Asian government for surveillance at a presidential palace and other government facilities, with a major U.S. port and with four new police department customers
    o	Established several new surveillance partnerships – one of top three resellers/integrators in China (Uniview) and two major U.S. integrators (Protection 1 and Kratos)
    o	Won two surveillance awards for StorNext – Security Industry Association’s New Product Showcase award and Security Today magazine’s Platinum Govies Government Security award
    o	Key technical workflow wins included deals at an international defense and aerospace company to expand StorNext archive environment, a leading biotechnology firm for 1 PB genomic sequencing archive, a top automaker involving autonomous driving research data and a U.S. technology institute involving high performance computing  
    o	Announced StorNext 6, which adds new advanced data management features to StorNext’s industry-leading performance and is now shipping
    o	Announced scale-out partnerships with Veritone on artificial intelligence and DataFrameworks on data visualization and management  
    •	Tape automation, devices and media revenue increased 6% overall while branded revenue for this product category was up 14%
    o	Strong sales of newest generation Scalar i3 and i6 tape libraries
    •	Established new/enhanced data protection partnerships
    o	Enhanced partnership with Veeam, making it easier for their customers to deploy 3-2-1 data protection best practices
    o	Became Pure Storage alliance partner, providing our data protection and archive solutions for their customers through mutual channel partners
    

    Where To Learn More

    Learn more about related technology, trends, tools, techniques, and tips with the following links.

    What This All Means

    Keep in mind that Data Infrastructures fundamental role is to enable an environment for applications and data to be transformed into information and delivered as services. Data Infrastructures exist to protect, preserve, secure and serve information along with the applications and data they depend on. Quantum continues to evolve their business as they have for several years from one focused on tape and related technologies to one that includes tape as well as many other solutions for legacy as well as software defined, cloud and virtual environments. For now, quantum revenues continue to grow and diversify.

    Ok, nuff said, for now.
    Gs

    Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    NVMe Wont Replace Flash By Itself They Complement Each Other

    NVMe Wont Replace Flash By Itself They Complement Each Other

    server storage I/O data infrastructure trends

    Updated 2/2/2018

    NVMe Wont Replace Flash By Itself They Complement Each Other

    >various NVM flash and SSD devices
    Various Solid State Devices (SSD) including NVMe, SAS, SATA, USB, M.2

    There has been some recent industry marketing buzz generated by a startup to get some attention by claiming via a study sponsored by including the startup that Non-Volatile Memory (NVM) Express (NVMe) will replace flash storage. Granted, many IT customers as well as vendors are still confused by NVMe thinking it is a storage medium as opposed to an interface used for accessing fast storage devices such as nand flash among other solid state devices (SSDs). Part of that confusion can be tied to common SSD based devices rely on NVM that are persistent memory retaining data when powered off (unlike the memory in your computer).

    NVMe is an access interface and protocol

    Instead of saying NVMe will mean the demise of flash, what should or could be said however some might be scared to say it is that other interfaces and protocols such as SAS (Serial Attached SCSI), AHCI/SATA, mSATA, Fibre Channel SCSI Protocol aka FCP aka simply Fibre Channel (FC), iSCSI and others are what can be replaced by NVMe. NVMe is simply the path or roadway along with traffic rules for getting from point a (such as a server) to point b (some storage device or medium e.g. flash SSD). The storage medium is where data is stored such as magnetic for Hard Disk Drive (HDD) or tape, nand flash, 3D XPoint, Optane among others.

    NVMe and NVM better together

    NVMe and NVM including flash are better together

    The simple quick get to the point is that NVMe (e.g. Non Volatile Memory aka NVM Express [NVMe]) is an interface protocol (like SAS/SATA/iSCSI among others) used for communicating with various nonvolatile memory (NVM) and solid state device (SSDs). NVMe is how data gets moved between a computer or other system and the NVM persistent memory such as nand flash, 3D XPoint, Spintorque or other storage class memories (SCM).

    In other words, the only thing NVMe will, should, might or could kill off would be the use of some other interface such as SAS, SATA/AHCI, Fibre Channel, iSCSI along with propritary driver or protocols. On the other hand, given the extensibility of NVMe and how it can be used in different configurations including as part of fabrics, it is an enabler for various NVMs also known as persistent memories, SCMs, SSDs including those based on NAND flash as well as emerging 3D XPoint (or Intel version) among others.

    Where To Learn More

    View additional NVMe, SSD, NVM, SCM, Data Infrastructure and related topics via the following links.

    Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

    Software Defined Data Infrastructure Essentials Book SDDC

    What This All Means

    Context matters for example, NVM as the medium compared to NVMe as the interface and access protocols. With context in mind you can compare like or similar apples to apples such as nand flash, MRAM, NVRAM, 3D XPoint, Optane among other persistent memories also known as storage class memories, NVMs and SSDs. Likewise with context in mind NVMe can be compared to other interfaces and protocols such as SAS, SATA, PCIe, mSATA, Fibre Channel among others. The following puts all of this into context including various packaging options, interfaces and access protocols, functionality and media.

    NVMe is the access for NVM flash
    Putting IT all together

    Will NVMe kill off flash? IMHO no not by itself, however NVMe combined with some other form of NVM, SCM, persistent memory as a storage medium may eventually combine as an alternative to NVMe and flash (or SAS/SATA and flash). However, for now at least for many applications, NVMe is in your future (along with flash among other storage mediums), the questions include when, where, why, how, with what among other questions (and answers). NVMe wont replace flash by itself (at least yet) as they complement each other.

    Keep in mind, if NVMe is the answer, what are the questions.

    Ok, nuff said, for now.

    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

    New family of Intel Xeon Scalable Processors enable software defined data infrastructures (SDDI) and SDDC

    Intel Xeon Scalable Processors SDDI and SDDC

    server storage I/O data infrastructure trends

    Today Intel announced a new family of Xeon Scalable Processors (aka Purely) that for some workloads Intel claims to be on average of 1.65x faster than their predecessors. Note your real improvement will vary based on workload, configuration, benchmark testing, type of processor, memory, and many other server storage I/O performance considerations.

    Intel Scalable Xeon Processors
    Image via Intel.com

    In general the new Intel Xeon Scalable Processors enable legacy and software defined data infrastructures (SDDI), along with software defined data centers (SDDC), cloud and other environments to support expanding workloads more efficiently as well as effectively (e.g. boosting productivity).

    Data Infrastructures and workloads

    Some target application and environment workloads Intel is positioning these new processors for includes among others:

    • Machine Learning (ML), Artificial Intelligence (AI), advanced analytics, deep learning and big data
    • Networking including software defined network (SDN) and network function virtualization (NFV)
    • Cloud and Virtualization including Azure Stack, Docker and Kubernetes containers, Hyper-V, KVM, OpenStack VMware vSphere, KVM among others
    • High Performance Compute (HPC) and High Productivity Compute (e.g. the other HPC)
    • Storage including legacy and emerging software defined storage software deployed as appliances, systems or server less deployment modes.

    Features of the new Intel Xeon Scalable Processors include:

    • New core micro architecture with interconnects and on die memory controllers
    • Sockets (processors) scalable up to 28 cores
    • Improved networking performance using Quick Assist and Data Plane Development Kit (DPDK)
    • Leverages Intel Quick Assist Technology for CPU offload of compute intensive functions including I/O networking, security, AI, ML, big data, analytics and storage functions. Functions that benefit from Quick Assist include cryptography, encryption, authentication, cipher operations, digital signatures, key exchange, loss less data compression and data footprint reduction along with data at rest encryption (DARE).
    • Optane Non-Volatile Dual Inline Memory Module (NVDIMM) for storage class memory (SCM) also referred to by some as Persistent Memory (PM), not to be confused with Physical Machine (PM).
    • Supports Advanced Vector Extensions 512  (AVX-512) for HPC and other workloads
    • Optional Omni-Path Fabrics in addition to 1/10Gb Ethernet among other I/O options
    • Six memory channels supporting up to 6TB of RDIMM with multi socket systems
    • From two to eight  sockets per node (system)
    • Systems support PCIe 3.x (some supporting x4 based M.2 interconnects)

    Note that exact speeds, feeds, slots and watts will vary by specific server model and vendor options. Also note that some server system solutions have two or more nodes (e.g. two or more real servers) in a single package not to be confused with two or more sockets per node (system or motherboard). Refer to the where to learn more section below for links to Intel benchmarks and other resources.

    Software Defined Data Infrastructures, SDDC, SDX and SDDI

    What About Speeds and Feeds

    Watch for and check out the various Intel partners who have or will be announcing their new server compute platforms based on Intel Xeon Scalable Processors. Each of the different vendors will have various speeds and feeds options that build on the fundamental Intel Xeon Scalable Processor capabilities.

    For example Dell EMC announced their 14G server platforms at the May 2017 Dell EMC World event with details to follow (e.g. after the Intel announcements).

    Some things to keep in mind include the amount of DDR4 DRAM (or Optane NVDIMM) will vary by vendors server platform configuration, motherboards, several sockets and DIMM slots. Also keep in mind the differences between registered (e.g. buffered RDIMM) that give good capacity and great performance, and load reduced DIMM (LRDIMM) that have great capacity and ok performance.

    Various nvme options

    What about NVMe

    It’s there as these systems like previous Intel models support NVMe devices via PCIe 3.x slots, and some vendor solutions also supporting M.2 x4 physical interconnects as well.

    server storageIO flash and SSD
    Image via Software Defined Data Infrastructure Essentials (CRC)

    Note that Broadcom formerly known as Avago and LSI recently announced PCIe based RAID and adapter cards that support NVMe attached devices in addition to SAS and SATA.

    server storage data infrastructure sddi

    What About Intel and Storage

    In case you have not connected the dots yet, the Intel Xeon Scalable Processor based server (aka compute) systems are also a fundamental platform for storage systems, services, solutions, appliances along with tin-wrapped software.

    What this means is that the Intel Xeon Scalable Processors based systems can be used for deploying legacy as well as new and emerging software-defined storage software solutions. This also means that the Intel platforms can be used to support SDDC, SDDI, SDX, SDI as well as other forms of legacy and software-defined data infrastructures along with cloud, virtual, container, server less among other modes of deployment.

    Image Via Intel.com

    Moving beyond server and compute platforms, there is another tie to storage as part of this recent as well as other Intel announcements. Just a few weeks ago Intel announced 64 layer triple level cell (TLC) 3D NAND solutions positioned for the client market (laptop, workstations, tablets, thin clients). Intel with that announcement increased the traditional aerial density (e.g. bits per square inch or cm) as well as boosting the number of layers (stacking more bits as well).

    The net result is not only more bits per square inch, also more per cubic inch or cm. This is all part of a continued evolution of NAND flash including from 2D to 3D, MCL to TLC, 32 to 64 layer.  In other words, NAND flash-based Solid State Devices (SSDs) are very much still a relevant and continue to be enhanced technology even with the emerging 3D XPoint and Optane (also available via Amazon in M.2) in the wings.

    server memory evolution
    Via Intel and Micron (3D XPoint launch)

    Keep in mind that NAND flash-based technologies were announced almost 20 years ago (1999), and are still evolving. 3D XPoint announced two years ago, along with other emerging storage class memories (SCM), non-volatile memory (NVM) and persistent memory (PM) devices are part of the future as is 3D NAND (among others). Speaking of 3D XPoint and Optane, Intel had announcements about that in the past as well.

    Where To Learn More

    Learn more about Intel Xeon Scalable Processors along with related technology, trends, tools, techniques and tips with the following links.

    What This All Means

    Some say the PC is dead and IMHO that depends on what you mean or define a PC as. For example if you refer to a PC generically to also include servers besides workstations or other devices, then they are alive. If however your view is that PCs are only workstations and client devices, then they are on the decline.

    However if your view is that a PC is defined by the underlying processor such as Intel general purpose 64 bit x86 derivative (or descendent) then they are very much alive. Just as older generations of PCs leveraging general purpose Intel based x86 (and its predecessors) processors were deployed for many uses, so to are today’s line of Xeon (among others) processors.

    Even with the increase of ARM, GPU and other specialized processors, as well as ASIC and FPGAs for offloads, the role of general purpose processors continues to increase, as does the technology evolution around. Even with so called server less architectures, they still need underlying compute server platforms for running software, which also includes software defined storage, software defined networks, SDDC, SDDI, SDX, IoT among others.

    Overall this is a good set of announcements by Intel and what we can also expect to be a flood of enhancements from their partners who will use the new family of Intel Xeon Scalable Processors in their products to enable software defined data infrastructures (SDDI) and SDDC.

    Ok, nuff said (for now…).

    Cheers
    Gs

    Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    June 2017 Server StorageIO Data Infrastructures Update Newsletter

    Volume 17, Issue VI

    Hello and welcome to the June 2017 issue of the Server StorageIO update newsletter.

    For those of you in the northern hemisphere it is time for summer holidays, while in the southern hemisphere its winter time. That means there is a lot going on outside of work, however June has also seen a lot of activity in and around IT data infrastructure along with data centers. Check out some of the industry trends news and updates below.

    Software-Defined Data Infrastructure Essentials SDDI SDDC

    A quick update following up from the May newsletter is that my new book is now available via Amazon.com, CRC Press and other venues in hardcopy hardcover as well as electronic versions. Think of this as the soft launch with a formal launch and more information being rolled out soon. For now, you can visit the landing page for Software Defined Data Infrastructure Essentials – Cloud, Converged, and Virtual Fundamental Server Storage I/O Tradecraft (CRC PRess/Taylor Francis/Auerbach) at storageio.com/book4 to learn more including view table of contents, preface, how organized among other items.

    In This Issue

    Enjoy this edition of the Server StorageIO update newsletter.

    Cheers GS

    Data Infrastructure and IT Industry Activity Trends

    Some recent Industry Activities, Trends, News and Announcements include:

    Cavium announced 10, 25, 50 and 50Gbps Ethernet server storage I/O NIC solutions (e.g. FastLine 41000 series).

    The NVMe Express trade group (e.g. nvmexpress.org) announced the completion of NVMe 1.3 specification. New optional features include support for mobile platforms and book, along with scaling for enterprise as well as cloud environments. Learn more about specifications at the NVMexpress.org site as well as more NVMe material at thenvmeplace.com.

    Keep in mind that if the answer is NVMe, what are the questions along with various options from front end to back-end, NVMe and PCIe, NVMeoF, U.2/8639, M2/NGFF among others.

    The Fibre Channel Industry Association announced FC-NVMe interoperability plugfest and Gen 6 32GFC activity to support next generation data infrastructures and data centers.

    Storage vendor Tegile announced they are joining the growing ranks of vendors adding NVMe support with their InteliFlash OS 3.7 along with other enhancements.

    For those of you who are involved with Windows Servers environments along with server, storage and I/O networks, check out Darryl VanderPeijl multi-part series on RDMA, DCB, PFC, ETS and related topics.

    HPE and Hedvig announced solutions combing forces to address hybrid cloud storage needs.

    IBM and Cisco announced enhancements around their converged (Cisco powered servers) solution for VDI and Hybrid cloud workloads.

    Big Data and Analytics vendor Mapr announced enhancements to their converged data management platform for cloud scale data fabrics.

    Panzura has enhanced its Freedom software defined storage management solution with version 7 to support expanded unstructured data growth while easing management functions, along with performance updates.

    Red Hat announced Ceph Storage 2.3 including Ceph 10.2 (Jewel) combing an NFS gateway.

    Scality announced enhancements to its Ring software defined storage cloud and object solution including enhanced security along with data protection capabilities.

    Check out other industry news, comments, trends perspectives here.

     

    Server StorageIOblog Posts

    Recent and popular Server StorageIOblog posts include:

    View other recent as well as past StorageIOblog posts here

    Server StorageIO Commentary in the news

    Recent Server StorageIO industry trends perspectives commentary in the news.

    Via EnterpriseStorageForum: 5 Hot Storage Technologies to Watch
    Storage can be held back by slow I/O performance, which caused expensive compute resources and memory to be consumed. NVMe reduces wait time while increasing the amount of effective work, enabling higher-profitability compute. The storage I/O capabilities of flash can be fed across PCIe faster to enable multi-core processors to complete more useful work in less time.

    Via EnterpriseStorageForum: 10-Year Review of Data Storage
    The adoption of hybrid cloud and hybrid converged server storage has appeared more rapidly than many expected. And despite firm pronouncements of their demise, FC, tape and HDD are still very much with us.

    Via CDW: Your IT Department Can Help Your Companys Bottom Line Heres How
    Not only are the servers more robust performance wise, but they’ve got more compute capability, can handle more workloads, have more memory and also have better resiliency.

    Via EnterpriseStorageForum: Top 10 Tips for Software-Defined Storage Deployment
    Dell 14g PowerEdge Servers give you greater compute and IO capability, as well as the density you need, NVMe and 25 Gig Ethernet on board,

    Via CDW: Meeting IoTs Demands for Networking

    View more Server, Storage and I/O trends and perspectives comments here

    Events and Activities

    Recent and upcoming event activities.

    Sep. 13-15, 2017 – Fujifilm IT Executive Summit – Seattle WA

    August 28-30, 2017 – VMworld – Las Vegas

    June 22, 2017 – Webinar – GDPR and Microsoft Environments

    May 11, 2017 – Webinar – Email Archiving, Compliance and Ransomware

    See more webinars and activities on the Server StorageIO Events page here.

    Server StorageIO Industry Resources and Links

    Useful links and pages:
    Microsoft TechNet – Various Microsoft related from Azure to Docker to Windows
    storageio.com/links – Various industry links (over 1,000 with more to be added soon)
    objectstoragecenter.com – Cloud and object storage topics, tips and news items
    OpenStack.org – Various OpenStack related items
    storageio.com/protect – Various data protection items and topics
    thenvmeplace.com – Focus on NVMe trends and technologies
    thessdplace.com – NVM and Solid State Disk topics, tips and techniques
    storageio.com/converge – Various CI, HCI and related SDS topics
    storageio.com/performance – Various server, storage and I/O benchmark and tools
    VMware Technical Network – Various VMware related items

    Cheers
    Gs

    Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    GDPR (General Data Protection Regulation) Resources Are You Ready?

    server storage I/O data infrastructure trends
    Updated 6/29/17

    What Is GDPR

    If your initial response is that you are not in Europe and do not need to be concerned about GDPR you might want to step back and review that thought. While it is possible that some organizations may not be affected by GDPR in Europe directly, there might be indirect considerations. For example, GDPR, while focused on Europe, has ties to other initiatives in place or being planned for elsewhere in the world. Likewise unlike earlier regulatory compliance that tended to focus on specific industries such as healthcare (HIPPA and HITECH) or financial (SARBOX, Dodd/Frank among others), these new regulations can be more far-reaching.

    Where To Learn More

    Acronis GDPR Resources

    • Acronis Outlines GDPR position

    Quest GDPR Resources

    Microsoft and Azure Cloud GDPR Resources

    Do you have or know of relevant GDPR information and resources? Feel free to add them via comments or send us an email, however please watch the spam and sales pitches as they will be moderated.

    What This All Means

    Now is the time to start planning, preparing for GDPR if you have not done so and need to, as well as becoming more generally aware of it and other initiatives. One of the key takeaways is that while the word compliance is involved, there is much more to GDPR than just compliance as we have seen in the part. With GDPR and other initiatives data protection becomes the focus including privacy, protect, preserve, secure, serve as well as manage, have insight, awareness along with associated reporting.

    Ok, nuff said (for now…).

    Cheers
    Gs

    Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    Microsoft Windows Server, Azure, Nano Life cycle Updates

    server storage I/O trends

    Microsoft Windows Server, Azure, Nano and life cycle Updates

    For those of you who have an interest in Microsoft Windows Server on-premises, on Azure, on Hyper-V or Nano life cycle here are some recently announced updates.
    Microsoft Windows Server Nano Lifecycle

    Microsoft has announced updates to Windows Server Core and Nano along with semi-annual channel updates (read more here). The synopsis of this new update via Microsoft (read more here) is:

    In this new model, Windows Server releases are identified by  the year and month of release: for example, in 2017, a release in the 9th month  (September) would be identified as version 1709. Windows Server will release  semi-annually in fall and spring. Another release in March 2018 would be  version 1803. The support lifecycle for each release is 18 months.

    Microsoft has announced that its lightweight variant of WIndows Server 2016 (if you need a refresh on server requirements visit here) known as nano will now be focused for WIndows based containers as opposed to being for bare metal. As part of this change, Microsoft has reiterated that Server Core the headless (aka non-desktop user interface) version of WIndows Server 2016 will continue as the platform for BM along with other deployments where a GUI interface is not needed. Note that one of the original premises of Nano was that it could be leveraged as a replacement for Server Core.

    As part of this shift, Microsoft has also stated their intention to further streamline the already slimmed down version of WIndows Server known as Nano by reducing its size another 50%. Keep in mind that Nano is already a fraction of the footprint size of regular Windows Server (Core or Desktop UI). The footprint of Nano includes both its capacity size on disk (HDD or SSD), as well as its memory requirements, speed of startup boot, along with number of components that cut the number of updates.

    By focusing Nano for container use (e.g. Windows containers) Microsoft is providing multiple micro services engines (e.g. Linux and Windows) along with various management including Docker. Similar to providing multiple container engines (e.g. Linux and Windows) Microsoft is also supporting management from Windows along with Unix.

    Does This Confirm Rumor FUD that Nano is Dead

    IMHO the answer to the FUD rumors that are circulating around that NANO is dead are false.

    Granted Nano is being refocused by Microsoft for containers and will not be the lightweight headless Windows Server 2016 replacement for Server Core. Instead, the Microsoft focus is two path with continued enhancements on Server Core for headless full Windows Server 2016 deployment, while Nano gets further streamlined for containers. This means that Nano is no longer bare metal or Hyper-V focused with Microsoft indicating that Server Core should be used for those types of deployments.

    What is clear (besides no bare metal) is that Microsoft is working to slim down Nano even further by removing bare metal items, Powershell,.Net and other items instead of making those into optional items. The goal of Microsoft is to make the base Nano image on disk (or via pull) as small as possible with the initial goal of being 50% of its current uncompressed 1GB disk size. What this means is that if you need Powershell, you add it as a layer, need .Net then add as a layer instead of having the overhead of those items if you do not need tem. It will be interesting to see how much Microsoft is able to remove as standard components and make them options that you can simply add as layers if needed.

    What About Azure and Bring Your Own License

    In case you were not aware or had forgotten when you use Microsoft Azure and deploy virtual machine (aka cloud instances), you have the option of bringing (e.g. using) your own WIndows Server licenses. What this means is that by using your own Windows Server licenses you can cut the monthly cost of your Azure VMs. Check out the Azure site and explore various configuration options to learn more about pricing and various virtual machine instances from Windows to Linux here as well as hybrid deployments.

    Where To Learn More

    What This All Means

    Microsoft has refocused Windows Server 2016 Core and Desktop as its primary bare metal including for virtual as well as Azure OS platforms, while Nano is now focused on being optimized for Windows-based containers including Docker among other container orchestration.

    Ok, nuff said (for now…).

    Cheers
    Gs

    Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    AWS S3 Storage Gateway Revisited (Part I)

    server storage I/O trends

    AWS S3 Storage Gateway Revisited (Part I)

    This Amazon Web Service (AWS) Storage Gateway Revisited posts is a follow-up to the AWS Storage Gateway test drive and review I did a few years ago (thus why it’s called revisited). As part of a two-part series, the first post looks at what AWS Storage Gateway is, how it has improved since my last review of AWS Storage Gateway along with deployment options. The second post in the series looks at a sample test drive deployment and use.

    If you need an AWS primer and overview of various services such as Elastic Cloud Compute (EC2), Elastic Block Storage (EBS), Elastic File Service (EFS), Simple Storage Service (S3), Availability Zones (AZ), Regions and other items check this multi-part series (Cloud conversations: AWS EBS, Glacier and S3 overview (Part I) ).

    AWS

    As a quick refresher, S3 is the AWS bulk, high-capacity unstructured and object storage service along with its companion deep cold (e.g. inactive) Glacier. There are various S3 storage service classes including standard, reduced redundancy storage (RRS) along with infrequent access (IA) that have different availability durability, performance, service level and cost attributes.

    Note that S3 IA is not Glacier as your data always remains on-line accessible while Glacier data can be off-line. AWS S3 can be accessed via its API, as well as via HTTP rest calls, AWS tools along with those from third-party’s. Third party tools include NAS file access such as S3FS for Linux that I use for my Ubuntu systems to mount S3 buckets and use similar to other mount points. Other tools include Cloudberry, S3 Motion, S3 Browser as well as plug-ins available in most data protection (backup, snapshot, archive) software tools and storage systems today.

    AWS S3 Storage Gateway and What’s New

    The Storage Gateway is the AWS tool that you can use for accessing S3 buckets and objects via your block volume, NAS file or tape based applications. The Storage Gateway is intended to give S3 bucket and object access to on-premises applications and data infrastructures functions including data protection (backup/restore, business continuance (BC), business resiliency (BR), disaster recovery (DR) and archiving), along with storage tiering to cloud.

    Some of the things that have evolved with the S3 Storage Gateway include:

    • Easier, streamlined download, installation, deployment
    • Enhanced Virtual Tape Library (VTL) and Virtual Tape support
    • File serving and sharing (not to be confused with Elastic File Services (EFS))
    • Ability to define your own bucket and associated parameters
    • Bucket options including Infrequent Access (IA) or standard
    • Options for AWS EC2 hosted, or on-premises VMware as well as Hyper-V gateways (file only supports VMware and EC2)

    AWS Storage Gateway Three Functions

    AWS Storage Gateway can be deployed for three basic functions:

      AWS Storage Gateway File Architecture via AWS.com

    • File Gateway (NFS NAS) – Files, folders, objects and other items are stored in AWS S3 with a local cache for low latency access to most recently used data. With this option, you can create folders and subdirectory similar to a regular file system or NAS device as well as configure various security, permissions, access control policies. Data is stored in S3 buckets that you specify policies such as standard or Infrequent Access (IA) among other options. AWS hosted via EC2 as well as VMware Virtual Machine (VM) for on-premises file gateway.

      Also, note that AWS cautions on multiple concurrent writers to S3 buckets with Storage Gateway so check the AWS FAQs which may have changed by the time you read this. Current file share limits (subject to change) include 1 file gateway share per S3 bucket (e.g. a one to one mapping between file share and a bucket). There can be 10 file shares per gateway (e.g. multiple shares each with its own bucket per gateway) and a maximum file size of 5TB (same as maximum S3 object size). Note that you might hear about object storage systems supporting unlimited size objects which some may do, however generally there are some constraints either on their API front-end, or what is currently tested. View current AWS Storage Gateway resource and specification limits here.

    • AWS Storage Gateway Non-Cached Volume Architecture via AWS.com

      AWS Storage Gateway Cached Volume Architecture via AWS.com

    • Volume Gateway (Block iSCSI) – Leverages S3 with a point in time backup as an AWS EBS snapshot. Two options exist including Cached volumes with low-latency access to most recently used data (e.g. data is stored in AWS, with a local cache copy on disk or SSD). The other option is Stored Volumes (e.g. non-cached) where primary copy is local and periodic snapshot backups are sent to AWS. AWS provides EC2 hosted, as well as VMs for VMware and various Hyper-V Windows Server based VMs.

      Current Storage Gateway volume limits (subject to change) include maximum size of a cached volume 32TB, maximum size of a stored volume 16TB. Note that snapshots of cached volumes larger than 16TB can only be restored to a storage gateway volume, they can not be restored as an EBS volume (via EC2). There are a maximum of 32 volumes for a gateway with total size of all volumes for a gateway (cached) of 1,024TB (e.g. 1PB). The total size of all volumes for a gateway (stored volume) is 512TB. View current AWS Storage Gateway resource and specification limits here.

    • AWS Storage Gateway VTL Architecture via AWS.com

    • Virtual Tape Library Gateway (VTL) – Supports saving your data for backup/BC/DR/archiving into S3 and Glacier storage tiers. Being a Virtual Tape Library (e.g. VTL) you can specify emulation of tapes for compatibility with your existing backup, archiving and data protection software, management tools and processes.

      Storage Gateway limits for tape include minimum size of a virtual tape 100GB, maximum size of a virtual tape 2.5TB, maximum number of virtual tapes for a VTL is 1,500 and total size of all tapes in a VTL is 1PB. Note that the maximum number of virtual tapes in an archive is unlimited and total size of all tapes in an archive is also unlimited. View current AWS Storage Gateway resource and specification limits here.

      AWS

    Where To Learn More

    What This All Means

    As to which gateway function and mode (cached or non-cached for Volumes) depends on what it is that you are trying to do. Likewise choosing between EC2 (cloud hosted) or on-premises Hyper-V and VMware VMs depends on what your data infrastructure support requirements are. Overall I like the progress that AWS has put into evolving the Storage Gateway, granted it might not be applicable for all usage cases. Continue reading more and view images from the AWS Storage Gateway Revisited test drive in part two located here.

    Ok, nuff said (for now…).

    Cheers
    Gs

    Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.