Cloud and Virtual Data Storage Networking

For those who have read any of my previous posts, seen some of my articles, news letters, videos, pod casts, web casts or in person appearances you may have heard that I have a new book coming out this summer.

Here in the northern hemisphere its summer (well technically the solstice is just around the corner) and in Minnesota the ice (from the winter) is off the lakes and rivers. Granted, there is some ice floating that fell out of coolers for keeping beverages cool. This means that it is also fishing (and catching) season on the Scenic St. Croix River.

Karen of Arcola catches first fish of 2011 season, St. Croix river, stripe bassGreg showing his first catch of the 2011 season, St. Croix walleye aka Walter or Wanda

FTC disclosures (and for fun): Karenofarcola is wearing a StorageIO baseball cap and Im wearing a cap from a vendor marketing person who sent several as they too enjoy fishing and boating. Funny thing about the cap, all of the river rats and fishing people think it is from the people who make rod reels instead of solutions that go around tape and disk reels. Note, if you feel compelled to send me baseball caps, send at least a pair so there is a backup, standby, spare or extra one for a guest. The mustang survival jacket that Im wearing with the Seadoo logo is something I bought myself. I did get a discount however since there was a Seadoo logo on it and I used to have Seadoo jet boats. Btw, that was some disclosure fun and humor!

Ok, enough of the fun stuff, lets get back to the main theme of this post.

My new book which is the third in a series of solo projects including Resilient Storage Networks: Designing Flexible Scalable Data Infrastructures (Elsevier) and The Green and Virtual Data Center (CRC).

While the official launch and general availability will be later in the summer, following are some links and related content to give you advance information about the new book.

Cloud and Virtual Data Storage Networking

Click on the above image which will take you to the CRC Press page where you can learn more including what the book is about, view a table of contents, see reviews and more. Also check out the video below to learn more as well as visit my main web site where you can learn about Cloud and Virtual Data Storage Networking, my other books and view (or listen to) related content such as white papers, solution briefs, articles, tips, web cast, pod cast as well as view the recent and upcoming events schedule.

I also invite you to join Cloud and Virtual Data Storage Networking group

You can also view the short video at dailymotion, metacage, blip.tv, veoh, flickr, and photobucket among other venues.

If you are interested in being a reviewer, send a note to cvdsn@storageio.com with your name, blog or website and contact information including shipping address (sorry no PO boxes) plus telephone (or skype) number. Also indicate if you are a blogger, press/media, free lance writer, analyst, consultant, var, vendor, investor, IT professional or other.

Watch for more news and information as we get closer to the formal launch and release, in the meantime, you can pre order your copy now at Amazon, CRC Press and other venues around the world.

Ok, time to get back to work or go fishing, nuff said

Cheers Gs

Greg Schulz – Author The Green and Virtual Data Center (CRC), Resilient Storage Networks (Elsevier) and coming summer 2011 Cloud and Virtual Data Storage Networking (CRC)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2011 StorageIO and UnlimitedIO All Rights Reserved

StorageIO going Dutch: Seminar for Storage and I/O professionals

Data and Storage Networking Industry Trends and Technology Seminar

Greg Schulz of StorageIO in conjunction with or dutch parter Brouwer Storage Consultancy will be presenting a two day seminar for Storage Professionals Tuesday 24th and Wednesday 25th of May 2011 at Ampt van Nijkerk Netherlands.

Brouwer Storage ConsultanceyThe Server and StorageIO Group

This two day interactive education seminar for storage professionals will focus on current data and storage networking trends, technology and business challenges along with available technologies and solutions. During the seminar learn what technologies and management techniques are available, how different vendors solutions compare and what to use when and where. This seminar digs into the various IT tools, techniques, technologies and best practices for enabling an efficient, effective, flexible, scalable and resilient data infrastructure.

The format of this two seminar will be a mix of presentation and interactive discussion allowing attendees plenty of time to discuss among themselves and with seminar presenters. Attendees will gain insight into how to compare and contrast various technologies and solutions in addition to identifying and aligning those solutions to their specific issues, challenges and requirements.

Major themes that will be discussed include:

  • Who is doing what with various storage solutions and tools
  • Is RAID still relevant for today and tomorrow
  • Are hard disk drives and tape finally dead at the hands of SSD and clouds
  • What am I routinely hearing, seeing or being asked to comment on
  • Enabling storage optimization, efficiency and effectiveness (performance and capacity)
  • What do I see as opportunities for leveraging various technologies, techniques,trends
  • Supporting virtual servers including re-architecting data protection
  • How to modernize data protection (backup/restore, BC, DR, replication, snapshots)
  • Data footprint reduction (DFR) including archive, compression and dedupe
  • Clarifying cloud confusion, don’t be scared, however look before you leap

In addition this two day seminar will look at what are some new and improved technologies and techniques, who is doing what along with discussions around industry and vendor activity including mergers and acquisitions. Greg will also preview the contents and themes of his new book Cloud and Virtual Data Storage Networking (CRC) for enabling efficient, optimized and effective information services delivery across cloud, virtual and traditional environments.

Buzzwords and topic themes to be discussed among others include:
E2E, FCoE and DCB, CNAs, SAS, I/O virtualization, server and storage virtualization, public and private cloud, Dynamic Infrastructures, VDI, RAID and advanced data protection options, SSD, flash, SAN, DAS and NAS, object storage, application optimized or aware storage, open storage, scale out storage solutions, federated management, metrics and measurements, performance and capacity, data movement and migration, storage tiering, data protection modernization, SRA and SRM, data footprint reduction (archive, compress, dedupe), unified and multi-protocol storage, solution bundle and stacks.

For more information or to register contact Brouwer Storage Consultancy

Brouwer Storage Consultancy
Olevoortseweg 43
3861 MH Nijkerk
The Netherlands
Telephone: +31-33-246-6825
Cell: +31-652-601-309
Fax: +31-33-245-8956
Email: info@brouwerconsultancy.com
Web: www.brouwerconsultancy.com

Brouwer Storage Consultancey

Learn about other events involving Greg Schulz and StorageIO at www.storageio.com/events

Ok, nuff said for now

Cheers Gs

Greg Schulz – Author The Green and Virtual Data Center (CRC), Resilient Storage Networks (Elsevier) and coming summer 2011 Cloud and Virtual Data Storage Networking (CRC)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2011 StorageIO and UnlimitedIO All Rights Reserved

Cloud conversations: Loss of data access vs. data loss

Have you hugged your cloud or MSP lately?

Why give a cloud a hug and what does it have to do with loss of data access vs. loss of data?

First there is a difference between actually losing data and losing access to it.

Losing data means that you have no backup or copy of the information thus it is gone. This means there are no good valid backups, snapshots, copies or archives that can be used to restore or recover the information.

Losing access to data means that there is a copy of it somewhere however it will take time to make it usable (no data was actually lost). How long you have to wait until the data is restored or recovered will vary and during that time it may seem like data was lost.

Second, industry hype for and against clouds serves as a lighting rod for when things happen.

Lighting recently struck (or at least virtually) with some outages (see links below) including at Google Gmail.

Cloud crowd cheerleaders may need a hug to feel good while they or their technology get tossed about a bit. Google announced that they had a service disruption recently however that data was not lost, only loss of access for a period of time.

Lets take a step back before going forward.

With the Google Gmail disruption, following on previous incidents, true cynics and naysayers will probably jump on the anti cloud FUD feeding frenzy. The true cloud cynics will tell the skeptics all about cloud challenges perhaps never having had actually used any service or technology themselves.

Cloud crowd cheerleaders are generally a happy go lucky bunch with virtual beliefs and physical or real emotions. Cloud crowd cheerleaders have a strong passion for their technology or paradigm taking it various serious in some instances perceiving attacks or fud against cloud as an attack on them or their belief. Some cheerleaders will see this post as snarky or cynical (ok, get over it already).


Ongoing poll at StorageIOblog.com, click on the image to cast your vote.

Then there are the skeptics or interested audience who are not complete cynics or cheerleaders (those in the middle 80 percent of the above chart).

Generally speaking they want to learn more, understand issues to work around or take appropriate steps and institute best practices. They see a place for MSP or cloud services for some things to compliment what they are currently doing and tend to be the majority of audiences outside of special interest, vendor or industry trade groups.

Some additional thoughts, comments and perspectives:

  • Loss of data means you cannot get it back to a specific RPO (Recovery Point Objective or how much data you can afford to lose). Loss of access to data means that you cannot get to your data until a specific RTO (Recovery Time Objective).


Tiered data protection, RTO and RPOs, align technique and technology to SLO needs


RTO and RPOs

  • RAID and replication provide accessibility to data not data protection. The good news with RAID and replication or mirroring is if you make a change to the data it is copied or protected. The bad news is if it is deleted or corrupted that error or problem is also replicated.
  • Backup, snapshots, CDP or other time interval based techniques protect data against loss however may require time to restore, recovery or refresh from. A combination of data availability and accessibility along with time interval based protection are needed (e.g. the two previous above items should be combined). CDP should also mean complete, consistent, coherent or comprehensive data protection including data in application or VM buffers.
  • Any technology will fail either on its own or via human intervention or lack of configuration. It is not if rather when as well as how gracefully a failure along with fault isolation occurs and is remediate (corrected). There is generally speaking, no such thing as a bad technology, rather poor or inappropriate use, configuration or deployment of it.
  • Protect onsite data with offsite mediums including MSP or cloud backup services while keeping a local onsite copy. Why keep an onsite local copy when using a cloud? Simple, when you lose access to the cloud or MSP for extended periods of time, if needed you have a copy of data to work with (assuming it is still valid). On other hand, important data that is onsite needs to be kept offsite. Hence cloud and MSP should compliment what is done for data protection and vise versa. Thats what I do, is what you do?
  • The technology golden rule which applies to cloud and virtualization is whoever controls the management of the technology controls the gold. Leverage CDP, which is Commonsense Data Protection or Cloud Data Protection. Hops are great in beer (as well as some other foods) however they add latency including with networks. Aggregation can cause aggravation, not everything can be consolidated, however much can be virtualized.

Here are some related blog posts:

Additional links to related articles and commentary:

Closing thoughts and comments (for now) regarding clouds.

Its not if, rather when, where, why, how and with what will you leverage a cloud or MSP technologies, products, service, solution or architectures to compliment your environment.

How will cloud or MSP work for you vs. you working for it (unless you actually do work for one of them).

Dont be scared of clouds or virtualization, however look before you leap!

BTW, for those in the Minneapolis St. Paul area (aka the other MSP), check out this event on March 15, 2011. I have been invited to talk about optimizing your data storage and virtual environments and be prepared to take advantage of cloud computing opportunities as they mature.

Nuff said for now

Cheers gs

Greg Schulz – Author The Green and Virtual Data Center (CRC), Resilient Storage Networks (Elsevier) and coming summer 2011 Cloud and Virtual Data Storage Networking (CRC) at https://storageio.com/books
twitter @storageio

Tape talk time (tape summit and tape is alive, for some)

Welcome to the tape summit resources and tape summit resources micro site with links for those who are interested in magnetic tape for backup, archive, BC, DR, big and little data

For being a declared dead or zombie technology (here, here or here) tape remains very much alive however its role is changing. There is no disputing that hard disk drives (HDDs) are continuing to expand their role for data protection including backup/restore, BC and DR where tape has been used  for decades.

What is also occurring is that tapes role is changing from day to day backup to that of longer term data preservation including archiving with more data stored on tape today than in past history at a lower cost. In fact the continued reduced cost per tape and improved capacity as well as utilization has worked against tape from a marketing competitive standpoint. For example if you look at a chart showing tape (media and drive) revenues you see a decline, similar to what was seen a couple of years ago for HDDs.

What is not shown on some charts are how many units (drives or media) shipped with more capacity for a given price (again what was reported for HDDs a few years ago) when net capacity had increased. Vendors of tape technology have also had a rather low profile particular for those with other technologies that have received more marketing resources (people, time, money). After all, if a product is on a plateau of productivity and profitability why spend time or effort on extensive marketing or promotion vs. directing resources to get new items into the market.

As a result, for those looking to make a case that tape is on the decline based on revenues to convince customers to move away from that technology should have a marketing freebie. Recently Oracle announced a new large capacity tape drive and media following on previous announcements of enhanced LTO roadmap and future 35TByte  tape capabilities announced January 2010 by Fujifilm and IBM.

For those who are interested following are some links to various topics including how SSD, HDD and tape can coexist complementing each other for different roles or functions. As to those who do not like tape, feel free to read if you like as there is also material on SSD, HDD, dedupe, cloud, data protection and other topics.

Some previous blog posts:

Here are some additional articles, commentary and reports pertaining to tape related topics:

Something tells me we will be hearing, reading or watching more about tape being alive in the months to come.

Nuff said for now

Cheers gs

Thanks for visiting tape summit resources and tape summit resources micro site with links for those who are interested in magnetic tape for backup, archive, BC, DR, big and little data

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

What have I been doing this winter?

Its been almost a month since my last post and want to say hello and let you know what I have been doing.

What I have been doing is:

  • Accumulating a long list of ideas for upcoming blog post, article, tips, webinars and other content.
  • Recording some podcasts, web casts doing interviews and commentary along with a few articles here and there.
  • Working with some new venues where if all comes together you should be seeing material or commentary appearing soon.
  • Filling some dates for the 2011 out and about events and activities page.
  • Doing research in several different areas as well as working with clients on various project activities, many of which that are NDA.
  • Getting some recently finished content ready to appear on the main web site as well as in the blog and other venues.
  • Attending vendor events and briefing sessions on solutions some of which are yet to be announced.
  • Enjoying the cold and snowy winter as best as can be (see some videos here) while trying to avoid cold and flue season.

In addition to the above, I have been trying to stay very focused on is getting my new book which is titled Cloud and Virtual Data Storage Networking (CRC) wrapped up for a summer 2011 release. This is my third solo book project that is in addition to co writing or contributing to several other book projects.

Cloud and Virtual Data Storage Networking

Im doing the project the old fashioned way which means writing it myself as opposed to using ghost writers along with a traditional publishing house (CRC, same as my last book) all of which takes a bit more time. For anyone who has done a project like this you know what is involved. For those who have not it includes research, writing, editing, working with editors and copyeditors, subject matter experts doing initial reviews, illustrations and page layouts, markups, more edits and proofs. Then there are the general project management activities along with marketing and rollout plans, companion presentation material working with the publisher and others.

Anyway, hope you are all doing well, look forward to sharing more with you soon, now it is time to get back to work…

Nuff said for now

Cheers gs

Greg Schulz – Author The Green and Virtual Data Center (CRC), Resilient Storage Networks (Elsevier) and coming summer 2011 Cloud and Virtual Data Storage Networking (CRC)
twitter @storageio

Are you on the StorageIO IT Data Infrastructure industry links page?

Hey IT data infrastructure vendors, VARs or service providers, are you on the Server and StorageIO IT industry interesting links page?

Dont worry, its free and no obligation!

There are no hidden charges or fees, you will not be obligated to pay a fee or subscribe to a service, or be called or contacted via a sales or account manager person to buy something. Nor will you be required to sign up for a annual or short term retainer, make a donation, honorarium, endowment, contribution, subsidy, renumerate or sponsor in any other manner directly or via indirect means including second, third, fourth or by way of other virtual means or physical means. This also means via other organizations, venues, institutes, associations, communities, events or causes. (Btw, that is some industry humor some will get however to others that feel it is poking fun of their lively hoods, too bad!)

Your contact information will not be sold, bartered, traded, borrowed or abused being kept confidential nor will you be called or bothered (contact me if somebody does reach out to you). However you may get an occasional Server and StorageIO newsletter sent to you via email (privacy and disclosure statement can be found here).

There is however one small caveat and that is no spamming and direct submissions on yours or your companies behalf. If you are a public relations firm feel free to submit on behalf of your own organization, however have your clients submit on their own (or use their identity when doing so on their own behalf).

Why do I make this links page and list available for free to those who read it, as well as to those who are on it?

Simple, I use it myself to keep a list of companies, firms or organizations that are involved with data infrastructures (servers, storage, I/O and networking, hardware, software, services) that I have come across and worth keeping track of that I also feel worth sharing with others.

Of course, if you feel compelled, you can always contact Server and StorageIO to discuss other services or simply buy one of my books including Resilient Storage Networks: Designing Flexible Scalable Data Infrastructures (Elsevier), The Green and Virtual Data Center (CRC) and coming summer 2011 Cloud and Virtual Data Storage Networking (CRC) at Amazon or one of the other many fine global venues.

 

Still interested, all you need to do is the following:

No SPAM submission please

Please do not submit via web or blog page unless you want your contact information known to others.

Send an email to links at storageio dot com that includes the following:

1. Your company name
2. Your company URL
3. Your company contact person (you or someone else) including:
Name
Title or position
Phone or Skype
Email
Optional twitter

4. Brief 40 character or less description of what you do, or solution categories (tip, avoid superlatives, see links page for ideas)

5. Optionally indicate to DND (Do Not Disturb) you with email newsletters, coverage or mentions.

Again, please, No Spam!

Its that simple.

Now its up to you to decide if you want to be included or not.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

As the Hard Disk Drive HDD continues to spin

As the Hard Disk Drive HDD continues to spin

server storage data infrastructure i/o iop hdd ssd trends

Updated 2/10/2018

Despite having been repeatedly declared dead at the hands of some new emerging technology over the past several decades, the Hard Disk Drive (HDD) continues to spin and evolve as it moves towards its 60th birthday.

More recently HDDs have been declared dead due to flash SSD that according to some predictions, should have caused the HDD to be extinct by now.

Meanwhile, having not yet died in addition to having qualified for its AARP membership a few years ago, the HDD continues to evolve in capacity, smaller form factor, performance, reliability, density along with cost improvements.

Back in 2006 I did an article titled Happy 50th, hard drive, but will you make it to 60?

IMHO it is safe to say that the HDD will be around for at least a few more years if not another decade (or more).

This is not to say that the HDD has outlived its usefulness or that there are not other tiered storage mediums to do specific jobs or tasks better (there are).

Instead, the HDD continues to evolve and is complimented by flash SSD in a way that HDDs are complimenting magnetic tape (another declared dead technology) each finding new roles to support more data being stored for longer periods of time.

After all, there is no such thing as a data or information recession!

What the importance of this is about technology tiering and resource alignment, matching the applicable technology to the task at hand.

Technology tiering (Servers, storage, networking, snow removal) is about aligning the applicable resource that is best suited to a particular need in a cost as well as productive manner. The HDD remains a viable tiered storage medium that continues to evolve while taking on new roles coexisting with SSD and tape along with cloud resources. These and other technologies have their place which ideally is finding or expanding into new markets instead of simply trying to cannibalize each other for market share.

Here is a link to a good story by Lucas Mearian on the history or evolution of the hard disk drive (HDD) including how a 1TB device that costs about $60 today would have cost about a trillion dollars back in the 1950s. FWIW, IMHO the 1 trillion dollars is low and should be more around 2 to 5 trillion for the one TByte if you apply common costs for management, people, care and feeding, power, cooling, backup, BC, DR and other functions.

Where To Learn More

View additional NAS, NVMe, SSD, NVM, SCM, Data Infrastructure and HDD related topics via the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

IMHO, it is safe to say that the HDD is here to stay for at least a few more years (if not decades) or at least until someone decides to try a new creative marketing approach by declaring it dead (again).

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Fall 2010 StorageIO News Letter

StorageIO News Letter Image
Fall 2010 Newsletter

Welcome to the Fall 2010 edition of the Server and StorageIO Group (StorageIO) newsletter. This follows the August 2010 edition building on the great feedback received from recipients.

You can access this news letter via various social media venues (some are shown below) in addition to StorageIO web sites and subscriptions. Click on the following links to view the Fall 2010 edition as an HTML or PDF or, to go to the newsletter page to view previous editions.

Follow via Goggle Feedburner here or via email subscription here.

You can also subscribe to the news letter by simply sending an email to newsletter@storageio.com

Enjoy this edition of the StorageIO newsletter, let me know your comments and feedback.

Cheers gs

Nuff said for now

Cheers gs

Greg Schulz – Author The Green and Virtual Data Center (CRC) and Resilient Storage Networks (Elsevier)
twitter @storageio

Have VTLs or VxLs become Zombies, Declared dead yet still alive?

Have you heard or read the reports and speculation that VTLs (Virtual Tape Libraries) are dead?

It seems that in IT the all to popular trend is to declare something dead so that your new product or technology can have a chance of making it in to the market or perhaps seen in a better light.

Sometimes this approach works to temporary freeze the market until common sense and clarity returns to the market or until something else fun to talk about comes along and in other cases, the messages can fall on deft ears.

The approach of declaring something dead tends to play well for those who like shiny new toys (SNT) or new shiny toys (NST) and being on the popular, cool trendy bandwagon.

Not surprisingly, while some actual IT customers can fall into the SNT or NST syndrome, its often the broader industry including media, bloggers, analysts, consultants and other self proclaimed or anointed pundits as well as vendors who latch on to the declare it dead movement. After all, who wants to talk about something that is old, boring and already being sold to paying customers who are using it. Now this is not a bad thing as we need a balance of up and coming challengers to keep the status quo challenged, likewise we need a balance of the new to avoid death grips on the old and what is working.

Likewise, many IT customers particularly larger ones tend to be very risk averse and conservative with their budgets protecting their investments thus they may only go leading bleeding edge if there is a dual redundant blood bank with a backup on hot standby (thats some HA humor BTW).

Another reason that declaring items dead in support of SNT and NST is that while many of the commonly declared dead items are on the proverbial plateau of productivity for IT customers, that also can mean that they are on the plateau of profitability for the vendors.

However, not all good things last and at sometime, there is the need to transition from the old to the new and this is where things like virtualization including virtual tape libraries or virtual disk libraries or virtual storage library or what ever you want to call a VxL (more on what a VxL is in a moment) can come into play.

I realize that for some, particularly those who like to grasp on to SNT, NST and ride the dead pool bandwagons this will probably appear as snarky or cynical which is fine, after all, for some, you should be laughing to the bank and if not, you may in fact be missing out on an opportunity for playing in the dead pool marketing game.

Now back to VxL.

In the case of VTLs, for some it is the T word that bothers them, you know T as in Tape which is not a SNT or NST in an age where SSD has supposedly killed the disk drive which allegedly terminated tape (yeah right). Sure tape is not being used as much for backup as it has in the past with its role shifting to that of longer term retention, something that it is well suited for.

For tape fans (or cynics) you can read more here, here and here. However there is still a large amount of backup/restore along with other data protection or preservation (e.g. archiving) processing (software tools, processes, procedures, skill sets, management tools) that still expects to see tape.

Hence this is where VTLs or VxLs come into play leveraging virtualization in an Life Beyond Consolidation (and here) scenario providing abstraction, transparency, agility and emulation and IMHO are still very much alive and evolving.

Ok, for those who do not like or believe in or of its continued existence and evolving role, substitute the T (tape) with X and you get a VxL. That is, plug in what ever X word that makes you happy or marketable or a Shiny New TLA. For example Virtual Disk Library, Virtual Storage Library, Virtual Backup Library, Virtual Compression Library, Virtual Dedupe Library, Virtual ILM Library, Virtual Archive Library, Virtual Cloud Library and so forth. Granted some VxLs only emulate tape and hence are VTLs while others support NAS and other protocols (or personalities) not to mention functionality ranging from replication, DFR as well as automated policy management.

However, keep in mind that if your preference is VTL, VxL or what ever other buzzword bingo name that you want to use or come up with, look at how virtualization in the form of abstraction, transparency and emulation can bridge the gap between the new (disk based data protection) combined with DFR (Data Footprint Reduction) and the old (existing backup/restore, archive or other management tools and processes.

Here are some additional links pertaining to VTLs (excuse me, VxLs):

  • Virtual tape libraries: Old backup technology holdover or gateway to the future?
  • Not to mention here, here, here, here or here.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

End to End (E2E) Systems Resource Analysis (SRA) for Cloud and Virtual Environments

A new StorageIO Industry Trends and Perspective (ITP) white paper titled “End to End (E2E) Systems Resource Analysis (SRA) for Cloud, Virtual and Abstracted Environments” is now available at www.storageioblog.com/reports compliments of SANpulse technologies.

End to End (E2E) Systems Resource Analysis (SRA) for Virtual, Cloud and abstracted environments: Importance of Situational Awareness for Virtual and Abstracted Environments

Abstract:
Many organizations are in the planning phase or already executing initiatives moving their IT applications and data to abstracted, cloud (public or private) virtualized or other forms of efficient, effective dynamic operating environments. Others are in the process of exploring where, when, why and how to use various forms of abstraction techniques and technologies to address various issues. Issues include opportunities to leverage virtualization and abstraction techniques that enable IT agility, flexibility, resiliency and salability in a cost effective yet productive manner.

An important need when moving to a cloud or virtualized dynamic environment is to have situational awareness of IT resources. This means having insight into how IT resources are being deployed to support business applications and to meet service objectives in a cost effective manner.

Awareness of IT resource usage provides insight necessary for both tactical and strategic planning as well as decision making. Effective management requires insight into not only what resources are at hand but also how they are being used to decide where different applications and data should be placed to effectively meet business requirements.

Learn more about the importance and opportunities associated with gaining situational awareness using E2E SRA for virtual, cloud and abstracted environments in this StorageIO Industry Trends and Perspective (ITP) white paper compliments of SANpulse technologies by clicking here.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

August 2010 StorageIO News Letter

StorageIO News Letter Image
August 2010 Newsletter

Welcome to the August Summer Wrap Up 2010 edition of the Server and StorageIO Group (StorageIO) newsletter. This follows the June 2010 edition building on the great feedback received from recipients.
Items that are new in this expanded edition include:

  • Out and About Update
  • Industry Trends and Perspectives (ITP)
  • Featured Article

You can access this news letter via various social media venues (some are shown below) in addition to StorageIO web sites and subscriptions. Click on the following links to view the August 2010 edition as an HTML or PDF or, to go to the newsletter page to view previous editions.

Follow via Goggle Feedburner here or via email subscription here.

You can also subscribe to the news letter by simply sending an email to newsletter@storageio.com

Enjoy this edition of the StorageIO newsletter, let me know your comments and feedback.

Cheers gs

Greg Schulz – Author The Green and Virtual Data Center (CRC) and Resilient Storage Networks (Elsevier)
twitter @storageio

Data footprint reduction (Part 1): Life beyond dedupe and changing data lifecycles

Over the past couple of weeks there has been a flurry of IT industry activity around data footprint impact reduction with Dell buying Ocarina and IBM acquiring Storwize. For those who want the quick (compacted, reduced) synopsis of what Dell buying Ocarina as well as IBM acquiring Storwize means read this post here along with some of my comments here and here.

Now, before any Drs or Divas of Dedupe get concerned and feel the need to debate dedupes expanding role, success or applicability, relax, take a deep breath, then read on and take another breath before responding if so inclined.

The reason I mention this is that some may mistake this as a piece against or not in favor of dedupe as it talks about life beyond dedupe which could be mistaken as indicating dedupes diminished role which is not the case (read ahead and see figure 5 to see the bigger picture).

Likewise some might feel that since this piece talks about archiving for compliance and non regulatory situations along with compression, data management and other forms of data footprint reduction they may be compelled to defend dedupes honor and future role.

Again, relax, take a deep breath and read on, this is not about the death of dedupe.

Now for others, you might wonder why the dedupe tongue in check humor mentioned above (which is what it is) and the answer is quite simple. The industry in general is drunk on dedupe and in some cases thus having numbed its senses not to mention having blurred its vision of the even bigger opportunities for the business benefits of data footprint reduction beyond todays backup centric or vmware server virtualization dedupe discussions.

Likewise, it is time for the industry to wake (or sober) up and instead of trying to stuff everything under or into the narrowly focused dedupe bottle. Instead, realize that there is a broader umbrella called data footprint impact reduction which includes among other techniques, dedupe, archive, compression, data management, data deletion and thin provisioning across all types of data and applications. What this means is a broader opportunity or market than what exists or being discussed today leveraging different techniques, technologies and best practices.

Consequently this piece is about expanding the discussion to the larger opportunity for vendors or vars to extend their focus to the bigger world of overall data footprint impact reduction beyond where currently focused. Likewise, this is about IT customers realizing that there are more opportunities to address data and storage optimization across your entire organization using various techniques instead of just focusing on backup.

In other words, there is a very bright future for dedupe as well as other techniques and technologies that fall under the data footprint reduction umbrella including data stored online, offline, near line, primary, secondary, tertiary, virtual and in a public or private cloud..

Before going further however lets take a step back and look at some business along with IT issues, challenges and opportunities.

What is the business and IT issue or challenge?
Given that there is no such thing as a data or information recession shown in figure 1, IT organizations of all size are faced with the constant demand to store more data, including multiple copies of the same or similar data, for longer periods of time.


Figure 1: IT resource demand growth continues

The result is an expanding data footprint, increased IT expenses, both capital and operational, due to additional Infrastructure Resource Management (IRM) activities to sustain given levels of application Quality of Service (QoS) delivery shown in figure 2.

Some common IT costs associated with supporting an increased data footprint include among others:

  • Data storage hardware and management software tools acquisition
  • Associated networking or IO connectivity hardware, software and services
  • Recurring maintenance and software renewal fees
  • Facilities fees for floor space, power and cooling along with IT staffing
  • Physical and logical security for data and IT resources
  • Data protection for HA, BC or DR including backup, replication and archiving


Figure 2: IT Resources and cost balancing conflicts and opportunities

Figure 2 shows the result is that IT organizations of all size are faced with having to do more with what they have or with less including maximizing available resources. In addition, IT organizations often have to overcome common footprint constraints (available power, cooling, floor space, server, storage and networking resources, management, budgets, and IT staffing) while supporting business growth.

Figure 2 also shows that to support demand, more resources are needed (real or virtual) in a denser footprint, while maintaining or enhancing QoS plus lowering per unit resource cost. The trick is improving on available resources while maintaining QoS in a cost effective manner. By comparison, traditionally if costs are reduced, one of the other curves (amount of resources or QoS) are often negatively impacted and vice versa. Meanwhile in other situations the result can be moving problems around that later resurface elsewhere. Instead, find, identify, diagnose and prescribe the applicable treatment or form of data footprint reduction or other IT IRM technology, technique or best practices to cure the ailment.

What is driving the expanding data footprint?
Granted more data can be stored in the same or smaller physical footprint than in the past, thus requiring less power and cooling per Gbyte, Tbyte or PByte. Data growth rates necessary to sustain business activity, enhanced IT service delivery and enable new applications are placing continued demands to move, protect, preserve, store and serve data for longer periods of time.

The popularity of rich media and Internet based applications has resulted in explosive growth of unstructured file data requiring new and more scalable storage solutions. Unstructured data includes spreadsheets, Power Point, slide decks, Adobe PDF and word documents, web pages, video and audio JPEG, MP3 and MP4 files. This trend towards increasing data storage requirements does not appear to be slowing anytime soon for organizations of all sizes.

After all, there is no such thing as a data or information recession!

Changing data access lifecycles
Many strategies or marketing stories are built around the premise that shortly after data is created data is seldom, if ever accessed again. The traditional transactional model lends itself to what has become known as information lifecycle management (ILM) where data can and should be archived or moved to lower cost, lower performing, and high density storage or even deleted where possible.

Figure 3 shows as an example on the left side of the diagram the traditional transactional data lifecycle with data being created and then going dormant. The amount of dormant data will vary by the type and size of an organization along with application mix. 


Figure 3: Changing access and data lifecycle patterns

However, unlike the transactional data lifecycle models where data can be removed after a period of time, Web 2.0 and related data needs to remain online and readily accessible. Unlike traditional data lifecycles where data goes dormant after a period of time, on the right side of figure 3, data is created and then accessed on an intermittent basis with variable frequency. The frequency between periods of inactivity could be hours, days, weeks or months and, in some cases, there may be sustained periods of activity.

A common example is a video or some other content that gets created and posted to a web site or social networking site such as Face book, Linked in, or You Tube among others. Once the content is discussed, while it may not change, additional comment and collaborative data can be wrapped around the data as additional viewers discover and comment on the content. Solution approaches for the new category and data lifecycle model include low cost, relative good performing high capacity storage such as clustered bulk storage as well as leveraging different forms of data footprint reduction techniques.

Given that a large (and growing) percentage of new data is unstructured, NAS based storage solutions including clustered, bulk, cloud and managed service offerings with file based access are gaining in popularity. To reduce cost along with support increased business demands (figure 2), a growing trend is to utilize clustered, scale out and bulk NAS file systems that support NFS, CIFS for concurrent large and small IOs as well as optionally pNFS for large parallel access of files. These solutions are also increasingly being deployed with either built in or add on accessorized data footprint reduction techniques including archive, policy management, dedupe and compression among others.

What is your data footprint impact?
Your data footprint impact is the total data storage needed to support your various business application and information needs. Your data footprint may be larger than how much actual data storage you have as seen in figure 4. In Figure 4, an example is an organization that has 20TBytes of storage space allocated and being used for databases, email, home directories, shared documents, engineering documents, financial and other data in different formats (structured and unstructured) not to mention varying access patterns.


Figure 4: Expanding data footprint due to data proliferation and copies being retained

Of the 20TBytes of data allocated and used, it is very likely that the consumed storage space is not 100 percent used. Database tables may be sparsely (empty or not fully) allocated and there is likely duplicate data in email and other shared documents or folders. Additionally, of the 20TBytes, 10TBytes are duplicated to three different areas on a regular basis for application testing, training and business analysis and reporting purposes.

The overall data footprint is the total amount of data including all copies plus the additional storage required for supporting that data such as extra disks for Redundant Array of Independent Disks (RAID) protection or remote mirroring.

In this overly simplified example, the data footprint and subsequent storage requirement are several times that of the 20TBytes of data. Consequently, the larger the data footprint the more data storage capacity and performance bandwidth needed, not to mention being managed, protected and housed (powered, cooled, situated in a rack or cabinet on a floor somewhere).

Data footprint reduction techniques
While data storage capacity has become less expensive on a relative basis, as data footprint continue to expand in order to support business requirements, more IT resources will be needed to be made available in a cost effective, yet QoS satisfying manner (again, refer back to figure 2). What this means is that more IT resources including server, storage and networking capacity, management tools along with associated software licensing and IT staff time will be required to protect, preserve and serve information.

By more effectively managing the data footprint across different applications and tiers of storage, it is possible to enhance application service delivery and responsiveness as well as facilitate more timely data protection to meet compliance and business objectives. To realize the full benefits of data footprint reduction, look beyond backup and offline data improvements to include online and active data using various techniques such as those in table 1 among others.

There are several methods (shown in table 1) that can be used to address data footprint proliferation without compromising data protection or negatively impacting application and business service levels. These approaches include archiving of structured (database), semi structured (email) and unstructured (general files and documents), data compression (real time and offline) and data deduplication.

 

Archiving

Compression

Deduplication

When to use

Structured (database), email and unstructured

Online (database, email, file sharing), backup or archive

Backup or archiving or recurring and similar data

Characteristic

Software to identify and remove unused data from active storage devices

Reduce amount of data to be moved (transmitted) or stored on disk or tape.

Eliminate duplicate files or file content observed over a period of time to reduce data footprint

Examples

Database, email, unstructured file solutions with archive storage

Host software, disk or tape, (network routers) and compression appliances or software as well as appearing in some primary storage system solutions

Backup and archive target devices and Virtual Tape Libraries (VTLs), specialized appliances

Caveats

Time and knowledge to know what and when to archive and delete, data and application aware

Software based solutions require host CPU cycles impacting application performance

Works well in background mode for backup data to avoid performance impact during data ingestion

Table 1: Data footprint reduction approaches and techniques

Archiving for compliance and general data retention
Data archiving is often perceived as a solution for compliance, however, archiving can be used for many other non compliance purposes. These include general data footprint reduction, to boost performance and enhance routine data maintenance and data protection. Archiving can be applied to structured databases data, semi structured email data and attachments and unstructured file data.

A key to deploying an archiving solution is having insight into what data exists along with applicable rules and policies to determine what can be archived, for how long, how many copies and how data ultimately may be finally retired or deleted. Archiving requires a combination of hardware, software and people to implement business rules.

A challenge with archiving is having the time and tools available to identify what data should be archived and what data can be securely destroyed when no longer needed. Further complicating archiving is that knowledge of the data value is also needed; this may well include legal issues as to who is responsible for making decisions on what data to keep or discard.

If a business can invest in the time and software tools, as well as identify which data to archive to support an effective archive strategy, the returns can be very positive towards reducing the data footprint without limiting the amount of information available for use.

Data compression (real time and offline)
Data compression is a commonly used technique for reducing the size of data being stored or transmitted to improve network performance or reduce the amount of storage capacity needed for storing data. If you have used a traditional or TCP/IP based telephone or cell phone, watched either a DVD or HDTV, listened to an MP3, transferred data over the internet or used email you have most likely relied on some form of compression technology that is transparent to you. Some forms of compression are time delayed, such as using PKZIP to zip files, while others are real time or on the fly based such as when using a network, cell phone or listening to an MP3.

Two different approaches to data compression that vary in time delay or impact on application performance along with the amount of compression and loss of data are loss less (no data loss) and lossy (some data loss for higher compression ratio). In addition to these approaches, there are also different implementations of including real time for no performance impact to applications and time delayed where there is a performance impact to applications.

In contrast to traditional ZIP or offline, time delayed compression approaches that require complete decompression of data prior to modification, online compression allows for reading from, or writing to, any location within a compressed file without full file decompression and resulting application or time delay. Real time appliance or target based compression capabilities are well suited for supporting online applications including databases, OLTP, email, home directories, web sites and video streaming among others without consuming host server CPU or memory resources or degrading storage system performance.

Note that with the increase of CPU server processing performance along with multiple cores, server based compression running in applications such as database, email, file systems or operating systems can be a viable option for some environments.

A scenario for using real time data compression is for time sensitive applications that require large amounts of data such as online databases, video and audio media servers, web and analytic tools. For example, databases such as Oracle support NFS3 Direct IO (DIO) and Concurrent IO (CIO) capabilities to enable random and direct addressing of data within an NFS based file. This differs from traditional NFS operations where a file would be sequential read or written.

Another example of using real time compression is to combine a NAS file server configured with 300GB or 600GB high performance 15.5K Fibre Channel or SAS HDDs in addition to flash based SSDs to boost the effective storage capacity of active data without introducing a performance bottleneck associated with using larger capacity HDDs. Of course, compression would vary with the type of solution being deployed and type of data being stored just as dedupe ratios will differ depending on algorithm along with if text or video or object based among other factors.

Deduplication (Dedupe)
Data deduplication (also known as single instance storage, commonalty factoring, data difference or normalization) is a data footprint reduction technique that eliminates the occurrence of the same data. Deduplication works by normalizing the data being backed up or stored by eliminating recurring or duplicate copies of files or data blocks depending on the implementation.

Some data deduplication solutions boast spectacular ratios for data reduction given specific scenarios, such as backup of repetitive and similar files, while providing little value over a broader range of applications.

This is in contrast with traditional data compression approaches that provide lower, yet more predictable and consistent data reduction ratios over more types of data and application, including online and primary storage scenarios. For example, in environments where there is little to no common or repetitive data files, data deduplication will have little to no impact while data compression generally will yield some amount of data footprint reduction across almost all types of data.

Some data deduplication solution providers have either already added, or have announced plans to add, compression techniques to compliment and increase the data footprint effectiveness of their solutions across a broader range of applications and storage scenarios, attesting to the value and importance of data compression to reduce data footprint.

When looking at deduplication solutions, determine if the solution is designed to scale in terms of performance, capacity and availability over a large amount of data along with how restoration of data will be impacted by scaling for growth. Other items to consider include how data is reduplicated, such as real time using inline or some form of time delayed post processing, and the ability to select the mode of operation.

For example, a dedupe solution may be able to process data at a specific ingest rate inline until a certain threshold is hit and then processing reverts to post processing so as to not cause a performance degradation to the application writing data to the deduplication solution. The downside of post processing is that more storage is needed as a buffer. It can, however, also enable solutions to scale without becoming a bottleneck during data ingestion.

However, there is life beyond dedupe which is to in no way diminish dedupe or its very strong and bright future, one that Im increasingly convinced of having talked with hundreds of IT professionals (e.g. the customers) is that only the surface is being scratched for dedupe, not to mention larger data footprint impact opportunity seen in figure 5.


Figure 5: Dedupe adoption and deployment waves over time

While dedupe is a popular technology from a discussion standpoint and has good deployment traction, it is far from reaching mass customer adoption or even broad coverage in environments where it is being used. StorageIO research shows broadest adoption of dedupe centered around backup in smaller or SMB environments (dedupe deployment wave one in figure 5) with some deployment in Remote Office Branch Office (ROBO) work groups as well as departmental environments.

StorageIO research also shows that complete adoption in many of those SMB, ROBO, work group or smaller environments has yet to reach 100 percent. This means that there remains a large population that has yet to deploy dedupe as well as further opportunities to increase the level of dedupe deployment by those already doing so.

There has also been some early adoption in larger core IT environments where dedupe coexists with complimenting existing data protection and preservation practices. Another current deployment scenario for dedupe has been for supporting core edge deployments in larger environments that provide support for backup and data protection of ROBO, work group and departmental systems.

Note that figure 5 simply shows the general types of environments in which dedupe is being adopted and not any sort of indicators as to the degree of deployment by a given customer or IT environment.

What to do about your expanding data footprint impact?
Develop an overall data foot reduction strategy that leverages different techniques and technologies addressing online primary, secondary and offline data. Assess and discover what data exists and how it is used in order to effectively manage storage needs.

Determine policies and rules for retention and deletion of data combining archiving, compression (online and offline) and dedupe in a comprehensive data footprint strategy. The benefit of a broader, more holistic, data footprint reduction strategy is the ability to address the overall environment, including all applications that generate and use data as well as IRM or overhead functions that compound and impact the data footprint.

Data footprint reduction: life beyond (and complimenting) dedupe
The good news is that the Drs. and Divas of dedupe marketing (the ones who also are good at the disco dedupe dance debates) have targeted backup as an initial market sweet (and success) spot shown in figure 5 given the high degree of duplicate data.


Figure 6: Leverage multiple data footprint reduction techniques and technologies

However that same good news is bad news in that there is now a stigma that dedupe is only for backup, similar to how archive was hijacked by the compliance marketing folks in the post Y2K era. There are several techniques that can be used individually to address specific data footprint reduction issues or in combination as seen in figure 7 to implement a more cohesive and effective data footprint reduction strategy.


Figure 7: How various data footprint reduction techniques are complimentary

What this means is that both archive, dedupe as well as other forms of data footprint reduction can and should be used beyond where they have been target marketed using the applicable tool for the task at hand. For example, a common industry rule of thumb is that on average, ten percent of data changes per day (your mileage and rate of change will certainly vary given applications, environment and other factors).

Now assuming that you have 100TB (feel free to subtract a zero or two, or add as many as needed) of data (note I did not say storage capacity or percent utilized), ten percent change would be 10TB that needs to be backed up, replicated and so forth. Now with basic 2 to 1 streaming tape compression (2.5 to 1 in upcoming LTO enhancements) would reduce the daily backup footprint from 10TB to 5TB.

Using dedupe with 10 to 1 would get that from 10TB down to 1TB or about the size of a large capacity disk drive. With 20 to 1 that cuts the daily backup down to 500GB and so forth. The net effect is that more daily backups can be stored in the same footprint which in turn helps expedite individual file recover by having more options to choose from off of the disk based cache, buffer or storage pool.

On the other hand, if your objective is to reduce and eliminate storage capacity, then the same amount of backups can be stored on less disk freeing up resources. Now take the savings times the number of days in your backup retention and you should see the numbers start to add up.

Now what about the other 90 percent of the data that may not have changed, or, that did change and exists on higher performance storage?

Can its footprint impact be reduced?

The answer should be perhaps or it depends as well as prompts the question of what tool would be best. There is a popular thinking as is often the case with industry buzzwords or technologies to use it everywhere. After all goes the thinking, if it is a good thing why not use and deploy more of it everywhere?

Keep in mind that dedupe trades time to perform thinking and apply intelligence to further reduce data in exchange for space capacity. Thus trading time for space capacity can have a negative impact on applications that need lower response time, higher performance where the focus is on rates vs ratios. For example, the other 90 to 100 percent of the data in the above example may have to be on a mix of high and medium performance storage to meet QoS or service level agreement (SLA) objectives. While it would fun or perhaps cool to try and achieve a high data reduction ratio on the entire 100TB of active data with dedupe (e.g. trying to achieve primary dedupe), the performance impacts could have a negative impact.

The option is to apply a mix of different data footprint reduction techniques across the entire 100TB. That is, use dedupe where applicable and higher reduction ratios can be achieved while balancing performance, compression used for streaming data to tape for retention or archive as well as in databases or other applications software not to mention in networks. Likewise, use real time compression or what some refer to as primary dedupe for online active changing data along with online static read only data.

Deploy a comprehensive data footprint reduction strategy combining various techniques and technologies to address point solution needs as well as the overall environment, including online, near line for backup, and offline for archive data.

Lets not forget about archiving, thin provisioning, space saving snapshots, commonsense data management among other techniques across the entire environment. In other words, if your focus is just on dedupe for backup to
achieve an optimized and efficient storage environment, you are also missing

out on a larger opportunity. However, this also means having multiple tools or

technologies in your IT IRM toolbox as well as understanding what to use when, where and why.

Data transfer rates is a key metric for performance (time) optimization such as meeting backup or restore or other data protection windows. Data reduction ratios is a key metric for capacity (space) optimization where the focus is on storing as much data in a given footprint

Some additional take away points:

  • Develop a data footprint reduction strategy for online and offline data
  • Energy avoidance can be accomplished by powering down storage
  • Energy efficiency can be accomplished by using tiered storage to meet different needs
  • Measure and compare storage based on idle and active workload conditions
  • Storage efficiency metrics include IOPS or bandwidth per watt for active data
  • Storage capacity per watt per footprint and cost is a measure for in active data
  • Small percentage reductions on a large scale have big benefits
  • Align the applicable form of virtualization for the given task at hand

Some links for additional reading on the above and related topics

Wrap up (for now, read part II here)

For some applications reduction ratios are an important focus on the tools or modes of operations that achieve those results.

Likewise for other applications where the focus is on performance with some data reduction benefit, tools are optimized for performance first and reduction secondary.

Thus I expect messaging from some vendors to adjust (expand) to those capabilities that they have in their toolboxes (product portfolios) offerings

Consequently, IMHO some of the backup centric dedupe solutions may find themselves in niche roles in the future unless they can diversity. Vendors with multiple data footprint reduction tools will also do better than those with only a single function or focused tool.

However for those who only have a single or perhaps a couple of tools, well, guess what the approach and messaging will be.

After all, if all you have is a hammer everything looks like a nail, if all you have is a screw driver, well, you get the picture.

On the other hand, if you are still not clear on what all this means, send me a note, give a call, post a comment or a tweet and will be happy to discuss with you.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

EMC VPLEX: Virtual Storage Redefined or Respun?

In a flurry of announcements that coincide with EMCworld occurring in Boston this week of May 10 2010 EMC officially unveiled the Virtual Storage vision initiative (aka twitter hash tag of #emcvs) and initial VPLEX product. The Virtual Storage initiative was virtually previewed back in March (See my previous post here along with one from Stu Miniman (twitter @stu) of EMC here or here) and according to EMC the VPLEX product was made generally available (GA) back in April.

The Virtual Storage vision and associated announcements consisted of:

  • Virtual Storage vision – Big picture  initiative view of what and how to enable private clouds
  • VPLEX architecture – Big picture view of federated data storage management and access
  • First VPLEX based product – Local and campus (Metro to about 100km) solutions
  • Glimpses of how the architecture will evolve with future products and enhancements


Figure 1: EMC Virtual Storage and Virtual Server Vision and Big Pictures

The Big Picture
The EMC Virtual Storage vision (Figure 1) is the foundation of a private IT cloud which should enable characteristics including transparency, agility, flexibility, efficient, always on, resiliency, security, on demand and scalable. Think of it this way, EMC wants to enable and facilitate for storage what is being done by server virtualization hypervisor vendors including VMware (which happens to be owned by EMC), Microsoft HyperV and Citrix/Xen among others. That is, break down the physical barriers or constraints around storage similar to how virtual servers release applications and their operating systems from being tied to a physical server.

While the current focus of desktop, server and storage virtualization has been focused on consolidation and cost avoidance, the next big wave or phase is life beyond consolidation where the emphasis expands to agility, flexibility, ease of use, transparency, and portability (Figure 2). In the next phase which puts an emphasis around enablement and doing more with what you have while enhancing business agility focus extends from how much can be consolidated or the number of virtual machines per physical machine to that of using virtualization for flexibility, transparency (read more here and here or watch here).


Figure 2: Virtual Storage Big Picture

That same trend will be happening with storage where the emphasis also expands from how much data can be squeezed or consolidated onto a given device to that of enabling flexibility and agility for load balancing, BC/DR, technology upgrades, maintenance and other routine Infrastructure Resource Management (IRM) tasks.

For EMC, achieving this vision (both directly for storage, and indirectly for servers via their VMware subsidiary) is via local and distributed (metro and wide area) federation management of physical resources to support virtual data center operations. EMC building blocks for delivering this vision including VPLEX, data and storage management federation across EMC and third party products, FAST (fully automated storage tiering), SSD, data protection and data footprint reduction and data protection management products among others.

Buzzword bingo aside (e.g. LAN, SAN, MAN, WAN, Pots and Pans) along with Automation, DWDM, Asynchronous, BC, BE or Back End, Cache coherency, Cache consistency, Chargeback, Cluster, db loss, DCB, Director, Distributed, DLM or Distributed Lock Management, DR, Foe or Fibre Channel over Ethernet, FE or Front End, Federated, FAST, Fibre Channel, Grid, HyperV, Hypervisor, IRM or Infrastructure Resource Management, I/O redirection, I/O shipping, Latency, Look aside, Metadata, Metrics, Public/Private Cloud, Read ahead, Replication, SAS, Shipping off to Boston, SRA, SRM, SSD, Stale Reads, Storage virtualization, Synchronization, Synchronous, Tiering, Virtual storage, VMware and Write through among many other possible candidates the big picture here is about enabling flexibility, agility, ease of deployment and management along with boosting resource usage effectiveness and presumably productivity on a local, metro and future global basis.


Figure 3: EMC Storage Federation and Enabling Technology Big Picture

The VPLEX Big Picture
Some of the tenants of the VPLEX architecture (Figure 3) include a scale out cluster or grid design for local and distributed (metro and wide area) access where you can start small and evolve as needed in a predictable and deterministic manner.


Figure 4: Generic Virtual Storage (Local SAN and MAN/WAN) and where VPLEX fits

The VPLEX architecture is targeted towards enabling next generation data centers including private clouds where ease and transparency of data movement, access and agility are essential. VPLEX sits atop existing EMC and third party storage as a virtualization layer between physical or virtual servers and in theory, other storage systems that rely on underlying block storage. For example in theory a NAS (NFS, CIFS, and AFS) gateway, CAS content archiving or Object based storage system or purpose specific database machine could sit between actual application servers and VPLEX enabling multiple layers of flexibility and agility for larger environments.

At the heart of the architecture is an engine running a highly distributed data caching algorithm that uses an approach where a minimal amount of data is sent to other nodes or members in the VPLEX environment to reduce overhead and latency (in theory boosting performance). For data consistency and integrity, a distributed cache coherency model is employed to protect against stale reads and writes along with load balancing, resource sharing and failover for high availability. A VPLEX environment consists of a federated management view across multiple VPLEX clusters including the ability to create a stretch volume that is accessible across multiple VPLEX clusters (Figure 5).


Figure 5: EMC VPLEX Big Picture


Figure 6: EMC VPLEX Local with 1 to 4 Engines

Each VPLEX local cluster (Figure 6) is made up of 1 to 4 engines (Figure 7) per rack with each engine consisting of two directors each having 64GByte of cache, localized compute Intel processors, 16 Front End (FE) and 16 Back End (BE) Fibre Channel ports configured in a high availability (HA). Communications between the directors and engines is Fibre Channel based. Meta data is moved between the directors and engines in 4K blocks to maintain consistency and coherency. Components are fully redundant and include phone home support.


Figure 7: EMC VPLEX Engine with redundant directors

VPLEX initially host servers supported include VMware, Cisco UCS, Windows, Solaris, IBM AIX, HPUX and Linux along with EMC PowerPath and Windows multipath management drivers. Local server clusters supported include Symantec VCS, Microsoft MSCS and Oracle RAC along with various volume mangers. SAN fabric connectivity supported includes Brocade and Cisco as well as Legacy McData based products.

VPLEX also supports cache (Figure 8 ) write thru to preserve underlying array based functionality and performance with 8,000 total virtualized LUNs per system. Note that underlying LUNs can be aggregated or simply passed through the VPLEX. Storage that attaches to the BE Fibre Channel ports include EMC Symmetrix VMAX and DMX along with CLARiiON CX and CX4. Third party storage supported includes HDS9000 and USPV/VM along with IBM DS8000 and others to be added as they are certified. In theory given that the VPLEX presents block based storage to hosts; one would also expect that NAS, CAS or other object based gateways and servers that rely on underlying block storage to also be supported in the future.


Figure 8: VPLEX Architecture and Distributed Cache Overview

Functionality that can be performed between the cluster nodes and engines with VPLEX include data migration and workload movement across different physical storage systems or sites along with shared access with read caching on a local and distributed basis. LUNS can also be pooled across different vendors underlying storage solutions that also retain their native feature functionality via VPLEX write thru caching.

Reads from various servers can be resolved by any node or engine that checks their cache tables (Figure 8 ) to determine where to resolve the actual I/O operation from. Data integrity checks are also maintained to prevent stale reads or write operations from occurring. Actual meta data communications between nodes is very small to enable state fullness while reducing overhead and maximizing performance. When a change to cache data occurs, meta information is sent to other nodes to maintain the distributed cache management index schema. Note that only pointers to where data and fresh cache entries reside are what is stored and communicated in the meta data via the distributed caching algorithm.


Figure 9: EMC VPLEX Metro Today

For metro deployments, two clusters (Figure 9) are utilized with distances supported up to about 100km or about 5ms of latency in a synchronous manner utilizing long distance Fibre Channel optics and transceivers including Dense Wave Division Multiplexing (DWDM) technologies (See Chapter 6: Metropolitan and Wide Area Storage Networking in Resilient Storage Networking (Elsevier) for additional details on LAN, MAN and WAN topics).

Initially EMC is supporting local or Metro including Campus based VPLEX deployments requiring synchronous communications however asynchronous (WAN) Geo and Global based solutions are planned for the future (Figure 10).


Figure 10: EMC VPLEX Future Wide Area and Global

Online Workload Migration across Systems and Sites
Online workload or data movement and migration across storage systems or sites is not new with solutions available from different vendors including Brocade, Cisco, Datacore, EMC, Fujitsu, HDS, HP, IBM, LSI and NetApp among others.

For synchronization and data mobility operations such as a VMware Vmotion or Microsoft HyperV Live migration over distance, information is written to separate LUNs in different locations across what are known as stretch volumes to enable non disruptive workload relocation across different storage systems (arrays) from various vendors. Once synchronization is completed, the original source can be disconnected or taken offline for maintenance or other common IRM tasks. Note that at least two LUNs are required, or put another way, for every stretch volume, two LUNs are subtracted from the total number of available LUNs similar to how RAID 1 mirroring requires at least two disk drives.

Unlike other approaches that for coherency and performance rely on either no cached data, or, extensive amounts of cached data along with subsequent overhead for maintaining state fullness (consistency and coherency) including avoiding stale reads or writes, VPLEX relies on a combination of distributed cache lookup tables along with pass thru access to underlying storage when or where needed. Consequently large amounts of data does not need to be cached as well as shipped between VPLEX devices to maintain data consistency, coherency or performance which should also help to keep costs affordable.

Approach is not unique, it is the implementation
Some storage virtualization solutions that have been software based running on an appliance or network switch as well as hardware system based have had a focus of emulating or providing competing capabilities with those of mid to high end storage systems. The premise has been to use lower cost, less feature enabled storage systems aggregated behind the appliance, switch or hardware based system to provide advanced data and storage management capabilities found in traditional higher end storage products.

VPLEX while like any tool or technology could be and probably will be made to do other things than what it is intended for is really focused on, flexibility, transparency and agility as opposed to being used as a means of replacing underlying storage system functionality. What this means is that while there is data movement and migration capabilities including ability to synchronize data across sites or locations, VPLEX by itself is not a replacement for the underlying functionality present in both EMC and third party (e.g. HDS, HP, IBM, NetApp, Oracle/Sun or others) storage systems.

This will make for some interesting discussions, debates and applies to oranges comparisons in particular with those vendors whose products are focused around replacing or providing functionality not found in underlying storage system products.

In a nut shell summary, VPLEX and the Virtual Storage story (vision) is about enabling agility, resiliency, flexibility, data and resource mobility to simply IT Infrastructure Resource Management (IRM). One of the key themes of global storage federation is anywhere access on a local, metro, wide area and global basis across both EMC and heterogeneous third party vendor hardware.

Lets Put it Together: When and Where to use a VPLEX
While many storage virtualization solutions are focused around consolidation or pooling, similar to first wave server and desktop virtualization, the next general broad wave of virtualization is life beyond consolidation. That means expanding the focus of virtualization from consolidation, pooling or LUN aggregation to that of enabling transparency for agility, flexibility, data or system movement, technology refresh and other common time consuming IRM tasks.

Some applications or usage scenarios in the future should include in addition to VMware Vmotion, Microsoft HypverV and Microsoft Clustering along with other host server closuring solutions.


Figure 11: EMC VPLEX Usage Scenarios

Thoughts and Industry Trends Perspectives:

The following are various thoughts, comments, perspectives and questions pertaining to this and storage, virtualization and IT in general.

Is this truly unique as is being claimed?

Interestingly, the message Im hearing out of EMC is not the claim that this is unique, revolutionary or the industries first as is so often the case by vendors, rather that it is their implementation and ability to deploy on a broad perspective basis that is unique. Now granted you will probably hear as is often the case with any vendor or fan boy/fan girl spins of it being unique and Im sure this will also serve up plenty of fodder for mudslinging in the blogsphere, YouTube galleries, twitter land and beyond.

What is the DejaVu factor here?

For some it will be nonexistent, yet for others there is certainly a DejaVu depending on your experience or what you have seen and heard in the past. In some ways this is the manifestation of many vision and initiatives from the late 90s and early 2000s when storage virtualization or virtual storage in an open context jumped into the limelight coinciding with SAN activity. There have been products rolled out along with proof of concept technology demonstrators, some of which are still in the market, others including companies have fallen by the way side for a variety of reasons.

Consequently if you were part of or read or listened to any of the discussions and initiatives from Brocade (Rhapsody), Cisco (SVC, VxVM and others), INRANGE (Tempest) or its successor CNT UMD not to mention IBM SVC, StorAge (now LSI), Incipient (now part of Texas Memory) or Troika among others you should have some DejaVu.

I guess that also begs the question of what is VPLEX, in band, out of band or hybrid fast path control path? From what I have seen it appears to be a fast path approach combined with distributed caching as opposed to a cache centric inband approaches such as IBM SVC (either on a server or as was tried on the Cisco special service blade) among others.

Likewise if you are familiar with IBM Mainframe GDPS or even EMC GDDR as well as OpenVMS Local and Metro clusters with distributed lock management you should also have DejaVu. Similarly if you had looked at or are familiar with any of the YottaYotta products or presentations, this should also be familiar as EMC acquired the assets of that now defunct company.

Is this a way for EMC to sell more hardware along with software products?

By removing barriers enabling IT staffs to support more data on more storage in a denser and more agile footprint the answer should be yes, something that we may see other vendors emulate, or, make noise about what they can or have been doing already.

How is this virtual storage spin different from the storage virtualization story?

That all depends on your view or definition as well as belief systems and preferences for what is or what is not virtual storage vs. storage virtualization. For some who believe that storage virtualization is only virtualization if and only if it involves software running on some hardware appliance or vendors storage system for aggregation and common functionality than you probably wont see this as virtual storage let alone storage virtualization. However for others, it will be confusing hence EMC introducing terms such as federation and avoiding terms including grid to minimize confusion yet play off of cloud crowd commotion.

Is VPLEX a replacement for storage system based tiering and replication?

I do not believe so and even though some vendors are making claims that tiered storage is dead, just like some vendors declared a couple of years ago that disk drives were going to be dead this year at the hands of SSD, neither has come to life so to speak pun intended. What this means for VPLEX is that it leverages underlying automated or manual tiering found in storage systems such as EMC FAST enabled or similar policy and manual functions in third party products.

What VPLEX brings to the table is the ability to transparently present a LUN or volume locally or over distance with shared access while maintaining cache and data coherency. This means that if a LUN or volume moves the applications or file system or volume managers expecting to access that storage will not be surprised, panic or encounter failover problems. Of course there will be plenty of details to be dug into and seen how it all actually works as is the case with any new technology.

Who is this for?

I see this as for environments that need flexibility and agility across multiple storage systems either from one or multiple vendors on a local or metro or wide area basis. This is for those environments that need ability to move workloads, applications and data between different storage systems and sites for maintenance, upgrades, technology refresh, BC/DR, load balancing or other IRM functions similar to how they would use virtual server migration such as VMotion or Live migration among others.

Do VPLEX and Virtual Storage eliminate need for Storage System functionality?

I see some storage virtualization solutions or appliances that have a focus of replacing underlying storage system functionality instead of coexisting or complementing. A way to test for this approach is to listen or read if the vendor or provider says anything along the lines of eliminating vendor lock in or control of the underlying storage system. That can be a sign of the golden rule of virtualization of whoever controls the virtualization functionality (at the server hypervisor or storage) controls the gold! This is why on the server side of things we are starting to see tiered hypervisors similar to tiered servers and storage where mixed hypervisors are being used for different purposes. Will we see tiered storage hypervisors or virtual storage solutions the answer could be perhaps or it depends.

Was Invista a failure not going into production and this a second attempt at virtualization?

There is a popular myth in the industry that Invista never saw the light of day outside of trade show expo or other demos however the reality is that there are actual customer deployments. Invista unlike other storage virtualization products had a different focus which was that around enabling agility and flexibility for common IRM tasks, similar the expanded focus of VPLEX. Consequently Invista has often been in apples to oranges comparison with other virtualization appliances that have as focus pooling along with other functions or in some cases serving as an appliance based storage system.

The focus around Invista and usage by those customers who have deployed it that I have talked with is around enabling agility for maintenance, facilitating upgrades, moves or reconfiguration and other common IRM tasks vs using it for pooling of storage for consolidation purposes. Thus I see VPLEX extending on the vision of Invista in a role of complimenting and leveraging underlying storage system functionality instead of trying to replace those capabilities with that of the storage virtualizer.

Is this a replacement for EMC Invista?

According to EMC the answer is no and that customers using Invista (Yes, there are customers that I have actually talked to) will continue to be supported. However I suspect that over time Invista will either become a low end entry for VPLEX, or, an entry level VPLEX solution will appear sometime in the future.

How does this stack up or compare with what others are doing?

If you are looking to compare to cache centric platforms such as IBMs SVC that adds extensive functionality and capabilities within the storage virtualization framework this is an apples to oranges comparison. VPLEX is providing cache pointers on a local and global basis functioning in a compliment to underlying storage system model where SVC caches at the specific cluster basis and enhancing functionality of underlying storage system. Rest assured there will be other apples to oranges comparisons made between these platforms.

How will this be priced?

When I asked EMC about pricing, they would not commit to a specific price prior to the announcement other than indicating that there will be options for on demand or consumption (e.g. cloud pricing) as well as pricing per engine capacity as well as subscription models (pay as you go).

What is the overhead of VPLEX?

While EMC runs various workload simulations (including benchmarks) internally as well as some publicly (e.g. Microsoft ESRP among others) they have been opposed to some storage simulation benchmarks such as SPC. The EMC opposition to simulations such as SPC have been varied however this could be a good and interesting opportunity for them to silence the industry (including myself) who continue ask them (along with a couple of other vendors including IBM and their XIV) when they will release public results.

What the interesting opportunity I think is for EMC is that they do not even have to benchmark one of their own storage systems such as a CLARiiON or VMAX, instead simply show the performance of some third party product that already is tested on the SPC website and then a submission with that product running attached to a VPLEX.

If the performance or low latency forecasts are as good as they have been described, EMC can accomplish a couple of things by:

  • Demonstrating the low latency and minimal to no overhead of VPLEX
  • Show VPLEX with a third party product comparing latency before and after
  • Provide a comparison to other virtualization platforms including IBM SVC

As for EMC submitting a VMAX or CLARiiON SPC test in general, Im not going to hold my breath for that, instead, will continue to look at the other public workload tests such as ESRP.

Additional related reading material and links:

Resilient Storage Networks: Designing Flexible Scalable Data Infrastructures (Elsevier)
Chapter 3: Networking Your Storage
Chapter 4: Storage and IO Networking
Chapter 6: Metropolitan and Wide Area Storage Networking
Chapter 11: Storage Management
Chapter 16: Metropolitan and Wide Area Examples

The Green and Virtual Data Center (CRC)
Chapter 3: (see also here) What Defines a Next-Generation and Virtual Data Center
Chapter 4: IT Infrastructure Resource Management (IRM)
Chapter 5: Measurement, Metrics, and Management of IT Resources
Chapter 7: Server: Physical, Virtual, and Software
Chapter 9: Networking with your Servers and Storage

Also see these:

Virtual Storage and Social Media: What did EMC not Announce?
Server and Storage Virtualization – Life beyond Consolidation
Should Everything Be Virtualized?
Was today the proverbial day that he!! Froze over?
Moving Beyond the Benchmark Brouhaha

Closing comments (For now):
As with any new vision, initiative, architecture and initial product there will be plenty of questions to ask, items to investigate, early adopter customers or users to talk with and determine what is real, what is future, what is usable and practical along with what is nice to have. Likewise there will be plenty of mud ball throwing and slinging between competitors, fans and foes which for those who enjoy watching or reading those you should be well entertained.

In general, the EMC vision and story builds on and presumably delivers on past industry hype, buzz and vision with solutions that can be put into environments as productivity tool that works for the customer, instead of the customer working for the tool.

Remember the golden rule of virtualization which is in play here is that whoever controls the virtualization or associated management controls the gold. Likewise keep in mind that aggregation can cause aggravation. So do not be scared, however look before you leap meaning do your homework and due diligence with appropriate levels of expectations, aligning applicable technology to the task at hand.

Also, if you have seen or experienced something in the past, you are more likely to have DejaVu as opposed to seeing things as revolutionary. However it is also important to leverage lessons learned for future success. YottaYotta was a lot of NaddaNadda, lets see if EMC can leverage their past experiences to make this a LottaLotta.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Spring 2010 StorageIO Newsletter

Welcome to the spring 2010 edition of the Server and StorageIO (StorageIO) news letter.

This edition follows the inaugural issue (Winter 2010) incorporating feedback and suggestions as well as building on the fantastic responses received from recipients.

A couple of enhancements included in this issue (marked as New!) include a Featured Related Site along with Some Interesting Industry Links. Another enhancement based on feedback is to include additional comment that in upcoming issues will expand to include a column article along with industry trends and perspectives.

StorageIO News Letter Image
Spring 2010 Newsletter

You can access this news letter via various social media venues (some are shown below) in addition to StorageIO web sites and subscriptions. Click on the following links to view the spring 2010 newsletter as HTML or PDF or, to go to the newsletter page.

Follow via Goggle Feedburner here or via email subscription here.

You can also subscribe to the news letter by simply sending an email to newsletter@storageio.com

Enjoy this edition of the StorageIO newsletter, let me know your comments and feedback.

Also, a very big thank you to everyone who has helped make StorageIO a success!.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved