Data Infrastructure Industry Trends WekaIO Matrix Software Defined Storage SDS

WekaIO Matrix Scale Out Software Defined Storage SDS

server storage I/O trends

Updated 2/11/2018

WekaIO Matrix is a scale out software defined solution (SDS).

WekaIO Matrix software defined scale out storage SDS

This Server StorageIO Industry Trends Perspective report looks at common issues, trends, and how to address different application server storage I/O challenges. In this report, we look at WekaIO Matrix, an elastic, flexible, highly scalable easy to use (and manage) software defined (e.g. software based) storage solution. WekaIO Matrix enables flexible elastic scaling with stability and without compromise.

Matrix is a new scale out software defined storage solution that:

  • Installs on bare metal, virtual or cloud servers
  • Has POSIX, NFS, SMB, and HDFS storage access
  • Adaptable performance for little and big data
  • Tiering of flash SSD and cloud object storage
  • Distributed resilience without compromise
  • Removes complexity of traditional storage
  • Deploys on bare metal, virtual and cloud environments

Where To Learn More

View additional SDS and related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Read more about WekaIO Matrix in this (free, no registration required) Server StorageIO Industry Trends Perspective (ITP) Report compliments of WekaIO.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Who Will Be At Top Of Storage World Next Decade?

Who Will Be At Top Of Storage World Next Decade?

server storage I/O data infrastructure trends

Data Storage regardless of if hardware, legacy, new, emerging, cloud service or various software defined storage (SDS) approaches are all fundamental resource components of data infrastructures along with compute server, I/O networking as well as management tools, techniques, processes and procedures.

fundamental Data Infrastructure resource components
Fundamental Data Infrastructure resources

Data infrastructures include legacy along with software defined data infrastructures (SDDI), along with software defined data centers (SDDC), cloud and other environments to support expanding workloads more efficiently as well as effectively (e.g. boosting productivity).

Data Infrastructures and workloads
Data Infrastructure and other IT Layers (stacks and altitude levels)

Various data infrastructures resource components spanning server, storage, I/O networks, tools along with hardware, software, services get defined as well as composed into solutions or services which may in turn be further aggregated into more extensive higher altitude offerings (e.g. further up the stack).

IT and Data Infrastructure Stack Layers
Various IT and Data Infrastructure Stack Layers (Altitude Levels)

Focus on Data Storage Present and Future Predictions

Drew Robb (@Robbdrew) has a good piece over at Enterprise Storage Forum looking at the past, present and future of who will rule the data storage world that includes several perspective predictions comments from myself as well as others. Some of the perspectives and predictions by others are more generic and technology trend and buzzword bingo focus which should not be a surprise. For example including the usual performance, Cloud and Object Storage, DPDK, RDMA/RoCE, Software-Defined, NVM/Flash/SSD, CI/HCI, NVMe among others.

Here are some excerpts from Drews piece along with my perspective and prediction comments of who may rule the data storage roost in a decade:

Amazon Web Services (AWS) – AWS includes cloud and object storage in the form of S3. However, there is more to storage than object and S3 with AWS also having Elastic File Services (EFS), Elastic Block Storage (EBS), database, message queue and on-instance storage, among others. for traditional, emerging and storage for the Internet of Things (IoT).

It is difficult to think of AWS not being a major player in a decade unless they totally screw up their execution in the future. Granted, some of their competitors might be working overtime putting pins and needles into Voodoo Dolls (perhaps bought via Amazon.com) while wishing for the demise of Amazon Web Services, just saying.

Voodoo Dolls via Amazon.com
Voodoo Dolls and image via Amazon.com

Of course, Amazon and AWS could follow the likes of Sears (e.g. some may remember their catalog) and ignore the future ending up on the where are they now list. While talking about Amazon and AWS, one will have to wonder where Wall Mart will end up in a decade with or without a cloud of their own?

Microsoft – With Windows, Hyper-V and Azure (including Azure Stack), if there is any company in the industry outside of AWS or VMware that has quietly expanded its reach and positioning into storage, it is Microsoft, said Schulz.

Microsoft IMHO has many offerings and capabilities across different dimensions as well as playing fields. There is the installed base of Windows Servers (and desktops) that have the ability to leverage Software Defined Storage including Storage Spaces Direct (S2D), ReFS, cache and tiering among other features. In some ways I’m surprised by the number of people in the industry who are not aware of Microsoft’s capabilities from S2D and the ability to configure CI as well as HCI (Hyper Converged Infrastructure) deployments, or of Hyper-V abilities, Azure Stack to Azure among others. On the other hand, I run into Microsoft people who are not aware of the full portfolio offerings or are just focused on Azure. Needless to say, there is a lot in the Microsoft storage related portfolio as well as bigger broader data infrastructure offerings.

NetApp – Schulz thinks NetApp has the staying power to stay among the leading lights of data storage. Assuming it remains as a freestanding company and does not get acquired, he said, NetApp has the potential of expanding its portfolio with some new acquisitions. “NetApp can continue their transformation from a company with a strong focus on selling one or two products to learning how to sell the complete portfolio with diversity,” said Schulz.

NetApp has been around and survived up to now including via various acquisitions, some of which have had mixed results vs. others. However assuming NetApp can continue to reinvent themselves, focusing on selling the entire solution portfolio vs. focus on specific products, along with good execution and some more acquisitions, they have the potential for being a top player through the next decade.

Dell EMC – Dell EMC is another stalwart Schulz thinks will manage to stay on top. “Given their size and focus, Dell EMC should continue to grow, assuming execution goes well,” he said.

There are some who I hear are or have predicted the demise of Dell EMC, granted some of those predicted the demise of Dell and or EMC years ago as well. Top companies can and have faded away over time, and while it is possible Dell EMC could be added to the where are they now list in the future, my bet is that at least while Michael Dell is still involved, they will be a top player through the next decade, unless they mess up on execution.

Cloud and software defined storage data infrastructure
Various Data Infrastructures and Resources involving Data Storage

Huawei – Huawei is one of the emerging giants from China that are steadily gobbling up market share. It is now a top provider in many categories of storage, and its rapid ascendancy is unlikely to stop anytime soon. “Keep an eye on Huawei, particularly outside of the U.S. where they are starting to hit their stride,” said Schulz.

In the US, you have to look or pay attention to see or hear what Huawei is doing involving data storage, however that is different in other parts of the world. For example, I see and hear more about them in Europe than in the US. Will Huawei do more in the US in the future? Good question, keep an eye on them.

VMware – A decade ago, Storage Networking World (SNW) was by far the biggest event in data storage. Everyone who was anyone attended this twice yearly event. And then suddenly, it lost its luster. A new forum known as VMworld had emerged and took precedence. That was just one of the indicators of the disruption caused by VMware. And Schulz expects the company to continue to be a major force in storage. “VMware will remain a dominant player, expanding its role with software-defined storage,” said Schulz.

VMware has a dominant role in data storage not just because of the relationship with Dell EMC, or because of VSAN which continues to gain in popularity, or the soon to be released VMware on AWS solution options among others. Sure all of those matters, however, keep in mind that VMware solutions also tie into and work with other legacies as well as software-defined storage solution, services as well as tools spanning block, file, object for virtual machines as well as containers.

"Someday soon, people are going to wake up like they did with VMware and AWS," said Schulz. "That’s when they will be asking ‘When did Microsoft get into storage like this in such a big way.’"

What the above means is that some environments may not be paying attention to what AWS, Microsoft, VMware among others are doing, perhaps discounting them as the old or existing while focusing on new, emerging what ever is trendy in the news this week. On the other hand, some environments may see the solution offerings from those mentioned as not relevant to their specific needs, or capable of scaling to their requirements.

Keep in mind that it was not that long ago, just a few years that VMware entered the market with what by today’s standard (e.g. VSAN and others) was a relatively small virtual storage appliance offering, not to mention many people discounted and ignored VMware as a practical storage solution provider. Things and technology change, not to mention there are different needs and solution requirements for various environments. While a solution may not be applicable today, give it some time, keep an eye on them to avoid being surprised asking the question, how and when did a particular vendor get into storage in such a big way.

Is Future Data Storage World All Cloud?

Perhaps someday everything involving data storage will be in or part of the cloud.

Does this mean everything is going to the cloud, or at least in the next ten years? IMHO the simple answer is no, even though I see more workloads, applications, and data residing in the cloud, there will also be an increase in hybrid deployments.

Note that those hybrids will span local and on-premises or on-site if you prefer, as well as across different clouds or service providers. Granted some environments are or will become all in on clouds, while others are or will become a hybrid or some variation. Also when it comes to clouds, do not be scared, be prepared. Also keep an eye on what is going on with containers, orchestration, management among other related areas involving persistent storage, a good example is Dell EMCcode RexRay among others.

Server Storage I/O resources
Various data storage focus areas along with data infrastructures.

What About Other Vendors, Solutions or Services?

In addition to those mentioned above, there are plenty of other existing, new and emerging vendors, solutions, and services to keep an eye on, look into, test and conduct a proof of concept (PoC) trial as part of being an informed data infrastructure and data storage shopper (or seller).

Keep in mind that component suppliers some of whom like Cisco also provides turnkey solutions that are also part of other vendors offerings (e.g. Dell EMC VxBlock, NetApp FlexPod among others), Broadcom (which includes Avago/LSI, Brocade Fibre Channel, among others), Intel (servers, I/O adapters, memory and SSDs), Mellanox, Micron, Samsung, Seagate and many others.

E8, Excelero, Elastifile (software defined storage), Enmotus (micro-tiering, read Server StorageIOlab report here), Everspin (persistent and storage class memories including NVDIMM), Hedvig (software defined storage), NooBaa, Nutanix, Pivot3, Rozo (software defined storage), WekaIO (scale out elastic software defined storage, read Server StorageIO report here).

Some other software defined management tools, services, solutions and components I’m keeping an eye on, exploring, digging deeper into (or plan to) include Blue Medora, Datadog, Dell EMCcode and RexRay docker container storage volume management, Google, HPE, IBM Bluemix Cloud aka IBM Softlayer, Kubernetes, Mangstor, OpenStack, Oracle, Retrospect, Rubrix, Quest, Starwind, Solarwinds, Storpool, Turbonomic, Virtuozzo (software defined storage) among many others

What about those not mentioned? Good question, some of those I have mentioned in earlier Server StorageIO Update newsletters, as well as many others mentioned in my new book "Software Defined Data Infrastructure Essentials" (CRC Press). Then there are those that once I hear something interesting from on a regular basis will get more frequent mentions as well. Of course, there is also a list to be done someday that is basically where are they now, e.g. those that have disappeared, or never lived up to their full hype and marketing (or technology) promises, let’s leave that for another day.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Where To Learn More

Learn more about related technology, trends, tools, techniques, and tips with the following links.

Data Infrastructures and workloads
Data Infrastructures Resources (Servers, Storage, I/O Networks) enabling various services

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

It is safe to say that each new year will bring new trends, techniques, technologies, tools, features, functionality as well as solutions involving data storage as well as data infrastructures. This means a usual safe bet is to say that the current year is the most exciting and has the most new things than in the past when it comes to data infrastructures along with resources such as data storage. Keep in mind that there are many aspects to data infrastructures as well as storage all of which are evolving. Who Will Be At Top Of Storage World Next Decade? What say you?

Ok, nuff said (for now…).

Cheers
Gs

Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

Announcing SAS SANs for Dummies book, LSI edition

There is a new (free) book that I’m a co-author of along Bruce Grieshaber and Larry Jacob (both of LSI) along with foreword by Harry Mason of LSI and President of the SCSI Trade Association titled SAS SANs for Dummies compliments of LSI.

SAS SANs for Dummies, LSI Edition

This new book (ebook and print hard copy) looks at Serial Attached SCSI (SAS) and how it can be used beyond traditional direct attached storage (DAS) configurations for support various types of storage mediums including SSD, HDD and tape. These configuration options include as entry-level SAN with SAS switches for small clusters or server virtualization, or as shared DAS as well as being a scale out back-end solution for NAS, object, cloud and big data storage solutions.

Here is the table of contents (TOC) of SAS SANs for Dummies

Chapter 1: Data storage challenges

  • Storage Growth Demand Drivers
  • Recognizing Challenges
  • Solutions and Opportunities
  • Chapter 2: Storage Area Networks

  • Introducing Storage Area Networks
  • Moving from Dedicated Internal to Shared Storage
  • Chapter 3: SAS Basics

  • Introducing the Basics of SAS
  • How SAS Functions
  • Components of SAS
  • SAS Target Devices
  • SAS for SANs
  • Chapter 4: SAS Usage Scenarios

  • Understanding SAS SANs Usage
  • Shared SAS SANs Scenarios including:
    • SAS in HPC environments
    • Big data and big bandwidth
    • Database, e-mail, back-office
    • NAS and object storage servers
    • Cloud, wen and high-density
    • Server virtualization

    Chapter 5: Advanced SAS Topics

  • The SAS Physical Layer
  • Choosing SAS Cabling
  • Using SAS Switch Zoning
  • SAS HBA Target Mode
  • Chapter 6: Nine Common Questions

  • Can You Interconnect Switches?
  • What Is SAS Cable Distance?
  • How Many Servers Can Be In a SAS SAN?
  • How Do You Manage SAS Zones?
  • How Do You Configure SAS for HA?
  • How Does SAS Zoning Compare to LUN Mapping?
  • Who Has SAS Solutions?
  • How Do SAS SANs Compare?
  • Where Can You Learn More?
  • Chapter 7: Next Steps

  • SAS Going Forward
  • Next Steps
  • Great Take Away’s
  • Regardless of if you are looking to use SAS as a primary SAN interface, or leverage it for DAS or implementing back-end storage for big-data, NAS, object, cloud or other types of scalable storage solutions, check out and get your free copy of SAS SANs for Dummies here compliments of LSI.

    SAS SANs for Dummies, LSI Edition

    Click here to ask your free copy of SAS SANs for Dummies compliments of LSI, tell them Greg from StorageIO sent you and enjoy the book.

    Ok, nuff said.

    Cheers Gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

    How can direct attached storage (DAS) make a comeback if it never left?

    Server and StorageIO industry trend and perspective DAS

    Have you seen or heard the theme that Direct Attached Storage (DAS), either dedicated or shared, internal or external is making a comeback?

    Wait, if something did not go away, how can it make a comeback?

    IMHO it is as simple as for the past decade or so, DAS has been overshadowed by shared networked storage including switched SAS, iSCSI, Fibre Channel (FC) and FC over Ethernet (FCoE) based block storage area networks (SAN) and file based (NFS and Windows SMB/CIFS) network attached storage (NAS) using IP and Ethernet networks. This has been particularly true by most of the independent storage vendors who have become focused on networked storage (SAN or NAS) solutions.

    However some of the server vendors have also jumped into the deep end of the storage pool with their enthusiasm for networked storage, even though they still sell a lot of DAS including internal dedicated, along with external dedicated and shared storage.

    Server and StorageIO industry trend and perspective DAS

    The trend for DAS storage has evolved with the interfaces and storage mediums including from parallel SCSI and IDE to SATA and more recently 3Gbs and 6Gbs SAS (with 12Gbs in first lab trials). Similarly the storage mediums include a mix of fast 10K and 15K hard disk drives (HDD) along with high-capacity HDDs and ultra-high performance solid state devices (SSD) moving from 3.5 to 2.5 inch form factors.

    While there has been a lot of industry and vendor marketing efforts around networked storage (e.g. SAN and NAS), DAS based storage was over shadowed so it should not be a surprise that those focused on SAN and NAS are surprised to hear DAS is alive and well. Not only is DAS alive and well, it’s also becoming an important scaling and convergence topic for adding extra storage to appliances as well as servers including those for scale out, big data, cloud and high density not to mention high performance and high productivity computing.

    Server and StorageIO industry trend and perspective DAS

    Consequently its becoming ok to talk about DAS again. Granted you might get some peer pressure from your trend setting or trend following friends to get back on the networked storage bandwagon. Keep this in mind, take a look at some of the cool trend setting big data and little data (database) appliances, backup, dedupe and archive appliances, cloud and scale out NAS and object storage systems among others and will likely find DAS on the back-end. On a smaller scale, or in high-density rack deployments in large cloud or similar environments you may also find DAS including switched shared SAS.

    Does that mean SANs are dead?
    No, not IMHO despite what some vendors marketers and their followers will claim which is ironic given how some of them were leading the DAS is dead campaign in favor of iSCSI or FC or NAS a few years ago. However simply comparing DAS to SAN or NAS in a competing way is like comparing apples to oranges, instead, look at how and where they can complement and enable each other. In other words, different tools for various tasks, various storage and interfaces for different needs.

    Thus IMHO DAS never left or went anywhere per say, it just was not fashionable or cool to talk about until now as it is cool and trend to discuss it again.

    Ok, nuff said for now.

    Cheers Gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

    Getting SASy, the other shared storage option for disk and SSD systems

    Here is a link to a recent guest post that I was invited to do over at The Virtualization Practice (TVP) pertaining to Getting SASsy, the other shared server to storage interconnect for disk and SSD systems. Serial Attached SCSI (SAS) is better known as an interface for connecting hard disk drives (HDD) to servers and storage systems; however it is also widely used for attaching storage systems to physical as well as virtual servers. An important storage requirement for virtual machine (VM) environments with more than one physical machine (PM) server is shared storage. SAS has become a viable interconnect along with other Storage Area Network (SAN) interfaces including Fibre Channel (FC), Fibre Channel over Ethernet (FCoE) and iSCSI for block access.

    Read more here.

    Ok, nuff said for now.

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2011 StorageIO and UnlimitedIO All Rights Reserved

    Clarifying Clustered Storage Confusion

    Clustered storage can be iSCSI, Fibre Channel block based or NAS (NFS or CIFS or proprietary file system) file system based. Clustered storage can also be found in virtual tape library (VTL) including dedupe solutions along with other storage solutions such as those for archiving, cloud, medical or other specialized grids among others.

    Recently in the IT and data storage specific industry, there has been a flurry of merger and acquisition (M&A) (Here and here), new product enhancement or announcement activity around clustered storage. For example, HP buying clustered file system vendor IBRIX complimenting their previous acquisition of another clustered file system vendor (PolyServe) a few years ago, or, of iSCSI block clustered storage software vendor LeftHand earlier this year. Another recent acquisition is that of LSI buying clustered NAS vendor ONstor, not to mention Dell buying iSCSI block clustered storage vendor EqualLogic about a year and half ago, not to mention other vendor acquisitions or announcements involving storage and clustering.

    Where the confusion enters into play is the term cluster which means many things to different people, and even more so when clustered storage is combined with NAS or file based storage. For example, clustered NAS may infer a clustered file system when in reality a solution may only be multiple NAS filers, NAS heads, controllers or storage processors configured for availability or failover.

    What this means is that a NFS or CIFS file system may only be active on one node at a time, however in the event of a failover, the file system shifts from one NAS hardware device (e.g. NAS head or filer) to another. On the other hand, a clustered file system enables a NFS or CIFS or other file system to be active on multiple nodes (e.g. NAS heads, controllers, etc.) concurrently. The concurrent access may be for small random reads and writes for example supporting a popular website or file serving application, or, it may be for parallel reads or writes to a large sequential file.

    Clustered storage is no longer exclusive to the confines of high-performance sequential and parallel scientific computing or ultra large environments. Small files and I/O (read or write), including meta-data information, are also being supported by a new generation of multipurpose, flexible, clustered storage solutions that can be tailored to support different applications workloads.

    There are many different types of clustered and bulk storage systems. Clustered storage solutions may be block (iSCSI or Fibre Channel), NAS or file serving, virtual tape library (VTL), or archiving and object-or content-addressable storage. Clustered storage in general is similar to using clustered servers, providing scale beyond the limits of a single traditional system—scale for performance, scale for availability, and scale for capacity and to enable growth in a modular fashion, adding performance and intelligence capabilities along with capacity.

    For smaller environments, clustered storage enables modular pay-as-you-grow capabilities to address specific performance or capacity needs. For larger environments, clustered storage enables growth beyond the limits of a single storage system to meet performance, capacity, or availability needs.

    Applications that lend themselves to clustered and bulk storage solutions include:

    • Unstructured data files, including spreadsheets, PDFs, slide decks, and other documents
    • Email systems, including Microsoft Exchange Personal (.PST) files stored on file servers
    • Users’ home directories and online file storage for documents and multimedia
    • Web-based managed service providers for online data storage, backup, and restore
    • Rich media data delivery, hosting, and social networking Internet sites
    • Media and entertainment creation, including animation rendering and post processing
    • High-performance databases such as Oracle with NFS direct I/O
    • Financial services and telecommunications, transportation, logistics, and manufacturing
    • Project-oriented development, simulation, and energy exploration
    • Low-cost, high-performance caching for transient and look-up or reference data
    • Real-time performance including fraud detection and electronic surveillance
    • Life sciences, chemical research, and computer-aided design

    Clustered storage solutions go beyond meeting the basic requirements of supporting large sequential parallel or concurrent file access. Clustered storage systems can also support random access of small files for highly concurrent online and other applications. Scalable and flexible clustered file servers that leverage commonly deployed servers, networking, and storage technologies are well suited for new and emerging applications, including bulk storage of online unstructured data, cloud services, and multimedia, where extreme scaling of performance (IOPS or bandwidth), low latency, storage capacity, and flexibility at a low cost are needed.

    The bandwidth-intensive and parallel-access performance characteristics associated with clustered storage are generally known; what is not so commonly known is the breakthrough to support small and random IOPS associated with database, email, general-purpose file serving, home directories, and meta-data look-up (Figure 1). Note that a clustered storage system, and in particular, a clustered NAS may or may not include a clustered file system.

    Clustered Storage Model: Source The Green and Virtual Data Center (CRC)
    Figure 1 – Generic clustered storage model (Courtesy “The Green and Virtual Data Center  (CRC)”

    More nodes, ports, memory, and disks do not guarantee more performance for applications. Performance depends on how those resources are deployed and how the storage management software enables those resources to avoid bottlenecks. For some clustered NAS and storage systems, more nodes are required to compensate for overhead or performance congestion when processing diverse application workloads. Other things to consider include support for industry-standard interfaces, protocols, and technologies.

    Scalable and flexible clustered file server and storage systems provide the potential to leverage the inherent processing capabilities of constantly improving underlying hardware platforms. For example, software-based clustered storage systems that do not rely on proprietary hardware can be deployed on industry-standard high-density servers and blade centers and utilizes third-party internal or external storage.

    Clustered storage is no longer exclusive to niche applications or scientific and high-performance computing environments. Organizations of all sizes can benefit from ultra scalable, flexible, clustered NAS storage that supports application performance needs from small random I/O to meta-data lookup and large-stream sequential I/O that scales with stability to grow with business and application needs.

    Additional considerations for clustered NAS storage solutions include the following.

    • Can memory, processors, and I/O devices be varied to meet application needs?
    • Is there support for large file systems supporting many small files as well as large files?
    • What is the performance for small random IOPS and bandwidth for large sequential I/O?
    • How is performance enabled across different application in the same cluster instance?
    • Are I/O requests, including meta-data look-up, funneled through a single node?
    • How does a solution scale as the number of nodes and storage devices is increased?
    • How disruptive and time-consuming is adding new or replacing existing storage?
    • Is proprietary hardware needed, or can industry-standard servers and storage be used?
    • What data management features, including load balancing and data protection, exists?
    • What storage interface can be used: SAS, SATA, iSCSI, or Fibre Channel?
    • What types of storage devices are supported: SSD, SAS, Fibre Channel, or SATA disks?

    As with most storage systems, it is not the total number of hard disk drives (HDDs), the quantity and speed of tiered-access I/O connectivity, the types and speeds of the processors, or even the amount of cache memory that determines performance. The performance differentiator is how a manufacturer combines the various components to create a solution that delivers a given level of performance with lower power consumption.

    To avoid performance surprises, be leery of performance claims based solely on speed and quantity of HDDs or the speed and number of ports, processors and memory. How the resources are deployed and how the storage management software enables those resources to avoid bottlenecks are more important. For some clustered NAS and storage systems, more nodes are required to compensate for overhead or performance congestion.

    Learn more about clustered storage (block, file, VTL/dedupe, archive), clustered NAS, clustered file system, grids and cloud storage among other topics in the following links:

    "The Many faces of NAS – Which is appropriate for you?"

    Article: Clarifying Storage Cluster Confusion
    Presentation: Clustered Storage: “From SMB, to Scientific, to File Serving, to Commercial, Social Networking and Web 2.0”
    Video Interview: How to Scale Data Storage Systems with Clustering
    Guidelines for controlling clustering
    The benefits of clustered storage

    Along with other material on the StorageIO Tips and Tools or portfolio archive or events pages.

    Ok, nuff said.

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved