GDPR goes into effect May 25 2018 Are You Ready?

server storage I/O trends

GDPR goes into effect May 25 2018 Are You Ready?

The new European General Data Protection Regulation (GDPR) go into effect in a year on May 25 2018 are you ready?

Why Become GDPR Aware

If your initial response is that you are not in Europe and do not need to be concerned about GDPR you might want to step back and review that thought. While it is possible that some organizations may not be affected by GDPR in Europe directly, there might be indirect considerations. For example, GDPR, while focused on Europe, has ties to other initiatives in place or being planned for elsewhere in the world. Likewise unlike earlier regulatory compliance that tended to focus on specific industries such as healthcare (HIPPA and HITECH) or financial (SARBOX, Dodd/Frank among others), these new regulations can be more far-reaching.

GDPR Looking Beyond Compliance

Taking a step back, GDPR, as its name implies, is about general data protection including how information is protected, preserved, secured and served. This also includes taking safeguards to logically protect data with passwords, encryption among other techniques. Another dimension of GDPR is reporting and ability to track who has accessed what information (including when), as well as simply knowing what data you have.

What this means is that GDPR impacts users from consumers of social media such as Facebook, Instagram, Twitter, Linkedin among others, to cloud storage and related services, as well as traditional applications. In other words, GDPR is not just for finance, healthcare, it is more far-reaching making sure you know what data exists, and taking adequate steps to protect.

There is a lot more to discuss of GDPR in Europe as well as what else is being done in other parts of the world. For now being aware of initiatives such as GDPR and its broader scope impact besides traditional compliance is important. With these new initiatives, the focus expands from the compliance office or officers to the data protection office and data protection officer whose scope is to protect, preserve, secure and serve data along with associated information.

GDPR and Microsoft Environments

As part of generating awareness and help planning, I’m going to be presenting a free webinar produced by Redmond Magazine sponsored by Quest (who will also be a co-presenter) on June 22, 2017 (7AM PT). The title of the webinar is GDPR Compliance Planning for Microsoft Environments.

This webinar looks at the General Data Protection Regulation (GDPR) and its impact on Microsoft environments. Specifically, we look at how GDPR along with other future compliance directives impact Microsoft cloud, on-premises, and hybrid environments, as well as what you can do to be ready before the May 25, 2018 deadline. Join us for this discussion of what you need to know to plan and carry out a strategy to help address GDPR compliance regulations for Microsoft environments.

What you will learn during this discussion:

  • Why GDPR and other regulations impact your environment
  • How to assess and find compliance risks
  • How to discover who has access to sensitive resources
  • Importance of real-time auditing to monitor and alert on user access activity

This webinar applies to business professionals responsible for strategy, planning and policy decision-making for Microsoft environments along with associated applications. This includes security, compliance, data protection, system admins, architects and other IT professionals.

What This All Means

Now is the time to start planning, preparing for GDPR if you have not done so and need to, as well as becoming more generally aware of it and other initiatives. One of the key takeaways is that while the word compliance is involved, there is much more to GDPR than just compliance as we have seen in the part. With GDPR and other initiatives data protection becomes the focus including privacy, protect, preserve, secure, serve as well as manage, have insight, awareness along with associated reporting. Join me and Quest on June 22, 2017 7AM PT for the webinar GDPR Compliance Planning for Microsoft Environments to learn more.

Ok, nuff said, for now.

Cheers
Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

Azure Stack Technical Preview 3 (TP3) Overview Preview Review

server storage I/O trends

Azure Stack Technical Preview 3 (TP3) Overview Preview Review

Perhaps you are aware or use Microsoft Azure, how about Azure Stack?

This is part one of a two-part series looking at Microsoft Azure Stack providing an overview, preview and review. Read part two here that looks at my experiences installing Microsoft Azure Stack Technical Preview 3 (TP3).

For those who are not aware, Azure Stack is a private on-premises extension of the Azure public cloud environment. Azure Stack now in technical preview three (e.g. TP3), or what you might also refer to as a beta (get the bits here).

In addition to being available via download as a preview, Microsoft is also working with vendors such as Cisco, Dell EMC, HPE, Lenovo and others who have announced Azure Stack support. Vendors such as Dell EMC have also made proof of concept kits available that you can buy including server with storage and software. Microsoft has also indicated that once launched for production versions scaling from a few to many nodes, that a single node proof of concept or development system will also remain available.

software defined data infrastructure SDDI and SDDC
Software-Defined Data Infrastructures (SDDI) aka Software-defined Data Centers, Cloud, Virtual and Legacy

Besides being an on-premises, private cloud variant, Azure Stack is also hybrid capable being able to work with public cloud Azure. In addition to working with public cloud Azure, Azure Stack services and in particular workloads can also work with traditional Microsoft, Linux and others. You can use pre built solutions from the Azure marketplace, in addition to developing your applications using Azure services and DevOps tools. Azure Stack enables hybrid deployment into public or private cloud to balance flexibility, control and your needs.

Azure Stack Overview

Microsoft Azure Stack is an on premise (e.g. in your own data center) private (or hybrid when connected to Azure) cloud platform. Currently Azure Stack is in Technical Preview 3 (e.g. TP3) and available as a proof of concept (POC) download from Microsoft. You can use Azure Stack TP3 as a POC for learning, demonstrating and trying features among other activities. Here is link to a Microsoft Video providing an overview of Azure Stack, and here is a good summary of roadmap, licensing and related items.

In summary, Microsoft Azure Stack is:

  • A onsite, on premise, in your data center extension of Microsoft Azure public cloud
  • Enabling private and hybrid cloud with strong integration along with common experiences with Azure
  • Adopt, deploy, leverage cloud on your terms and timeline choosing what works best for you
  • Common processes, tools, interfaces, management and user experiences
  • Leverage speed of deployment and configuration with a purpose-built integrate solution
  • Support existing and cloud native Windows, Linux, Container and other services
  • Available as a public preview via software download, as well as vendors offering solutions

What is Azure Stack Technical Preview 3 (TP3)

This version of Azure Stack is a single node running on a lone physical machine (PM) aka bare metal (BM). However can also be installed into a virtual machine (VM) using nesting. For example I have Azure Stack TP3 running nested on a VMware vSphere ESXi 6.5 systems with a Windows Server 2016 VM as its base operating system.

Microsoft Azure Stack architecture
Click here or on the above image to view list of VMs and other services (Image via Microsoft.com)

The TP3 POC Azure Stack is not intended for production environments, only for testing, evaluation, learning and demonstrations as part of its terms of use. This version of Azure Stack is associated with a single node identity such as Azure Active Directory (AAD) integrated with Azure, or Active Directory Federation Services (ADFS) for standalone modes. Note that since this is a single server deployment, it is not intended for performance, rather, for evaluating functionality, features, APIs and other activities. Learn more about Azure Stack TP3 details here (or click on image) including names of various virtual machines (VMs) as well as their roles.

Where to learn more

The following provide more information and insight about Azure, Azure Stack, Microsoft and Windows among related topics.

  • Azure Stack Technical Preview 3 (TP3) Overview Preview Review
  • Azure Stack TP3 Overview Preview Review Part II
  • Azure Stack Technical Preview (get the bits aka software download here)
  • Azure Stack deployment prerequisites (Microsoft)
  • Microsoft Azure Stack troubleshooting (Microsoft Docs)
  • Azure Stack TP3 refresh tips (Azure Stack)
  • Here is a good post with a tip about not applying certain Windows updates to Azure stack TP3 installs.
  • Configure Azure stack TP3 to be available on your own network (Azure Stack)
  • Azure Stack TP3 Marketplace syndication (Azure Stack)
  • Azure Stack TP3 deployment experiences (Azure Stack)
  • Frequently asked questions for Azure Stack (Microsoft)
  • Deploy Azure Stack (Microsoft)
  • Connect to Azure Stack (Microsoft)
  • Azure Active Directory (AAD) and Active Directory Federation Services (ADFS)
  • Azure Stack TP2 deployment experiences by Niklas Akerlund (@vNiklas) useful for tips for TP3
  • Deployment Checker for Azure Stack Technical Preview (Microsoft Technet)
  • Azure stack and other tools (Github)
  • How to enable nested virtualization on Hyper-V Windows Server 2016
  • Dell EMC announce Microsoft Hybrid Cloud Azure Stack (Dell EMC)
  • Dell EMC Cloud for Microsoft Azure Stack (Dell EMC)
  • Dell EMC Cloud for Microsoft Azure Stack Data Sheet (Dell EMC PDF)
  • Dell EMC Cloud Chats (Dell EMC Blog)
  • Microsoft Azure stack forum
  • Dell EMC Microsoft Azure Stack solution
  • Gaining Server Storage I/O Insight into Microsoft Windows Server 2016
  • Overview Review of Microsoft ReFS (Reliable File System) and resource links
  • Via WServerNews.com Cloud (Microsoft Azure) storage considerations
  • Via CloudComputingAdmin.com Cloud Storage Decision Making: Using Microsoft Azure for cloud storage
  • www.thenvmeplace.com, www.thessdplace.com, www.objectstoragecenter.com and www.storageio.com/converge
  • What this all means

    A common question is if there is demand for private and hybrid cloud, in fact, some industry expert pundits have even said private, or hybrid are dead which is interesting, how can something be dead if it is just getting started. Likewise, it is early to tell if Azure Stack will gain traction with various organizations, some of whom may have tried or struggled with OpenStack among others.

    Given a large number of Microsoft Windows-based servers on VMware, OpenStack, Public cloud services as well as other platforms, along with continued growing popularity of Azure, having a solution such as Azure Stack provides an attractive option for many environments. That leads to the question of if Azure Stack is essentially a replacement for Windows Servers or Hyper-V and if only for Windows guest operating systems. At this point indeed, Windows would be an attractive and comfortable option, however, given a large number of Linux-based guests running on Hyper-V as well as Azure Public, those are also primary candidates as are containers and other services.

    Continue reading more in part two of this two-part series here including installing Microsoft Azure Stack TP3.

    Ok, nuff said (for now…).

    Cheers
    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    Azure Stack TP3 Overview Preview Review Part II

    server storage I/O trends

    Azure Stack TP3 Overview Preview (Part II) Install Review

    This is part two of a two-part series looking at Microsoft Azure Stack with a focus on my experiences installing Microsoft Azure Stack Technical Preview 3 (TP3) including into a nested VMware vSphere ESXi environment. Read part one here that provides a general overview of Azure Stack.

    Azure Stack Review and Install

    Being familiar with Microsoft Azure public cloud having used it for a few years now, I wanted to gain some closer insight, experience, expand my trade craft on Azure Stack by installing TP3. This is similar to what I have done in the past with OpenStack, Hadoop, Ceph, VMware, Hyper-V and many others, some of which I need to get around to writing about sometime. As a refresher from part one of this series, the following is an image via Microsoft showing the Azure Stack TP3 architecture, click here or on the image to learn more including the names and functions of the various virtual machines (VMs) that make up Azure Stack.

    Microsoft Azure Stack architecture
    Click here or on the above image to view list of VMs and other services (Image via Microsoft.com)

    Whats Involved Installing Azure Stack TP3?

    The basic steps are as follows:

    • Read this Azure Stack blog post (Azure Stack)
    • Download the bits (e.g. the Azure Stack software) from here, where you access the Azure Stack Downloader tool.
    • Planning your deployment making decisions on Active Directory and other items.
    • Prepare the target server (physical machine aka PM, or virtual machine VM) that will be the Azure Stack destination.
    • Copy Azure Stack software and installer to target server and run pre-install scripts.
    • Modify PowerShell script file if using a VM instead of a PM
    • Run the Azure Stack CloudBuilder setup, configure unattend.xml if needed or answer prompts.
    • Server reboots, select Azure Stack from two boot options.
    • Prepare your Azure Stack base system (time, network NICs in static or DHCP, if running on VMware install VMtools)
    • Determine if you will be running with Azure Active Directory (AAD) or standalone Active Directory Federated Services (ADFS).
    • Update any applicable installation scripts (see notes that follow)
    • Deploy the script, then extended Azure Stack TP3 PoC as needed

    Note that this is a large download of about 16GB (23GB with optional WIndows Server 2016 demo ISO).

    Use the AzureStackDownloader tool to download the bits (about 16GB or 23GB with optional Windows Server 2016 base image) which will either be in several separate files which you stitch back together with the MicrosoftAzureStackPOC tool, or as a large VHDX file and smaller 6.8GB ISO (Windows Server 2016). Prepare your target server system for installation once you have all the software pieces downloaded (or do the preparations while waiting for download).

    Once you have the software downloaded, if it is a series of eight .bin files (7 about 2GB, 1 around 1.5GB), good idea to verify their checksums, then stitch them together on your target system, or on a staging storage device or file share. Note that for the actual deployment first phase, the large resulting cloudbuilder.vhdx file will need to reside in the C:\ root location of the server where you are installing Azure Stack.

    server storageio nested azure stack tp3 vmware

    Azure Stack deployment prerequisites (Microsoft) include:

    • At least 12 cores (or more), dual socket processor if possible
    • As much DRAM as possible (I used 100GB)
    • Put the operating system disk on flash SSD (SAS, SATA, NVMe) if possible, allocate at least 200GB (more is better)
    • Four x 140GB or larger (I went with 250GB) drives (HDD or SSD) for data deployment drives
    • A single NIC or adapter (I put mine into static instead of DHCP mode)
    • Verify your physical or virtual server BIOS has VT enabled

    The above image helps to set the story of what is being done. On the left is for bare metal (BM) or physical machine (PM) install of Azure Stack TP3, on the right, a nested VMware (vSphere ESXi 6.5) with virtual machine (VM) 11 approach. Note that you could also do a Hyper-V nested among other approaches. Shown in the image above common to both a BM or VM is a staging area (could be space on your system drive) where Azure Stack download occurs. If you use a separate staging area, then simply copy the individual .bin files and stitch together into the larger .VHDX, or, copy the larger .VHDX, which is better is up to your preferences.

    Note that if you use the nested approach, there are a couple of configuration (PowerShell) scripts that need to be updated. These changes are to trick the installer into thinking that it is on a PM when it checks to see if on physical or virtual environments.

    Also note that if using nested, make sure you have your VMware vSphere ESXi host along with specific VM properly configured (e.g. that virtualization and other features are presented to the VM). With vSphere ESXi 6.5 virtual machine type 11 nesting is night and day easier vs. earlier generations.

    Something else to explain here is that you will initially start the Azure Stack install preparation using a standard Windows Server (I used a 2016 version) where the .VHDX is copied into its C:\ root. From there you will execute some PowerShell scripts to setup some configuration files, one of which needs to be modified for nesting.

    Once those prep steps are done, there is a Cloudbuilder deploy script that gets run that can be done with an unattend.xml file or manual input. This step will cause a dual-boot option to be added to your server where you can select Azure Stack or your base prep Windows Server instance, followed by reboot.

    After the reboot occurs and you choose to boot into Azure Stack, this is the server instance that will actually run the deployment script, as well as build and launch all the VMs for the Azure Stack TP3 PoC. This is where I recommend having a rough sketch like above to annotate layers as you go to remember what layer working at. Don’t worry, it becomes much easier once all is said and done.

    Speaking of preparing your server, refer to Microsoft specs, however in general give the server as much RAM and cores as possible. Also if possible place the system disk on a flash SSD (SAS, SATA, NVMe) and make sure that it has at least 200GB, however 250 or even 300GB is better (just in case you need more space).

    Additional configuration tips include allocating four data disks for Azure, if possible make these SSDs as well as, however more important IMHO to have at least the system on fast flash SSD. Another tip is to enable only one network card or NIC and put it into static vs. DHCP address mode to make things easier later.

    Tip: If running nested, vSphere 6.5 worked the smoothest as had various issues or inconsistencies with earlier VMware versions, even with VMs that ran nested just fine.

    Tip: Why run nested? Simple, I wanted to be able to use using VMware tools, do snapshots to go back in time, plus share the server with some other activities until ready to give Azure Stack TP3 its own PM.

    Tip: Do not connect the POC machine to the following subnets (192.168.200.0/24, 192.168.100.0/27, 192.168.101.0/26, 192.168.102.0/24, 192.168.103.0/25, 192.168.104.0/25) as Azure Stack TP3 uses those.

    storageio azure stack tp3 vmware configuration

    Since I decided to use a nested VM deploying using VMware, there were a few extra steps needed that I have included as tips and notes. Following is view via vSphere client of the ESXi host and VM configuration.

    The following image combines a couple of different things including:

    A: Showing the contents of C:\Azurestack_Supportfiles directory

    B: Modifying the PrepareBootFromVHD.ps1 file if deploying on virtual machine (See tips and notes)

    C: Showing contents of staging area including individual .bin files along with large CloudBuilder.vhdx

    D: Running the PowerShell script commands to prepare the PrepareBootFromVHD.ps1 and related items

    prepariing azure stack tp3 cloudbuilder for nested vmware deployment

    From PowerShell (administrator):

    # Variables
    $Uri = 'https://raw.githubusercontent.com/Azure/Azure stack/master/Deployment/'
    $LocalPath = 'c:\AzureStack_SupportFiles'

    # Create folder
    New-Item $LocalPath -type directory

    # Download files
    ( 'BootMenuNoKVM.ps1', 'PrepareBootFromVHD.ps1', 'Unattend.xml', 'unattend_NoKVM.xml') | foreach { Invoke-WebRequest ($uri + $_) -OutFile ($LocalPath + '\' + $_) }

    After you do the above, decide if you will be using an Unattend.xml or manual entry of items for building the Azure Stack deployment server (e.g. a Windows Server). Note that the above PowerShell script created the C:\azurestack_supportfiles folder and downloads the script files for building the cloud image using the previously downloaded Azure Stack CloudBuilder.vhdx (which should be in C:\).

    Note and tip is that if you are doing a VMware or virtual machine based deployment of TP3 PoC, you will need to change C:\PrepareBootFromVHD.ps1 in the Azure Stack support files folder. Here is a good resource on what gets changed via Github that shows an edit on or about line 87 of PrepareBootFromVHD.ps1. If you run the PrepareBootFromVHD.ps1 script on a virtual machine you will get an error message, the fix is relatively easy (after I found this post).

    Look in PrepareBootFromVHD.ps1 for something like the following around line 87:

    if ((get-disk | where {$_.isboot -eq $true}).Model -match 'Virtual Disk')       {      Write-Host "The server is currently already booted from a virtual hard disk, to boot the server from the CloudBuilder.vhdx you will need to run this script on an Operating System that is installed on the physical disk of this server."      Exit      }
    

    You can either remove the "exit" command, or, change the test for "Virtual Disk" to something like "X", for fun I did both (and it worked).

    Note that you only have to make the above and another change in a later step if you are deploying Azure Stack TP3 as a virtual machine.

    Once you are ready, go ahead and launch the PrepareBootFromVHD.ps1 script which will set the BCDBoot entry (more info here).

    azure stack tp3 cloudbuilder nested vmware deployment

    You will see a reboot and install, this is installing what will be called the physical instance. Note that this is really being installed on the VM system drive as a secondary boot option (e.g. azure stack).

    azure stack tp3 dual boot option

    After the reboot, login to the new Azure Stack base system and complete any configuration including adding VMware Tools if using VMware nested. Some other things to do include make sure you have your single network adapter set to static (makes things easier), and any other updates or customizations. Before you run the next steps, you need to decide if going to use Azure Active Directory (AAD) or local ADFS.

    Note that if you are not running on a virtual machine, simply open a PowerShell (administrator) session, and run the deploy script. Refer to here for more guidance on the various options available including discussion on using AAD or ADFS.

    Note if you run the deployment script on a virtual machine, you will get an error which is addressed in the next section, otherwise, sit back and watch the progress..

    CloudBuilder Deployment Time

    Once you have your Azure Stack deployment system and environment ready, including a snapshot if on virtual machine, launch the PowerShell deployment script. Note that you will need to have decided if deploying with Azure Active Directory (AAD) or Azure Directory Federated Services (ADFS) for standalone aka submarine mode. There are also other options you can select as part of the deployment discussed in the Azure Stack tips here (a must read) and here. I chose to do a submarine mode (e.g. not connected to Public Azure and AAD) deployment.

    From PowerShell (administrator):

    cd C:\CloudDeployment:\Setup
    $adminpass = ConvertTo-SecureString "youradminpass" -AsPlainText -Force
    .\InstallAzureStackPOC.ps1 -AdminPassword $adminpass -UseADFS

    Deploying on VMware Virtual Machines Tips

    Here is a good tip via Gareth Jones (@garethjones294) that I found useful for updating one of the deployment script files (BareMetal_Tests.ps1 located in C:\CloudDeployment\Roles\PhysicalMachines\Tests folder) so that it would skip the bare metal (PM) vs. VM tests. Another good resource, even though it is for TP2 and early versions of VMware is TP2 deployment experiences by Niklas Akerlund (@vNiklas).

    Note that this is a bit of a chick and egg scenario unless you are proficient at digging into script files since the BareMetal_Tests.ps1 file does not get unpacked until you run the CloudBuilder deployment script. If you run the script and get an error, then make the changes below, and rerun the script as noted. Once you make the modification to the BareMetal_Tests.ps1 file, keep a copy in a safe place for future use.

    Here are some more tips for deploying Azure Stack on VMware,

    Per the tip mentioned about via Gareth Jones (tip: read Gareths post vs. simply cut and paste the following which is more of a guide):

    Open BareMetal_Tests.ps1 file in PowerShell ISE and navigate to line 376 (or in that area)
    Change $false to $true which will stop the script failing when checking to see if the Azure Stack is running inside a VM.
    Next go to line 453.
    Change the last part of the line to read “Should Not BeLessThan 0”
    This will stop the script checking for the required amount of cores available.

    After you make the above correction as with any error (and fix) during Azure Stack TP3 PoC deployment, simply run the following.

    cd C:\CloudDeployment\Setup
    .\InstallAzureStackPOC.ps1 -rerun
    

    Refer to the extra links in the where to learn more section below that offer various tips, tricks and insight that I found useful, particular for deploying on VMware aka nested. Also in the links below are tips on general Azure Stack, TP2, TP3, adding services among other insight.

    starting azure stack tp3 deployment

    Tip: If you are deploying Azure Stack TP3 PoC on virtual machine, once you start the script above, copy the modified BareMetal_Tests.ps1 file

    Once the CloudBuilder deployment starts, sit back and wait, if you are using SSDs, it will take a while, if using HDDs, it will take a long while (up to hours), however check in on it now and then to see progress of if any errors. Note that some of the common errors will occur very early in the deployment such as the BareMetal_Tests.ps1 mentioned above.

    azure stack tp3 deployment finished

    Checking in periodically to see how the deployment progress is progressing, as well as what is occurring. If you have the time, watch some of the scripts as you can see some interesting things such as the software defined data center (SDDC) aka software-defined data infrastructure (SDDC) aka Azure Stack virtual environment created. This includes virtual machine creation and population, creating the software defined storage using storage spaces direct (S2D), virtual network and active directory along with domain controllers among others activity.

    azure stack tp3 deployment progress

    After Azure Stack Deployment Completes

    After you see the deployment completed, you can try accessing the management portal, however there may be some background processing still running. Here is a good tip post on connecting to Azure Stack from Microsoft using Remote Desktop (RDP) access. Use RDP from the Azure Stack deployment Windows Server and connect to a virtual machine named MAS-CON01, launch Server Manager and for Local Server disable Internet Explorer Enhanced Security (make sure you are on the right system, see the tip mentioned above). Disconnect from MAS-CON01 (refer to the Azure Stack architecture image above), then reconnect, and launch Internet Explorer with an URL of (note documentation side to use which did not work for me).

    Note the username for the Azure Stack system is AzureStack\AzureStackAdmin with a password of what you set for administrative during setup. If you get an error, verify the URLs, check your network connectivity, wait a few minutes as well as verify what server you are trying to connect from and too. Keep in mind that even if deploying on a PM or BM (e.g. non virtual server or VM), the Azure Stack deployment TP3 PoC creates a "virtual" software-defined environment with servers, storage (Azure Stack uses Storage Spaces Direct [S2D] and software defined network.

    accessing azure stack tp3 management portal dashboard

    Once able to connect to Azure Stack, you can add new services including virtual machine image instances such as Windows (use the Server 2016 ISO that is part of Azure Stack downloads), Linux or others. You can also go to these Microsoft resources for some first learning scenarios, using the management portals, configuring PowerShell and troubleshooting.

    Where to learn more

    The following provide more information and insight about Azure, Azure Stack, Microsoft and Windows among related topics.

  • Azure Stack Technical Preview 3 (TP3) Overview Preview Review
  • Azure Stack TP3 Overview Preview Review Part II
  • Azure Stack Technical Preview (get the bits aka software download here)
  • Azure Stack deployment prerequisites (Microsoft)
  • Microsoft Azure Stack troubleshooting (Microsoft Docs)
  • Azure Stack TP3 refresh tips (Azure Stack)
  • Here is a good post with a tip about not applying certain Windows updates to AzureStack TP3 installs.
  • Configure Azure Stack TP3 to be available on your own network (Azure Stack)
  • Azure Stack TP3 Marketplace syndication (Azure Stack)
  • Azure Stack TP3 deployment experiences (Azure Stack)
  • Frequently asked questions for Azure Stack (Microsoft)
  • Azure Active Directory (AAD) and Active Directory Federation Services (ADFS)
  • Deploy Azure Stack (Microsoft)
  • Connect to Azure Stack (Microsoft)
  • Azure Stack TP2 deployment experiences by Niklas Akerlund (@vNiklas) useful for tips for TP3
  • Deployment Checker for Azure Stack Technical Preview (Microsoft Technet)
  • Azure stack and other tools (Github)
  • How to enable nested virtualization on Hyper-V Windows Server 2016
  • Dell EMC announce Microsoft Hybrid Cloud Azure Stack (Dell EMC)
  • Dell EMC Cloud for Microsoft Azure Stack (Dell EMC)
  • Dell EMC Cloud for Microsoft Azure Stack Data Sheet (Dell EMC PDF)
  • Dell EMC Cloud Chats (Dell EMC Blog)
  • Microsoft Azure stack forum
  • Dell EMC Microsoft Azure Stack solution
  • Gaining Server Storage I/O Insight into Microsoft Windows Server 2016
  • Overview Review of Microsoft ReFS (Reliable File System) and resource links
  • Via WServerNews.com Cloud (Microsoft Azure) storage considerations
  • Via CloudComputingAdmin.com Cloud Storage Decision Making: Using Microsoft Azure for cloud storage
  • www.thenvmeplace.com, www.thessdplace.com, www.objectstoragecenter.com and www.storageio.com/converge
  • What this all means

    A common question is if there is demand for private and hybrid cloud, in fact, some industry expert pundits have even said private, or hybrid are dead which is interesting, how can something be dead if it is just getting started. Likewise, it is early to tell if Azure Stack will gain traction with various organizations, some of whom may have tried or struggled with OpenStack among others.

    Given a large number of Microsoft Windows-based servers on VMware, OpenStack, Public cloud services as well as other platforms, along with continued growing popularity of Azure, having a solution such as Azure Stack provides an attractive option for many environments. That leads to the question of if Azure Stack is essentially a replacement for Windows Servers or Hyper-V and if only for Windows guest operating systems. At this point indeed, Windows would be an attractive and comfortable option, however, given a large number of Linux-based guests running on Hyper-V as well as Azure Public, those are also primary candidates as are containers and other services.

    software defined data infrastructures SDDI and SDDC

    Some will say that if OpenStack is struggling in many organizations and being free open source, how Microsoft can have success with Azure Stack. The answer could be that some organizations have struggled with OpenStack while others have not due to lack of commercial services and turnkey support. Having installed both OpenStack and Azure Stack (as well as VMware among others), Azure Stack is at least the TP3 PoC is easy to install, granted it is limited to one node, unlike the production versions. Likewise, there are easy to use appliance versions of OpenStack that are limited in scale, as well as more involved installs that unlock full functionality.

    OpenStack, Azure Stack, VMware and others have their places, alongside, or supporting containers along with other tools. In some cases, those technologies may exist in the same environment supporting different workloads, as well as accessing various public clouds, after all, Hybrid is the home run for many if not most legality IT environments.

    Ok, nuff said (for now…).

    Cheers
    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    Dell EMC Announce Azure Stack Hybrid Cloud Solution

    server storage I/O trends

    Dell EMC Azure Stack Hybrid Cloud Solution

    Dell EMC have announced their Microsoft Azure Stack hybrid cloud platform solutions. This announcement builds upon earlier statements of support and intention by Dell EMC to be part of the Microsoft Azure Stack community. For those of you who are not familiar, Azure Stack is an on premise extension of Microsoft Azure public cloud.

    What this means is that essentially you can have the Microsoft Azure experience (or a subset of it) in your own data center or data infrastructure, enabling cloud experiences and abilities at your own pace, your own way with control. Learn more about Microsoft Azure Stack including my experiences with and installing Technique Preview 3 (TP3) here.

    software defined data infrastructures SDDI and SDDC

    What Is Azure Stack

    Microsoft Azure Stack is an on-premises (e.g. in your own data center) private (or hybrid when connected to Azure) cloud platform. Currently Azure Stack is in Technical Preview 3 (e.g. TP3) and available as a proof of concept (POC) download from Microsoft. You can use Azure Stack TP3 as a POC for learning, demonstrating and trying features among other activities. Here is link to a Microsoft Video providing an overview of Azure Stack, and here is a good summary of roadmap, licensing and related items.

    In summary, Microsoft Azure Stack and this announcement is about:

    • A onsite, on-premises, in your data center extension of Microsoft Azure public cloud
    • Enabling private and hybrid cloud with good integration along with shared experiences with Azure
    • Adopt, deploy, leverage cloud on your terms and timeline choosing what works best for you
    • Common processes, tools, interfaces, management and user experiences
    • Leverage speed of deployment and configuration with a purpose-built integrated solution
    • Support existing and cloud-native Windows, Linux, Container and other services
    • Available as a public preview via software download, as well as vendors offering solutions

    What Did Dell EMC Announce

    Dell EMC announced their initial product, platform solutions, and services for Azure Stack. This includes a Proof of Concept (PoC) starter kit (PE R630) for doing evaluations, prototype, training, development test, DevOp and other initial activities with Azure Stack. Dell EMC also announced a larger for production deployment, or large-scale development, test DevOp activity turnkey solution. The initial production solution scales from 4 to 12 nodes, or from 80 to 336 cores that include hardware (server compute, memory, I/O and networking, top of rack (TOR) switches, management, Azure Stack software along with services. Other aspects of the announcement include initial services in support of Microsoft Azure Stack and Azure cloud offerings.
    server storage I/O trends
    Image via Dell EMC

    The announcement builds on joint Dell EMC Microsoft experience, partnerships, technologies and services spanning hardware, software, on site data center and public cloud.
    server storage I/O trends
    Image via Dell EMC

    Dell EMC along with Microsoft have engineered a hybrid cloud platform for organizations to modernize their data infrastructures enabling faster innovate, accelerate deployment of resources. Includes hardware (server compute, memory, I/O networking, storage devices), software, services, and support.
    server storage I/O trends
    Image via Dell EMC

    The value proposition of Dell EMC hybrid cloud for Microsoft Azure Stack includes consistent experience for developers and IT data infrastructure professionals. Common experience across Azure public cloud and Azure Stack on-premises in your data center for private or hybrid. This includes common portal, Powershell, DevOps tools, Azure Resource Manager (ARM), Azure Infrastructure as a Service (IaaS) and Platform as a Service (PaaS), Cloud Infrastructure and associated experiences (management, provisioning, services).
    server storage I/O trends
    Image via Dell EMC

    Secure, protect, preserve and serve applications VMs hosted on Azure Stack with Dell EMC services along with Microsoft technologies. Dell EMC data protection including backup and restore, Encryption as a Service, host guard and protected VMs, AD integration among other features.
    server storage I/O trends
    Image via Dell EMC

    Dell EMC services for Microsoft Azure Stack include single contact support for prepare, assessment, planning; deploy with rack integration, delivery, configuration; extend the platform with applicable migration, integration with Office 365 and other applications, build new services.
    server storage I/O trends
    Image via Dell EMC

    Dell EMC Hyper-converged scale out solutions range from minimum of 4 x PowerEdge R730XD (total raw specs include 80 cores (4 x 20), 1TB RAM (4 x 256GB), 12.8TB SSD Cache, 192TB Storage, plus two top of row network switches (Dell EMC) and 1U management server node. Initial maximum configuration raw specification includes 12 x R730XD (total 336 cores), 6TB memory, 86TB SSD cache, 900TB storage along with TOR network switch and management server.

    The above configurations initially enable HCI nodes of small (low) 20 cores, 256GB memory, 5.7TB SSD cache, 40TB storage; mid size 24 cores, 384GB memory, 11.5TB cache and 60TB storage; high-capacity with 28 cores, 512GB memory, 11.5TB cache and 80TB storage per node.
    server storage I/O trends
    Image via Dell EMC

    Dell EMC Evaluator program for Microsoft Azure Stack including the PE R630 for PoCs, development, test and training environments. The solution combines Microsoft Azure Stack software, Dell EMC server with Intel E5-2630 (10 cores, 20 threads / logical processors or LPs), or Intel E5-2650 (12 cores, 24 threads / LPs). Memory is 128GB or 256GB, storage includes flash SSD (2 x 480GB SAS) and HDD (6 x 1TB SAS).
    and networking.
    server storage I/O trends
    Image via Dell EMC

    Collaborative support single contact between Microsoft and Dell EMC

    Who Is This For

    This announcement is for any organization that is looking for an on-premises, in your data center private or hybrid cloud turnkey solution stack. This initial set of announcements can be for those looking to do a proof of concept (PoC), advanced prototype, support development test, DevOp or gain cloud-like elasticity, ease of use, rapid procurement and other experiences of public cloud, on your terms and timeline. Naturally, there is a strong affinity and seamless experience for those already using, or planning to use Azure Public Cloud for Windows, Linux, Containers and other workloads, applications, and services.

    What Does This Cost

    Check with your Dell EMC representative or partner for exact pricing which varies for the size and configurations. There are also various licensing models to take into consideration if you have Microsoft Enterprise License Agreements (ELAs) that your Dell EMC representative or business partner can address for you. Likewise being cloud based, there is also time usage-based options to explore.

    Where to learn more

    What this all means

    The dust is starting to settle on last falls Dell EMC integration, both of whom have long histories working with, and partnering along with Microsoft on legacy, as well as virtual software-defined data centers (SDDC), software-defined data infrastructures (SDDI), native, and hybrid clouds. Some may view the Dell EMC VMware relationship as a primary focus, however, keep in mind that both Dell and EMC had worked with Microsoft long before VMware came into being. Likewise, Microsoft remains one of the most commonly deployed operating systems on VMware-based environments. Granted Dell EMC have a significant focus on VMware, they both also sell, service and support many services for Microsoft-based solutions.

    What about Cisco, HPE, Lenovo among others who have to announce or discussed their Microsoft Azure Stack intentions? Good question, until we hear more about what those and others are doing or planning, there is not much more to do or discuss beyond speculating for now. Another common question is if there is demand for private and hybrid cloud, in fact, some industry expert pundits have even said private, or hybrid are dead which is interesting, how can something be dead if it is just getting started. Likewise, it is early to tell if Azure Stack will gain traction with various organizations, some of whom may have tried or struggled with OpenStack among others.

    Given a large number of Microsoft Windows-based servers on VMware, OpenStack, Public cloud services as well as other platforms, along with continued growing popularity of Azure, having a solution such as Azure Stack provides an attractive option for many environments. That leads to the question of if Azure Stack is essentially a replacement for Windows Servers or Hyper-V and if only for Windows guest operating systems. At this point indeed, Windows would be an attractive and comfortable option, however, given a large number of Linux-based guests running on Hyper-V as well as Azure Public, those are also primary candidates as are containers and other services.

    Overall, this is an excellent and exciting move for both Microsoft extending their public cloud software stack to be deployed within data centers in a hybrid way, something that those customers are familiar with doing. This is a good example of hybrid being spanning public and private clouds, remote and on-premises, as well as familiarity and control of traditional procurement with the flexibility, elasticity experience of clouds.

    software defined data infrastructures SDDI and SDDC

    Some will say that if OpenStack is struggling in many organizations and being free open source, how Microsoft can have success with Azure Stack. The answer could be that some organizations have struggled with OpenStack while others have not due to lack of commercial services and turnkey support. Having installed both OpenStack and Azure Stack (as well as VMware among others), Azure Stack is at least the TP3 PoC is easy to install, granted it is limited to one node, unlike the production versions. Likewise, there are easy to use appliance versions of OpenStack that are limited in scale, as well as more involved installs that unlock full functionality.

    OpenStack, Azure Stack, VMware and others have their places, along, or supporting containers along with other tools. In some cases, those technologies may exist in the same environment supporting different workloads, as well as accessing various public clouds, after all, Hybrid is the home run for many if not most legality IT environments.

    Overall this is a good announcement from Dell EMC for those who are interested in, or should become more aware about Microsoft Azure Stack, Cloud along with hybrid clouds. Likewise look forward to hearing more about the solutions from others who will be supporting Azure Stack as well as other hybrid (and Virtual Private Clouds).

    Ok, nuff said (for now…).

    Cheers
    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    Broadcom aka Avago aka LSI announces SAS SATA NVMe Adapters with RAID

    server storage I/O trends

    Broadcom aka Avago aka LSI announces SAS SATA NVMe Adapters with RAID

    In case you missed it, Broadcom formerly known as Avago who bought the LSI adapter and RAID card business announced shipping new SAS, SATA and NVMe devices.

    While SAS and SATA are well established continuing to be deployed for both HDD as well as flash SSD, NVMe continues to evolve with a bright future. Likewise, while there is a focus on software-defined storage (SDS), software defined data centers (SDDC) and software defined data infrastructures (SDDI) along with advanced parity RAID including erasure codes, object storage among other technologies, there is still a need for adapter cards including traditional RAID.

    Keep in mind that while probably not meeting the definition of some software-defined aficionados, the many different variations, permutations along with derivatives of RAID from mirror and replication to basic parity to advanced erasure codes (some based on Reed Solomon aka RAID 2) rely on software. Granted, some of that software is run on regular primary server processors, some on packaged in silicon via ASICs or FPGAs, or System on Chips (SOC), RAID on Chip (RoC) as well as BIOS, firmware, drivers as well as management tools.

    SAS, SATA and NVMe adapters

    For some environments cards such as those announced by Broadcom are used in passthru mode effectively as adapters for attaching SAS, SATA and NVMe storage devices to servers. Those servers may be deployed as converged infrastructures (CI), hyper-converged infrastructures (HCI), Cluster or Cloud in Box (CiB) among other variations. To name names you might find the above (or in the not so distant future) in VMware vSAN or regular vSphere based environments, Microsoft Windows Server, Storage Spaces Direct (S2D) or Azure Stack, OpenStack among other deployments (check your vendors Hardware Compatibility Lists aka HCLs). In some cases these cards may be adapters in passthru mode, or using their RAID (support various by different software stacks). Meanwhile in other environments, the more traditional RAID features are still used spanning Windows to Linux among others.

    Who Is Broadcom?

    Some of you may know of Broadcom having been around for many years with a focus on networking related technologies. However some may not realize that Avago bought Broadcom and changed their name to Broadcom. Here is a history that includes more recent acquisitions such as Brocade, PLX, Emulex as well as LSI. Some of you may recall Avago buying LSI (the SAS, SATA, PCIe HBA, RAID and components) business not sold to NetApp as part of Engenio. Also recall that Avago sold the LSI flash SSD business unit to Seagate a couple of years ago as part of its streamlining. That’s how we get to where we are at today with Broadcom aka formerly known as Avago who bought the LSI adapter and RAID business announcing new SAS, SATA, NVMe cards.

    What Was Announced?

    Broadcom has announced cards that are multi-protocol supporting Serial Attached SCSI (SAS), SATA/AHCI as well as NVM Express (NVMe) as basic adapters for attaching storage (HDD, SSD, storage systems) along with optional RAID as well as cache support. These cards can be used in application servers for traditional, as well as virtualized SDDC environments, as well as storage systems or appliances for software-defined storage among other uses. The basic functionality of these cards is to provide high performance (IOPs and other activity, as well as bandwidth) along with low latency combined with data protection as well as dense connectivity.

    Specific features include:

    • Broadcom’s Tri-Mode SerDes Technology enables the operation of NVMe, SAS or SATA devices in a single drive bay, allowing for endless design flexibility.
    • Management software including LSI Storage Authority (LSA), StorCLI, HII (UEFI)
    • Optional CacheVault(R) flash cache protection
    • Physical dimension Low Profile 6.127” x 2.712”
    • Host bus type x8 lane PCIe Express 3.1
    • Data transfer rates SAS-3 12Gbs; NVMe up to 8 GT/s PCIe Gen 3
    • Various OS and hypervisors host platform support
    • Warranty 3 yrs, free 5×8 phone support, advanced replacement option
    • RAID levels 0, 1, 5, 6, 10, 50, and 60

    Note that some of the specific feature functionality may be available at a later date, check with your preferred vendors HCL

    Specification

    9480 8i8e

    9440 8i

    9460 8i

    9460 16i

    Image

    Internal Ports

    8

     

    8

    16

    Internal Connectors

    2 x Mini-SAS HD x4 SFF-8643

    2 x Mini-SAS HD x4 SFF-8643

    2 x Mini-SAS HD x4 SFF-8643

    4 Mini-SAS HD x4
    SFF-8643

    External Ports

    8

     

     

     

    External Connectors

    2 x Mini-SAS HD SFF8644

     

     

     

    Cache Protection

    CacheVault CVPM05

     

    CacheVault CVPM05

    CacheVault CVPM05

    Cache Memory

    2GB 2133 MHz DDR4 SDRAM

     

    2GB 2133 MHz DDR4 SDRAM

    4GB 2133 MHz DDR4 SDRAM

    Devices Supported

    SAS/SATA: 255, NVMe: 4 x4, up to 24 x2 or x4*

    SAS/SATA: 63, NVMe: 4 x4, up to 24 x2 or x4*

    SAS/SATA: 255, NVMe: 4 x4, up to 24 x2 or x4*

    SAS/SATA: 255, NVMe: 4 x4, up to 24 x2 or x4*

    I/O Processors (SAS Controller)

    SAS3516 dual-core RAID-on-Chip (ROC)

    SAS3408 I/O controller (IOC)

    SAS3508 dual-core RAID-on-Chip (ROC)

    SAS3516 dual-core RAID-on-Chip (ROC)

    In case you need a refresher on SFF cable types, click on the following two images which take you to Amazon.com where you can learn more, as well as order various cable options. PC Pit Stop has a good selection of cables (See other SFF types), connectors and other accessories that I have used, along with those from Amazon.com and others.

    Available via Amazon.com sff 8644 8643 sas mini hd cable
    Left: SFF 8644 Mini SAS HD (External), Right SFF-8643 Mini SAS HD (internal) Image via Amazon.com

    Available via Amazon.com sff 8644 8642 sas mini hd cable
    Left: SFF 8643 Mini SAS HD (Internal), Right SFF-8642 SATA with power (internal) Image via Amazon.com

    Wait, Doesnt NVMe use PCIe

    For those who are not familiar with NVMe and in particular U.2 aka SFF 8639 based devices, physically they look the same (almost) as a SAS device connector. The slight variation is if you look at a SAS drive, there is a small tab to prevent plugging into a SATA port (recall you can plug SATA into SAS. For SAS drives that tab is blank, however on the NVMe 8639 aka U.2 drives (below left) that tab has several connectors which are PCIe x4 (single or dual path).

    What this means is that the PCIe x4 bus electrical signals are transferred via a connector, to backplane chassis to 8639 drive slot to the drive. Those same 8639 drive slots can also have a SAS SATA connection using their traditional connectors enabling a converged or hybrid drive slot so to speak. Learn more about NVMe here (If the Answer is NVMe, then what were and are the questions?) as well as at www.thenvmeplace.com.

    NVMe U.2 8639 driveNVMe U.2 8639 sas sata nvme drive
    Left NVMe U.2 drive showing PCIe x4 connectors, right, NVMe U.2 8639 connector

    Who Is This For?

    These cards are applicable for general purpose IT and other data infrastructure environments in traditional servers among others uses. They are also applicable for systems builders, integrators and OEMs whom you may be buying your current systems from, or future ones.

    Where to Learn More

    The following are additional resources to learn more about vSAN and related technologies.

    What this all means

    Even as the industry continues to talk and move towards more software-defined focus, even for environments that are serverless, there is still need for hardware somewhere. These adapters are a good sign of the continued maturing cycle of NVMe to be well positioned into the next decade and beyond, while also being relevant today. Likewise, even though the future involves NVMe, there is a still a place for SAS along with SATA to coexist in many environments. For some environment there is a need for traditional RAID while for others simply the need for attachment of SAS, SATA and NVMe devices. Overall, a good set of updates, enhancements and new technology for today and tomorrow, now, when do I get some to play with? ;).

    Ok, nuff said (for now…).

    Cheers
    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    April 2017 Server StorageIO Data Infrastructures Update Newsletter

    Volume 17, Issue IV

    Hello and welcome to the April 2017 issue of the Server StorageIO data infrastructures update newsletter.

    Spring is here in the northern hemisphere which means that there is a lot of things going on, or about to be occurring soon. April has been a busy month for me including spending time in Europe doing some seminar and workshop presentations, along with other consulting advisory activities involving data infrastructures.

    Besides travel, I have been busy working on client projects, attending to various post-production activities for my new book Software Defined Data Infrastructure Essentials (more about this in the May issue). Other things I have been doing include being briefed on upcoming technology announcements along with some hands activities trying out things that will be covered in future updates, as well as working with some interesting NDA items that, well, are NDA.

    Be sure to check out the recent blog posts, as well as industry trends perspectives commentary below, along with recent and upcoming webinar among events.

    In This Issue

    Enjoy this abbreviated edition of the Server StorageIO update newsletter.

    Cheers GS

     

    Server StorageIOblog Posts

    Recent and popular Server StorageIOblog posts include:

    View other recent as well as past StorageIOblog posts here

    Server StorageIO Commentary in the news

    Recent Server StorageIO industry trends perspectives commentary in the news.

    Via SearchCloudComputing: Virtual private clouds an alternative to on-premisess computing
    Hybrid clouds continue to grow in popularity as well as deployed usage, from storage to compute to networking, said Greg Schulz, the senior advisory analyst at StorageIO in Stillwater, Minn. Most cloud and service providers talk about hybrid along with public clouds, while AWS tends to talk about [VPC aka virtual private clouds].

    Via SearchDataCenter: Ask the right questions before committing to a collocation SLA policy
    Do you just need a physical space to put things, or do you need high bandwidth and ultra-reliable power? asked Greg Schulz, senior advisory analyst at StorageIO, a consultancy in Stillwater, Minn.

    Via EnterpriseStorageForum: Tips for Enterprise SSD Form Factor Selection Deployment
    It’s doubtful that there is one form factor to rule them all. Some may be best for X but lousy for Y. But Greg Schulz, an analyst at StorageIO Group notes that many vendors attempt to champion a particular flash SSD form factor and interface, claiming it’s the best and only fit for the enterprise.

    Via SearchITOperations: Storage performance analysis reveals IT’s ongoing bottleneck
    Sometimes it takes more than an aspirin to cure a headache, said Greg Schulz

    Via SearchDNS: Parsing through the software-defined storage hype
    Beyond scalability, SDS technology aims for freedom from the limits of proprietary hardware, explained StorageIO analyst Greg Schulz.

    Via InfoStor: Data Storage Industry Braces for AI and Machine Learning
    AI could also lead to untapped hidden or unknown value in existing data that has no or little perceived value, said Greg Schulz.

    View more Server, Storage and I/O trends and perspectives comments here

    Events and Activities

    Recent and upcoming event activities.

    May 11, 2017 – Webinar – Email Archiving, Compliance and Ransomware

    May 8-10, 2017 – Dell EMCworld – Las Vegas

    April 3-7, 2017 – Seminars – Dutch workshop seminar series – Nijkerk Netherlands

    March 15, 2017 – Webinar – SNIA/BrightTalkHyperConverged and Storage – 10AM PT

    See more webinars and activities on the Server StorageIO Events page here.

    Server StorageIO Industry Resources and Links

    Useful links and pages:
    Microsoft TechNet – Various Microsoft related from Azure to Docker to Windows
    storageio.com/links – Various industry links (over 1,000 with more to be added soon)
    objectstoragecenter.com – Cloud and object storage topics, tips and news items
    OpenStack.org – Various OpenStack related items
    storageio.com/protect – Various data protection items and topics
    thenvmeplace.com – Focus on NVMe trends and technologies
    thessdplace.com – NVM and Solid State Disk topics, tips and techniques
    storageio.com/converge – Various CI, HCI and related SDS topics
    storageio.com/performance – Various server, storage and I/O benchmark and tools
    VMware Technical Network – Various VMware related items

    Cheers
    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book Software-Defined Data Infrastructure Essentials(CRC Press).

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    VMware vSAN 6.6 hyper-converged (HCI) software defined data infrastructure

    server storage I/O trends

    VMware vSAN 6.6 hyper-converged (HCI) software defined data infrastructure

    In case you missed it, VMware announced vSAN v6.6 hyper-converged infrastructure (HCI) software defined data infrastructure solution. This is the first of a five-part series about VMware vSAN V6.6. Part II (just the speeds feeds please) is located here, part III (reducing cost and complexity) located here, part IV (scaling ROBO and data centers today) found here, as well as part V here (VMware vSAN evolution, where to learn more and summary).

    VMware vSAN 6.6
    Image via VMware

    For those who are not aware, vSAN is a VMware virtual Storage Area Network (e.g. vSAN) that is software-defined, part of being a software-defined data infrastructure (SDDI) and software-defined data center (SDDC). Besides being software-defined vSAN is HCI combining compute (server), I/O networking, storage (space and I/O) along with hypervisors, management, and other tools.

    Software-defined data infrastructure

    Excuse Me, What is vSAN and who is if for

    Some might find it odd having to explain what vSAN is, on the other hand, not everybody is dialed into the VMware world ecosystem, so let’s give them some help, for everybody else, and feel free to jump ahead.

    For those not familiar, VMware vSAN is an HCI software-defined storage solution that converges compute (hypervisors and server) with storage space capacity and I/O performance along with networking. Being HCI means that with vSAN as you scale compute, storage space capacity and I/O performance also increases in an aggregated fashion. Likewise, increase storage space capacity and server I/O performance you also get more compute capabilities (along with memory).

    For VMware-centric environments looking to go CI or HCI, vSAN offers compelling value proposition leveraging known VMware tools and staff skills (knowledge, experience, tradecraft). Another benefit of vSAN is the ability to select your hardware platform from different vendors, a trend that other CI/HCI vendors have started to offer as well.

    CI and HCI data infrastructure

    Keep in mind that fast applications need a fast server, I/O and storage, as well as server storage I/O needs CPU along with memory to generate I/O operations (IOPs) or move data. What this all means is that HCI solutions such as VMware vSAN combine or converge the server compute, hypervisors, storage file system, storage devices, I/O and networking along with other functionality into an easy to deploy (and management) turnkey solution.

    Learn more about CI and HCI along with who some other vendors are as well as considerations at www.storageio.com/converge. Also, visit VMware sites to find out more about vSphere ESXi hypervisors, vSAN, NSX (Software Defined Networking), vCenter, vRealize along with other tools for enabling SDDC and SDDI.

    Give Me the Quick Elevator Pitch Summary

    VMware has enhanced vSAN with version 6.6 (V6.6) enabling new functionality, supporting new hardware platforms along with partners, while reducing costs, improving scalability and resiliency for SDDC and SDDI environments. This includes from small medium business (SMB) to mid-market to small medium enterprise (SME) as well as workgroup, departmental along with Remote Office Branch Office (ROBO).

    Being a HCI solution, management functions of the server, storage, I/O, networking, hypervisor, hardware, and software are converged to improve management productivity. Also, vSAN integrated with VMware vSphere among other tools enable modern, robust data infrastructure that serves, protect, preserve, secure and stores data along with their associated applications.

    Where to Learn More

    The following are additional resources to learn more about vSAN and related technologies.

    What this all means

    Overall a good set of enhancements as vSAN continues its evolution looking back just a few years ago, to where it is today and will be in the future. If you have not looked at vSAN recently, take some time beyond reading this piece to learn some more.

    Continue reading more about VMware vSAN 6.6 in part II (just the speeds feeds please) is located here, part III (reducing cost and complexity) located here, part IV (scaling ROBO and data centers today) located here, as well as part V here (VMware vSAN evolution, where to learn more and summary).

    Ok, nuff said (for now…).

    Cheers
    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book “Software-Defined Data Infrastructure Essentials” (CRC Press).

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    VMware vSAN V6.6 Part IV (HCI scaling ROBO and data centers today)

    server storage I/O trends

    VMware vSAN V6.6 Part IV (HCI scaling ROBO and data centers today)

    In case you missed it, VMware announced vSAN v6.6 hyper-converged infrastructure (HCI) software defined data infrastructure solution. This is the fourth of a five-part series about VMware vSAN V6.6. View Part I here, Part II (just the speeds feeds please) is located here, part III (reducing cost and complexity) located here, as well as part V here (VMware vSAN evolution, where to learn more and summary).

    VMware vSAN 6.6
    Image via VMware

    For those who are not aware, vSAN is a VMware virtual Storage Area Network (e.g. vSAN) that is software-defined, part of being a software-defined data infrastructure (SDDI) and software-defined data center (SDDC). Besides being software-defined vSAN is HCI combining compute (server), I/O networking, storage (space and I/O) along with hypervisors, management, and other tools.

    Scaling HCI for ROBO and data centers today and for tomorrow

    Scaling with stability for today and tomorrow. This includes addressing your applications Performance, Availability, Capacity and Economics (PACE) workload requirements today and for the future. By scaling with stability means boosting performance, availability (data protection, security, resiliency, durable, FTT), effective capacity without one of those attributes compromising another.

    VMware vSAN data center scaling
    Image via VMware

    Scaling today for tomorrow also means adapting to today’s needs while also flexible to evolve with new application workloads, hardware as well as a cloud (public, private, hybrid, inter and intra-cloud). As part of continued performance improvements, enhancements to optimize for higher performance flash SSD including NVMe based devices.

    VMware vSAN cloud analytics
    Image via VMware

    Part of scaling with stability means enhancing performance (as well as productivity) or the effectiveness of a solution. Keep in mind that efficiency is often associated with storage (or server or network) space capacity savings or reductions. In that context then effectiveness means performance and productivity or how much work can be done with least overhead impact. With vSAN, V6.6 performance enhancements include reduced checksum overhead, enhanced compression, and deduplication, along with destaging optimizations.

    Other enhancements that help collectively contribute to vSAN performance improvements include VMware object handling (not to be confused with cloud or object storage S3 or Swift objects) as well as faster iSCSI for vSAN. Also improved are more accurate refined cache sizing guidelines. Keep in mind that a little bit of NAND flash SSD or SCM in the right place can have a significant benefit, while a lot of flash cache costs much cash.

    Part of enabling and leveraging new technology today includes support for larger capacity 1.6TB flash SSD drives for cache, as well as lower read latency with 3D XPoint and NVMe drives such as those from Intel among others. Refer to the VMware vSAN HCL for current supported devices which continue evolve along with the partner ecosystem. Future proofing is also enabled where you can grow from today to tomorrow as new storage class memories (SCM) among other flash SSD as well as NVMe enhanced storage among other technologies are introduced into the market as well as VMware vSAN HCL.

    VMware vSAN and data center class applications
    Image via VMware

    Traditional CI and in particular many HCI solutions have been optimized or focused on smaller application workloads including VDI resulting in the perception that HCI, in general, is only for smaller environments, or larger environment non-mission critical workloads. With vSAN V6.6 VMware is addressing and enabling larger environment mission critical applications including Intersystem Cache medical health management software among others. Other application workload extensions including support for higher performance demanding Hadoop big data analytics, a well as extending virtual desktop infrastructure (VDI) workspace with XenDesktop/XenApp, along with Photon 1.1 container support.

    What about VMware vSAN 6.6. Packaging and License Options

    As part of vSAN 6.6 VMware several solution bundle packaged options for the data center as well as smaller ROBO environment. Contact your VMware representative or partner to learn more about specific details.

    VMware vSAN cloud analytics
    Image via VMware

    VMware vSAN cloud analytics
    Image via VMware

    Where to Learn More

    The following are additional resources to find out more about vSAN and related technologies.

    What this all means

    Continue reading more about VMware vSAN 6.6 in part I here, part II (just the speeds feeds please) is located here, part III (reducing cost and complexity) located here as well as part V here (VMware vSAN evolution, where to learn more and summary).

    Ok, nuff said (for now…).

    Cheers
    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the Spring 2017 release of his new book “Software-Defined Data Infrastructure Essentials” (CRC Press).

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    VMware vSAN V6.6 Part V (vSAN evolution and summary)

    server storage I/O trends

    VMware vSAN V6.6 Part V (vSAN evolution and summary)

    In case you missed it, VMware announced vSAN v6.6 hyper-converged infrastructure (HCI) software defined data infrastructure solution. This is the fifth of a five-part series about VMware vSAN V6.6. View Part I here, Part II (just the speeds feeds please) is located here, part III (reducing cost and complexity) found here, part IV (scaling ROBO and data centers today) located here.

    VMware vSAN 6.6
    Image via VMware

    For those who are not aware, vSAN is a VMware virtual Storage Area Network (e.g. vSAN) that is software-defined, part of being a software-defined data infrastructure (SDDI) and software-defined data center (SDDC). Besides being software-defined vSAN is HCI combining compute (server), I/O networking, storage (space and I/O) along with hypervisors, management, and other tools.

    How has vSAN (formerly referred to as VSAN) Evolved

    A quick recap of the VMware vSAN progression which first appeared as part of vSphere 5.5. (e.g. vSAN 5.5 can be thought of 1.0 in some ways) consists of several releases. Since vSAN is tightly integrated with VMware vSphere along with associated management tools, there is a correlation between enhancements to the underlying hypervisor, and added vSAN functionality. Keep in mind sometimes by seeing where something has been, helps to view where going.

    Previous vSAN enhancements include:

    • 5.5 Hybrid (mixed HDD and flash)
    • 6.2 (2016) All flash (e.g. AFA) versions included data footprint reduction (DFR) technologies such as compression and dedupe along with performance Quality of Service (QoS) enhancements.
    • 6.5 Cross Cloud functionality including the announcement of container support, cloud-native apps, as well as upcoming vSphere, vSAN, NSX and other VMware software-defined data center (SDDC) and software-defined data infrastructure (SDDI) technology running natively on AWS (not on EC2) cloud infrastructure.
    • 6.6 Modern data infrastructure flexibility, scalability, resiliency, extensibility including performance, availability, capacity and economics (PACE).

    V5.5

    • Distributed RAID
    • Per-VM SPBM
    • Set and change FTT via policy
    • In-kernel hyper-convergence engine
    • RVC and Observer

    V6.0

    • All-flash architecture
    • Perf improvements (4xIOPS)
    • 64-node support
    • High-density storage blades
    • Fault domain awareness
    • Scalable snapshots and clones
    • Disk enclosure management

    V6.1

    • Windows Failover Clustering
    • Oracle RAC support
    • HW checksum and encryption
    • 2-node ROBO mode
    • UltraDIMM and NVMe support
    • Stretch clusters
    • 5 min RPO (vSphere Rep)
    • SMP-FT support
    • Health Check, vROps, Log Insight

    V6.2

    • IPv6 support
    • Software checksum
    • Nearline dedupe and compression on all-flash
    • Erasure coding on all-flash
    • QoS IOPS limits
    • Performance monitoring service

    V6.5

    • iSCSI
    • 2-Node direct connect
    • PowerCLI
    • Public APIs and SDK
    • 512e support
    • All-Flash to all editions

    Where to Learn More

    The following are additional resources to find out more about vSAN and related technologies.

    What this all means, wrap up and summary

    VMware continues to extend the software-defined data center (SDDC) and Software-Defined Data Infrastructure (SDDI) ecosystem with vSAN to address the needs from smaller SMB and ROBO environments to larger SME and enterprise workloads. To me a theme with V6.6 is expanding resiliency, scalability with stability to expand vSAN upmarket as well as into new workloads similar to how vSphere has evolved.

    With each new release, vSAN is increasing its feature, functionality, resiliency and extensiveness associated with traditional storage and non-CI or HCI solutions. Overall a good set of enhancements as vSAN continues its evolution looking back just a few years ago, to where it is today and will be in the future. If you have not looked at vSAN recently, take some time beyond reading this piece to learn some more.

    Ok, nuff said (for now…).

    Cheers
    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the Spring 2017 release of his new book “Software-Defined Data Infrastructure Essentials” (CRC Press).

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    March 2017 Server StorageIO Data Infrastructure Update Newsletter

    Volume 17, Issue III

    Hello and welcome to the March 2017 issue of the Server StorageIO update newsletter.

    First a reminder world backup (and recovery) day is on March 31. Following up from the February Server StorageIO update newsletter that had a focus on data protection this edition includes some additional posts, articles, tips and commentary below.

    Other data infrastructure (and tradecraft) topics in this edition include cloud, virtual, server, storage and I/O including NVMe as well as networks. Industry trends include new technology and services announcements, cloud services, HPE buying Nimble among other activity. Check out the Converged Infrastructure (CI), Hyper-Converged (HCI) and Cluster in Box (or Cloud in Box) coverage including a recent SNIA webinar I was invited to be the guest presenter for, along with companion post below.

    In This Issue

    Enjoy this edition of the Server StorageIO update newsletter.

    Cheers GS

    Data Infrastructure and IT Industry Activity Trends

    Some recent Industry Activities, Trends, News and Announcements include:

    Dell EMC has discontinued the NVMe direct attached shared DSSD D5 all flash array has been discontinued. At about the same time Dell EMC is shutting down the DSSD D5 product, it has also signaled they will leverage the various technologies including NVMe across their broad server storage portfolio in different ways moving forward. While Dell EMC is shutting down DSSD D5, they are also bringing additional NVMe solutions to the market including those they have been shipping for years (e.g. on the server-side). Learn more about DSSD D5 here and here including perspectives of how it could have been used (plays for playbooks).

    Meanwhile NVMe industry activity continues to expand with different solutions from startups such as E8, Excelero, Everspin, Intel, Mellanox, Micron, Samsung and WD SANdisk among others. Also keep in mind, if the answer is NVMe, then what were and are the questions to ask, as well as what are some easy to use benchmark scripts (using fio, diskspd, vdbench, iometer).

    Speaking of NVMe, flash and SSDs, Amazon Web Services (AWS) have added new Elastic Cloud Compute (EC2) storage and I/O optimized i3 instances. These new instances are available in various configurations with different amounts of vCPU (cores or logical processors), memory and NVMe SSD capacities (and quantity) along with price.

    Note that the price per i3 instance varies not only by its configuration, also for image and region deployed in. The flash SSD capacities range from an entry-level (i3.large) with 2 vCPU (logical processors), 15.25GB of RAM and a single 475GB NVMe SSD that for example in the US East Region was recently priced at $0.156 per hour. At the high-end there is the i3.16xlarge with 64 vCPU (logical processors), 488GB RAM and 8 x 1900GB NVMe SSDs with a recent US East Region price of $4.992 per hour. Note that the vCPU refers to the available number of logical processors available and not necessarily cores or sockets.

    Also note that your performance will vary, and while NVMe protocol tends to use less CPU per I/O, if generating a large number of I/Os you will need some CPU. What this means is that if you find your performance limited compared to expectations with the lower end i3 instances, move up to a larger instance and see what happens. If you have a Windows-based environment, you can use a tool such as Diskspd to see what happens with I/O performance as you decrease the number of CPUs used.

    Chelsio has announced they are now Microsoft Azure Stack Certified with their iWARP RDMA host adapter solutions, as well as for converged infrastructure (CI), hyper-converged (HCI) and legacy server storage deployments. As part of the announcement, Chelsio is also offering a 30 day no cost trial of their adapters for Microsoft Azure Stack, Windows Server 2016 and Windows 10 client environments. Learn more about the Chelsio trial offer here.

    Everspin (the MRAM Spintorque, persistent RAM folks) have announced a new Storage Class Memory (SCM) NVMe accessible family (nvNITRO) of storage accelerator devices (PCIe AiC, U.2). Whats interesting about Everspin is that they are using NVMe for accessing their persistent RAM (e.g. MRAM) making it easily plug compatible with existing operating systems or hypervisors. This means using standard out of the box NVMe drivers where the Everspin SCM appears as a block device (for compatibility) functioning as a low latency, high performance persistent write cache.

    Something else interesting besides making the new memory compatible with existing servers CPU complex via PCIe, is how Everspin is demonstrating that NVMe as a general access protocol is not just exclusive to nand flash-based SSDs. What this means is that instead of using non-persistent DRAM, or slower NAND flash (or 3D XPoint SCM), Everspin nvNITRO enables high endurance write cache with persistent to compliment existing NAND flash as well as emerging 3D XPoint based storage. Keep an eye on Everspin as they are doing some interesting things for future discussions.

    Google Cloud Services has added additional regions (cloud locations) and other enhancements.

    HPE continued buying into server storage I/O data infrastructure technologies announcing an all cash (e.g. no stock) acquisition of Nimble Storage (NMBL). The cash acquisition for a little over $1B USD amounts to $12.50 USD per Nimble share, double what it had traded at. As a refresh, or overview, Nimble is an all flash shared storage system leverage NAND flash solid storage device (SSD) performance. Note that Nimble also partners with Cisco and Lenovo platforms that compete with HPE servers for converged systems.View additional perspectives here.

    Riverbed has announced the release of Steelfusion 5 which while its name implies physical hardware metal, the solution is available as tin wrapped (e.g. hardware appliance) software. However the solution is also available for deployment as a VMware virtual appliance for remote office branch office (ROBO) among others. Enhancements include converged functionality such as NAS support along with network latency as well as bandwidth among other features.

    Check out other industry news, comments, trends perspectives here.

    Server StorageIOblog Posts

    Recent and popular Server StorageIOblog posts include:

    View other recent as well as past StorageIOblog posts here

    Server StorageIO Commentary in the news

    Recent Server StorageIO industry trends perspectives commentary in the news.

    Via InfoStor: 8 Big Enterprise SSD Trends to Expect in 2017
    Watch for increased capacities at lower cost, differentiation awareness of high-capacity, low-cost and lower performing SSDs versus improved durability and performance along with cost capacity enhancements for active SSD (read and write optimized). You can also expect increased support for NVMe both as a back-end storage device with different form factors (e.g., M.2 gum sticks, U.2 8639 drives, PCIe cards) as well as front-end (e.g., storage systems that are NVMe-attached) including local direct-attached and fiber-attached. This means more awareness around NVMe both as front-end and back-end deployment options.

    Via SearchITOperations: Storage performance bottlenecks
    Sometimes it takes more than an aspirin to cure a headache. There may be a bottleneck somewhere else, in hardware, software, storage system architecture or something else.

    Via SearchDNS: Parsing through the software-defined storage hype
    Beyond scalability, SDS technology aims for freedom from the limits of proprietary hardware.

    Via InfoStor: Data Storage Industry Braces for AI and Machine Learning
    AI could also lead to untapped hidden or unknown value in existing data that has no or little perceived value

    Via SearchDataCenter: New options to evolve data backup recovery

    View more Server, Storage and I/O trends and perspectives comments here

    Various Tips, Tools, Technology and Tradecraft Topics

    Recent Data Infrastructure Tradecraft Articles, Tips, Tools, Tricks and related topics.

    Via ComputerWeekly: Time to restore from backup: Do you know where your data is?
    Via IDG/NetworkWorld: Ensure your data infrastructure remains available and resilient
    Via IDG/NetworkWorld: Whats a data infrastructure?

    Check out Scott Lowe @Scott_Lowe of VMware fame who while having a virtual networking focus has a nice roundup of related data infrastructure topics cloud, open source among others.

    Want to take a break from reading or listening to tech talk, check out some of the fun videos including aerial drone (and some technology topics) at www.storageio.tv.

    View more tips and articles here

    Events and Activities

    Recent and upcoming event activities.

    May 8-10, 2017 – Dell EMCworld – Las Vegas

    April 3-7, 2017 – Seminars – Dutch workshop seminar series – Nijkerk Netherlands

    March 15, 2017 – Webinar – SNIA/BrightTalkHyperConverged and Storage – 10AM PT

    January 26 2017 – Seminar – Presenting at Wipro SDx Summit London UK

    See more webinars and activities on the Server StorageIO Events page here.


    Cheers
    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book Software-Defined Data Infrastructure Essentials(CRC Press).

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    Backup, Big data, Big Data Protection, CMG & More with Tom Becchetti Podcast

    server storage I/O trends

    In this Server StorageIO podcast episode, I am joined by Tom Becchetti (@tbecchetti) for a Friday afternoon conversation recorded live at Meisters in Scandia Minnesota (thanks to the Meisters crew!).

    Tom Becchetti

    For those of you who may not know Tom, he has been in the IT, data center, data infrastructure, server and storage (as well as data protection) industry for many years (ok decades) as a customer and vendor in various roles. Not surprising our data infrastructure discussion involves server, software, storage, big data, backup, data protection, big data protection, CMG (Computer Measurement Group @mspcmg), copy data management, cloud, containers, fundamental tradecraft skills among other related topics.

    Check out Tom on twitter @tbecchetti and @mspcmg as well as his new website www.storagegodfather.com. Listen to the podcast discussion here (42 minutes) as well as on iTunes.

    Also available on 

    Ok, nuff said for now…

    Cheers
    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book Software-Defined Data Infrastructure Essentials (CRC Press).

    Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

    >

    HPE Continues Buying Into Server Storage I/O Data Infrastructures

    Storage I/O Data Infrastructures trends
    Updated 1/16/2018

    HPE expanded its Storage I/O Data Infrastructures portfolio buying into server storage I/O data infrastructure technologies announcing an all cash (e.g. no stock) acquisition of Nimble Storage (NMBL). The cash acquisition for a little over $1B USD amounts to $12.50 USD per Nimble share, double what it had traded at. As a refresh, or overview, Nimble is an all flash shared storage system leverage NAND flash solid storage device (SSD) performance. Note that Nimble also partners with Cisco and Lenovo platforms that compete with HPE servers for converged systems.

    Earlier this year (keep in mind its only mid-March) HPE also announced acquisition of server storage Hyper-Converged Infrastructure (HCI) vendor Simplivity (about $650M USD cash). In another investment this year HPE joined other investors as part of scale out and software defined storage startups Hedvig latest funding round (more on that later). These acquisitions are in addition to smaller ones such as last years buying of SGI, not to mention various divestitures.

    Data Infrastructures

    What Are Server Storage I/O Data Infrastructures Resources

    Data Infrastructures exists to support business, cloud and information technology (IT) among other applications that transform data into information or services. The fundamental role of data infrastructures is to give a platform environment for applications and data that is resilient, flexible, scalable, agile, efficient as well as cost-effective.

    Technologies that make up data infrastructures include hardware, software, cloud or managed services, servers, storage, I/O and networking along with people, processes, policies along with various tools spanning legacy, software-defined virtual, containers and cloud.

    HPE and Server Storage Acquisitions

    HPE and its predecessor HP (e.g. before the split that resulted in HPE) was familiar with expanding its data infrastructure portfolio spanning servers, storage, I/O networking, hardware, software and services. These range from Compaq who acquired DEC which gave them the StorageWorks brand and product line up (e.g. recall EVA and its predecessors), Lefthand, 3PAR, IBRIX, Polyserve, Autonomy, EDS and others that I’m guessing some at HPE (along with customers and partners) might not want to remember.

    In addition to their own in-house including via technology acquisition, HPE also partners for its entry-level and volume low-end MSA (Modular Storage Array) series with DotHill who was acquired by Seagate a year or so ago. In addition to the MSA, other HPE OEMs for storage include Hitachi Ltd. (e.g. parent of Hitachi Data Systems aka HDS) reselling their high-end enterprise class storage system as the XP7, as well as various other partner arrangements.

    Keep in mind that HPE has a large server business from low to high-end, spanning towers to dense blades to dual, quad and cluster in box (CiB) configurations with various processor architectures. Some of these servers are used as platforms for not only HPE, also other vendors software defined storage, as well as tin wrapped software solutions, appliances and systems. HPE is also one of a handful of partners working with Microsoft to bring the software defined private (and hybrid) Azure Stack cloud stack as an appliance to market.

    HPE acquisitions Dejavu or Something New?

    For some people there may be a sense of Dejavu of what HPE and its predecessors have previously acquired, developed, sold and supported into the market over years (and decades in some cases). What will be interesting to see is how the 3PAR (StoreServ) and Lefthand based (StoreVirtual) as well as ConvergedSystem 250-HC product lines are realigned to make way for Nimble and Simplivity.

    Likewise what will HPE do with MSA at the low-end, continue to leverage it for low-end and high-volume basic storage similar to Dell with the Netapp/Engenio powered MD series? Or will HPE try to move the Nimble down market and displace the MDS? What about in the mid-market, will Nimble be unleashed to replace StoreVirtual (e.g. Lefthand), or will they fence it in (e.g. being restricted to certain scenarios?
    Will the Nimble solution be allowed to move up market into the low-end of where 3PAR has been positioned, perhaps even higher up given its all flash capabilities. Or, will there be a 3PAR everywhere approach?

    Then there is Simplivity as the solution is effectively software running on an HPE server (or with other partners Cisco and Lenovo) along with a PCIe offload card (with Simplivity data services acceleration). Note that Simplivity leverages PCIe offload cards for some of their functionality, this too is familiar ground for HPE given its ASIC use by 3PAR.

    Simplivity has the potential to disrupt some low to mid-range, perhaps even larger opportunities that are looking to go to a converged infrastructure (CI) or HCI deployment as part of their data infrastructure needs. One can speculate that Simplivity after repackaging will be positioned along current HPE CI and HCI solutions.

    This will be interesting to watch to see if the HPE server and storage groups can converge not only from a technology point, also sales, marketing, service, and support perspective. With the Simplivity solution, HPE has an opportunity to move the industry thinking or perception that HCI is only for small environments defined by what some products can do.

    What I mean by this is that HPE with its enterprise and SMB along with SME and cloud managed service provider experience as well as servers can bring hyper-scale out (and up) converged to the market. In other words, start addressing the concern I hear from larger organizations that most CI or HCI solutions (or packaging) are just for smaller environments. HPE has the servers, they have the storage from MSAs to other modules and core data infrastructure building blocks along with the robustness of the Simplivity software to enable hyper-scale out CI.

    What about bulk, object, scale-out storage

    HPE has a robust tape business, yes I know tape is dead, however tell that to the customers who keep buying products providing revenue along with margin to HPE (and others). Likewise HPE has VTLs as well as other solutions for addressing bulk data (e.g. big data, backups, protection copies, archives, high volume, and large quantity, what goes on tape or object). For example HPE has the StoreOnce solution.

    However where is the HPE object storage story?

    Otoh, does HPE its own object storage software, simply partner with others? HPE can continue to provide servers along with underlying storage for other vendors bulk, cloud and object storage systems, and where needed, meet in the channel among other arrangements.

    On the other hand, this is where similar to Polyserve and Ibrix among others in the past have come into play, with HPE via its pathfinder (investment group) joining others in putting some money into Hedvig. HPE gets access to Hedvig for their scale out storage that can be used for bulk as well as other deployments including CI, HCI and CIB (e.g. something to sell HPE servers and storage with).

    HPE can continue to partner with other software providers and software-defined storage stacks. Keep in mind that Milan Shetti (CTO, Data Center Infrastructure Group HPE) is no stranger to these waters given his past at Ibrix among others.

    What About Hedvig

    Time to get back to Hedvig which is a storage startup whose software can run on various server storage platforms, as well as in different topologies. Different topologies include in a CI or HCI, Cloud, as well as scale out with various access including block, file and object. In addition to block, file and object access, Hedvig has interesting management tools, data services, along with support for VMware, Docker, and OpenStack among others.

    Recently Hedvig landed another $21.5M USD in funding bringing their total to about $52M USD. HPE via its investment arm, joins other investors (note HPE was part of the $21.5M, that was not the amount they invested) including Vertex, Atlantic Bridge, Redpoint, edbi and true ventures.

    What does this mean for HPE and Hedvig among others? Tough to say however easy to imagine how Hedvig could be leveraged as a partner using HPE servers, as well as for HPE to have an addition to their bulk, scale-out, cloud and object storage portfolio.

    Where to Learn More

    View more material on HPE, data infrastructure and related topics with the following links.

  • Cloud and Object storage are in your future, what are some questions?
  • PCIe Server Storage I/O Network Fundamentals
  • If NVMe is the answer, what are the questions?
  • Fixing the Microsoft Windows 10 1709 post upgrade restart loop
  • Data Infrastructure server storage I/O network Recommended Reading
  • Introducing Windows Subsystem for Linux WSL Overview
  • IT transformation Serverless Life Beyond DevOps with New York Times CTO Nick Rockwell Podcast
  • HPE Announces AMD Powered Gen 10 ProLiant DL385 For Software Defined Workloads
  • AWS Announces New S3 Cloud Storage Security Encryption Features
  • NVM Non Volatile Memory Express NVMe Place
  • Data Infrastructure Primer and Overview (Its Whats Inside The Data Center)
  • January 2017 Server StorageIO Update Newsletter
  • September and October 2016 Server StorageIO Update Newsletter
  • HP Buys one of the seven networking dwarfs and gets a bargain
  • Did HP respond to EMC and Cisco VCE with Microsoft Hyper-V bundle?
  • Give HP storage some love and short strokin
  • While HP and Dell make counter bids, exclusive interview with 3PAR CEO David Scott
  • Data Protection Fundamental Topics Tools Techniques Technologies Tips
  • Hewlett-Packard beats Dell, pays $2.35 billion for 3PAR
  • HP Moonshot 1500 software defined capable compute servers
  • What Does Converged (CI) and Hyper converged (HCI) Mean to Storage I/O?
  • What’s a data infrastructure?
  • Ensure your data infrastructure remains available and resilient
  • Object Storage Center, The SSD place and The NVMe place
  • Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

    Software Defined Data Infrastructure Essentials Book SDDC

    What this all means

    Generally speaking I think this is a good series of moves for HPE (and their customers) as long as they can execute in all dimensions.

    Let’s see how they execute, and by this, I mean more than simply executing or terminating staff from recently acquired or earlier acquisitions. How will HPE craft go to the market message that leverages the portfolio to compete and hold or take share from other vendors, vs. cannibalize across its own lines (e.g. revenue prevention)? With that strategy and message, how will HPE assure existing customers will be taken care, be given a definite upgrade and migration path vs. giving them a reason to go elsewhere.

    Hopefully HPE unleashes the full potential of Simplivity and Nimble along with 3PAR, XP7 where needed, along with MSA at low-end (or as part of volume scale-out with servers for software defined), to mention sever portfolio. For now, this tells me that HPE is still interested in maintaining, expanding their data infrastructure business vs. simply retrenching selling off assets. Thus this looks like HPE is interested in continuing to invest in data infrastructure technologies including buying into server, storage I/O network, hardware, software solutions, while not simply clinging to what they already have, or previously bought.

    Everything is not the same in data centers and across data infrastructure, so why have a one size fits all approach for organization as large, diverse as HPE.

    Congratulations and best wishes to the folks at Hedvig, Nimble, Simplivity.

    Now, lets see how this all plays out.

    Ok, nuff said, for now.

    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

    Software Defined, Bulk, Cloud, Scale Out, Object Storage Fundamentals

    Cloud, Bulk, Scale-Out, Object Storage Fundamentals

    Welcome to the Cloud, Big Data, Software Defined, scale-out, Bulk and Object Storage Fundamentals page.

    This page contains various resources, tips, essential topics pertaining to Software Defined, scale-out, Cloud, Bulk and Object and blob Storage Fundamentals. Other resources pertaining to Software Defined, scale-out, Cloud, Bulk and Object Storage include:

    There are various types of cloud, bulk and object storage including public services such as Amazon Web Services (AWS) Simple Storage Service (S3), Google, Microsoft Microsoft Azure, IBM Softlayer, Rackspace among many others. There are also solutions for hybrid and private deployment from Cisco, Cloudian, Fujifilm, DDN, Dell EMC, Fujitsu, HDS, HPE, IBM, NetApp, Noobaa, OpenStack, Quantum, Rackspace, Scality, Seagate, Spectra, Storpool, Suse, Swift and WD among others.

    Cloud products and services among others, along with associated data infrastructures including object storage, file systems, repositories and access methods are at the center of bulk, big data, big bandwidth and little data initiatives on a public, private, hybrid and community basis. After all, not everything is the same in cloud, virtual and traditional data centers or information factories from active data to in-active deep digital archiving.

    Cloud Object Storage Fundamentals Access and Architectures

    There are many facets to object storage including technology implementation, products, services, access and architectures for various applications and use scenarios.

      • Project or Account – Top of the hierarchy that can represent the owner or billing information for a service that where buckets are also attached.
      • Region – Location where data is stored that can include one or more data centers also known as Availability Zones.

    AWS S3 Cross region replication
    Moving and Replicating Buckets/Containers, Subfolders and Objects

      • Availability Zone (AZ) or data center or server that implement durability and accessibility for availability within a region.

    AWS Regions and Availability Zones AZs
    Example of Regions and Availability Zones (AZs)

      • Bucket or Container – Where objects or sub-folders containing objects are attached and accessed.

    Object storage fundamentals sddc and cloud software defined

      • Sub-folder – While object storage can be located in a flat namespace for commonality and organization some solutions and service support the notion of sub-folder that resemble traditional directory hierarchy.
      • Object – Byte (or bit) stream that can be as small as one byte to as large as several Tbytes (some solutions and services support up to 5TByte sized objects). The object contains whatever data in any organization along with metadata. Different solutions and services support from a couple hundred KBytes of meta-data to Mbytes worth of meta-data. Regarding what can be stored in an object, anything from files, videos, images, virtual disks (VMDKs, VHDX), ZIP or tar files, backup and archive save sets, executable images or ISO’s, anything you want.
      • End-point – Where or what your software, application or tool and utilities along with gateways attach to for accessing buckets and objects.

     

    object storage fundamentals, sddc and cloud storage example

    A common theme for object storage is flexibility, along with scaling (performance, availability, capacity, economics) along with extensibility without compromise or complexity. From those basics, there are many themes and variations from how data is protected (RAID or no RAID, hardware or software), deployed as a service or as tin wrapped software (an appliance), optimized for archiving or video serving or other applications.

    Many facets of cloud and object storage access

    One aspect of object and cloud storage is accessing or using object methods including application programming interfaces (API’s) vs. traditional block (LUN) or NAS (file) based approaches. Keep in mind that many object storage systems, software, and services support NAS file-based access including NFS, CIFS, HDFS  among others for compatibility and ease of use.

    Likewise various API’s can be found across different object solutions, software or services including Amazon Web Services (AWS) Simple Storage Service (S3) HTTP REST based, among others. Other API’s will vary by specific vendor or product however can include IOS (e.g. Apple iPhone and iPad), WebDav, FTP, JSON, XML, XAM, CDMI, SOAP, and DICOM among others. Another aspect of object and cloud storage are expanded  and dynamic metadata.

    While traditional file systems and NAS have simple or fixed metadata, object and cloud storage systems, services and solutions along with some scale-out file systems have ability to support user defined metadata. Specific systems, solutions, software, and services will vary on the amount of metadata that could range on the low-end from 100s of KBytes  to tens or more Mbytes.

    cloud object storage

    Where to learn more

    The following resources provide additional information about big data, bulk, software defined, cloud and object storage.

    Click here to view software defined, bulk, cloud and object storage trend news.


    StorageIO Founder Greg Schulz: File Services on Object Storage with HyperFile

    Via InfoStor: Object Storage Is In Your Future
    Via FujiFilm IT Summit: Software Defined Data Infrastructures (SDDI) and Hybrid Clouds
    Via StorageIOblog: AWS EFS Elastic File System (Cloud NAS) First Preview Look
    Via InfoStor: Cloud Storage Concerns, Considerations and Trends
    Via InfoStor: Object Storage Is In Your Future
    Via Server StorageIO: April 2015 Newsletter Focus on Cloud and Object storage
    Via StorageIOblog: AWS S3 Cross Region Replication storage enhancements
    Cloud conversations: AWS EBS, Glacier and S3 overview
    AWS (Amazon) storage gateway, first, second and third impressions
    Cloud and Virtual Data Storage Networking (CRC Book)
    Via ChannelPartnersOnline: Selling Software-Defined Storage: Not All File Systems Are the Same
    Via ITProPortal: IBM kills off its first cloud storage platform
    Via ITBusinessEdge: Time to Rein in Cloud Storage
    Via SerchCloudStorge: Ctera Networks’ file-sharing services gain intelligent cache
    Via StorageIOblog: Who Will Be At Top Of Storage World Next Decade?

    Videos and podcasts at storageio.tv also available via Applie iTunes.

    Human Face of Big Data
    Human Face of Big Data (Book review)

    Seven Databases in Seven weeks
    Seven Databases in Seven Weeks (Book review)

    Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

    Software Defined Data Infrastructure Essentials Book SDDC

    Wrap up and summary

    Object and cloud storage are in your future, the questions are when, where, with what and how among others.

    Watch for more content and links to be added here soon to this object storage center page including posts, presentations, pod casts, polls, perspectives along with services and product solutions profiles.

    Ok, nuff said, for now.

    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.