Microsoft Azure Elastic SAN from Cloud to On-Prem

What is Azure Elastic SAN

Azure Elastic SAN (AES) is a new (now GA) Azure Cloud native storage service that provides scalable, resilient, easy management with rapid provisioning, high performance, and cost-effective storage. AES (figure 1) supports many workloads and computing resources. Workloads that benefit from AES include tier 1 and tier 2, such as Mission Critical, Database, and VDI, among others traditionally relying upon consolidated Storage Area Network (SAN) shared storage.

Compute resources that can use AES, including bare metal (BM) physical machines (PM), virtual machines (VM), and containers, among others, using iSCSI for access. AES is accessible by computing resources and services within the Azure Cloud in various regions (check Azure Website for specific region availability) and from on-prem core and edge locations using iSCSI. The AES management experience and value proposition are similar to traditional hardware or software-defined shared SAN storage combined with Azure cloud-based management capabilities.

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 1 General Concept and Use of Azure Elastic SAN (AES)

While Microsoft Azure describes AES as a cloud-native storage solution, that does not mean that AES is only for containers and other cloud-native apps or DevOPS. Rather, AES has been built for and is native to the cloud (e.g., software-defined) that can be accessed by various compute and other resources (e.g., VMs, Containers, AKS, etc) using iSCSI.

How Azure Elastic SAN differs from other Azure Storage

AES differs from traditional Azure block storage (e.g., Azure Disks) in that the storage is independent of the host compute server (e.g., BM, PM, VM, containers). With AES, similar to a conventional software-defined or hardware-based shared SAN solution, storage is disaggregated from host servers for sharing and management using iSCSI for connectivity. By comparison, AES differs from traditional Azure VM-based storage typically associated with a given virtual machine in a DAS (Direct Attached Storage) type configuration. Likewise, similar to conventional on-prem environments, there is a mix of DAS and SAN, including some host servers that leverage both.

AES supports Azure VM, Azure Kubernetes Service (AKS), cloud-native, edge, and on-prem computing (BM, VM, etc.) via iSCSI. Support for Azure VMware Solution (AVS) is in preview; check the Microsoft Azure website for updates and new feature functionality enhancements.

Does this mean everything is moving to AES? Similar to traditional SANs, there are roles and needs for various storage options, including DAS, shared block, file, and object, among storage offerings. Likewise, Microsoft and Azure have expanded their storage offerings to include AES, DAS (azure disks, including Ultra, premium, and standard, among other options), append, block, and page blobs (objects), and files, including Azure file sync, tables, and Data Box, among other storage services.

Azure Elastic Storage Feature Highlights

AES feature highlights include, among others:

    • Management via Azure Portal and associated tools
    • Azure cloud-based shared scalable bock storage
    • Scalable capacity, low latency, and high performance (IOPs and throughput)
    • Space capacity-optimized without the need for data reduction
    • Accessible from within Azure cloud and from on-prem using iSCSI
    • Supports Azure compute  (VMs, Containers/AKS, Azure VMware Solution)
    • On-prem access via iSCSI from PM/BM, VM, and containers
    • Variable number of volumes and volume size per volume group
    • Flexible easy to use Azure cloud-based management
    • Encryption and network private endpoint security
    • Local (LRS) and Zone (ZRS) with replication resiliency
    • Volume snapshots and cluster support

Who is Azure Elastic SAN for

AES is for those who need cost-effective, shared, resilient, high capacity, high performance (IOPS, Bandwidth), and low latency block storage within Azure and from on-prem access. Others who can benefit from AES include those who need shared block storage for clustering app workloads, server and storage consolidation, and hybrid and migration. Another consideration is for those familiar with traditional hardware and software-defined SANs to facilitate hybrid and migration strategies.

How Azure Elastic SAN works

Azure Elastic SAN is a software-defined (cloud native if you prefer) block storage offering that presents a virtual SAN accessible within Azure Cloud and to on-prem core and edge locations currently via iSCSI. Using iSCSI, Azure VMs, Clusters, Containers, Azure VMware Solution among other compute and services, and on-prem BM/PM, VM, and containers, among others, can access AES storage volumes.

From the Azure Portal or associated tools (Azure CLI or PowerShell), create an AES SAN, giving it a 3 to 24-character name and specify storage capacity (base units with performance and any additional space capacity). Next, create a Volume Group, assigning it to a specific subscription and resource group (new or existing), then specify which Azure Region to use, type of redundancy (LRS or GRS), and Zone to use. LRS provides local redundancy, while ZRS provides enhanced zone resiliency, with highspeed synchronous resiliency without setting up multiple SAN systems and their associated replication configurations along with networking considerations (e.g., Azure takes care of that for you within their service).

The next step is to create volumes by specifying the volume name, volume group to use, volume size in GB, maximum IOPs, and bandwidth. Once you have made your AES volume group and volumes, you can create private endpoints, change security and access controls, and access the volumes from Azure or on-prem resources using iSCSI. Note that AES currently needs to be LRS (not ZRS) for clustered shared storage and that Key management includes using your keys with Azure key vault.

Using Azure Elastic SAN

Using AES is straightforward, and there are good easy to follow guides from Microsoft Azure, including the following:

The following images show what AES looks like from the Azure Portal, as well as from an Azure Windows Server VM and an onprem physical machine (e.g., Windows 10 laptop).

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 2 AES Azure Portal Big Picture

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 3 AES Volume Groups Portal View

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 4  AES Volumes Portal View

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 5 AES Volume Snapshot Views

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 6 AES Connected Volume Portal View

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 7 AES Volume iSCSI view from on-prem Windows Laptop

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 8 AES iSCSI Volume attached to Azure VM

Azure Elastic SAN Cost Pricing

The cost of AES is elastic, depending on whether you scale capacity with performance (e.g., base unit) or add more space capacity. If you need more performance, add base unit capacity, increasing IOPS, bandwidth, and space. In other words, base capacity includes storage space and performance, which you can grow in various increments. Remember that AES storage resources get shared across volumes within a volume group.

Azure Elastic SAN is billed hourly based on a monthly per-capacity base unit rate, with a minimum of 1TB  provisioned capacity with minimum performance (e.g., 5,000 IOPs, 200MBps bandwidth). The base unit rate varies by region and type of redundancy, aka resiliency. For example, at the time of this writing, looking at US East, the Local Redundant Storage (LRS) base unit rate is 1TB with 5,000 IOPs and 200MBps bandwidth, costing $81.92 per unit per month.

The above example breaks down to a rate of $0.08 per GB per month, or $0.000110 per GB per hour (assumes 730 hours per month). An example of simply adding storage capacity without increasing base unit (e.g., performance) for US East is $61.44 per month. That works out to $0.06 per GB per month (no additional provisioned IOPs or Bandwidth) or $0.000083 per GB per hour.

Note that there are extra fees for Zone Redundant Storage (ZRS). Learn more about Azure Elastic SAN pricing here, as well as via a cost calculator here.

Azure Elastic SAN Performance

Performance for Azure Elastic SAN includes IOPs, Bandwidth, and Latency. AES IOPs get increased in increments of 5,000 per base TB. Thus, an AES with a base of 10TB would have 50,000 IOPs distributed (shared) across all of its volumes (e.g., volumes are not restricted). For example, if the base TB is increased from 10TB to 20TB, then the IOPs would increase from 50,000 to 100,000 IOPs.

On the other hand, if the base capacity (10TB) is not increased, only the storage capacity would increase from 10TB to 20TB, and the AES would have more capacity but still only have the 50,000 IOPs. AES bandwidth throughput increased by 200MBps per TB. For example, a 5TB AES would have 5 x 200MBps (1,000 MBps) throughput bandwidth shared across the volume groups volumes.

Note that while the performance gets shared across volumes, individual volume performance is determined by its capacity with a maximum of 80,000 IOPs and up to 1,024 MBps. Thus, to reach 80,000 IOPS and 1,024 MBps, an AES volume would have to be at least 107GB in space capacity. Also, note that the aggregate performance of all volumes cannot exceed the total of the AES. If you need more performance, then create another AES.

Will all VMs or compute resources see performance improvements with AES? Traditional Azure Disks associated with VMs have per-disk performance resource limits, including IOPs and Bandwidth. Likewise, VMs have storage limits based on their instance type and size, including the number of disks (HDD or SSD), performance (IOPS and bandwidth), and the number of CPUs and memory.

What this means is that an AES volume could have more performance than what a given VM is limited to. Refer to your VM instance sizing and configuration to determine its IOP and bandwidth limits; if needed, explore changing the size of your VM instance to leverage the performance of Azure Elastic SAN storage.

Additional Resources Where to learn more

The following links are additional resources to learn about Microsoft Azure Elastic SAN and related data infrastructures and tradecraft topics.

Azure AKS Storage Concepts 
Azure Elastic SAN (AES) Documentation and Deployment Guides
Azure Elastic SAN Microsoft Blog
Azure Elastic SAN Overview
Azure Elastic SAN Performance topics
Azure Elastic SAN Pricing calculator
Azure Products by Region (see where AES is currently available)
Azure Storage Offerings 
Azure Virtual Machine (VM) sizes
Azure Virtual Machine (VM) types
Azure Elastic SAN General Pricing
Azure Storage redundancy 
Azure Service Level Agreements (SLA) 
StorageIOBlog.com Data Box Family 
StorageIOBlog.com Data Box Review
StorageIOBlog.com Data Box Test Drive 
StorageIOblog.com Microsoft Hyper-V Alive Enhanced with Win Server 2025
StorageIOblog.com If NVMe is the answer, what are the questions?
StorageIOblog.com NVMe Primer (or refresh)

Additional learning experiences along with common questions (and answers), are found in my Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

Azure Elastic SAN (AES) is a new and now generally available shared block storage offering that is accessible using iSCSI from within Azure Cloud and on-prem environments. Even with iSCSI, AES is relatively easy to set up and use for shared storage, mainly if you are used to or currently working with hardware or software-defined SAN storage solutions.

With NVMe over TCP fabrics gaining industry and customer traction, I’m hoping for Microsoft to adding that in the future. Currently, AES supports LRS and ZRS for redundancy, and an excellent future enhancement would be to add Geo Redundant Storage (GRS) capabilities for those who need it.

I like the option of elastic shared storage regarding performance, availability, capacity, and economic costs (PACE). Suppose you understand the value proposition of evolving from dedicated DAS to shared SAN (independent of the underlying fabric network); or are currently using some form of on-prem shared block storage. In that case, you will find AES familiar and easy to use. Granted, AES is not a solution for everything as there are roles for other block storage, including DAS such as Azure disks and VMs within Azure, along with on-prem DAS, as well as file, object, and blobs, tables, among others.

Wrap up

The notion that all cloud storage must be objects or blobs is tied those who only need, provide, or prefer those solutions. The reality is that everything is not the same. Thus, there is a need for various storage mediums, devices, tiers, access, and types of services. Microsoft and Azure have done an excellent job of providing. I like what Microsoft Azure is doing with Azure Elastic SAN.

Ok, nuff said, for now.

Cheers Gs

Greg Schulz – Nine time Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of UnlimitedIO LLC.

The Value of Infrastructure Insight – Enabling Informed Decision Making

The Value of Infrastructure Insight – Enabling Informed Decision Making

server storage I/O trends

Join me and Virtual Instruments CTO John Gentry on October 27, 2016 for a free webinar (registration required) titled The Value of Infrastructure Insight – Enabling Informed Decision Making with Virtual Instruments. In this webinar, John and me will discuss the value of data center infrastructure insight both as a technology as well as a business and IT imperative.

Software Defined Data Infrastructure
Various Infrastructures – Business, Information, Data and Physical (or cloud)

Leveraging infrastructure performance analytics is key to assuring the performance, availability and cost-effectiveness of your infrastructure, especially as you transform to a hybrid data center over the coming years. By utilizing real-time and historical infrastructure insight from your servers, storage and networking, you can avoid flying blind and give situational awareness for proactive decision-making. The result is faster problem resolution, problem avoidance, higher utilization and the elimination of performance slowdowns and outages.

View the companion Server StorageIO Industry Trends Report available here (free, no registration required) at the Virtual Instruments web page resource center.

xxxx

The above Server StorageIO Industry Trends Perspective Report (click here to download PDF) looks at the value of data center infrastructure insight both as a technology as well as a business productivity enabler. Besides productivity, having insight into how data infrastructure resources (servers, storage, networks, system software) are used, enables informed analysis, troubleshooting, planning, forecasting as well as cost-effective decision-making.

In other words, data center infrastructure insight, based on infrastructure performance analytics, enables you to avoid flying blind, having situational awareness for proactive Information Technology (IT) management. Your return on innovation is increased, and leveraging insight awareness along with metrics that matter drives return on investment (ROI) along with enhanced service delivery.

Where To Learn More

  • Free Server StorageIO Industry Trends Report The Value of Infrastructure Insight – Enabling Informed Decision Making (PDF)
  • Register for the free webinar on October 27, 2016 1PM ET here.
  • View other upcoming and recent events at the Server StorageIO activities page here.

What This All Means

What this all means is that the key to making smart, informed decisions involving data infrastructure, servers, storage, I/O across different applications is having insight and awareness. See for yourself how you can gain insight into your existing information factory environment performing analysis, as well as comparing and simulating your application workloads for informed decision-making.

Having insight and awareness (e.g. instruments) allows you to avoid flying blind, enabling smart, safe and informed decisions in different conditions impacting your data infrastructure. How is your investment in hardware, software, services and tools being leveraged to meet given levels of services? Is your information factory (data center and data infrastructure) performing at its peak effectiveness?

How are you positioned to support growth, improve productivity, remove complexity and costs while evolving from a legacy to a next generation software-defined, cloud, virtual, converged or hyper-converged environment with new application needs?

Data infrastructure insight benefits and takeaways:

  • Informed performance-related decision-making
  • Support growth, agility, flexibility and availability
  • Maximize resource investment and utilization
  • Find, fix and remove I/O bottlenecks
  • Puts you in control in the driver’s seat

Remember to register and attend the October 27 webinar that you can register here.

Btw, Virtual Instruments has been a client of Server StorageIO and that fwiw is a disclosure.

Ok, nuff said, for now…

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO All Rights Reserved

Which Enterprise HDD for Content Server Platform

Which Enterprise HDD to use for a Content Server Platform

data infrastructure HDD server storage I/O trends

Updated 1/23/2018

Which enterprise HDD to use with a content server platform?

Insight for effective server storage I/O decision making
Server StorageIO Lab Review

Which enterprise HDD to use for content servers

This post is the first in a multi-part series based on a white paper hands-on lab report I did compliments of Equus Computer Systems and Seagate that you can read in PDF form here. The focus is looking at the Equus Computer Systems (www.equuscs.com) converged Content Solution platforms with Seagate Enterprise Hard Disk Drive (HDD’s). I was given the opportunity to do some hands-on testing running different application workloads with a 2U content solution platform along with various Seagate Enterprise 2.5” HDD’s handle different application workloads. This includes Seagate’s Enterprise Performance HDD’s with the enhanced caching feature.

Issues And Challenges

Even though Non-Volatile Memory (NVM) including NAND flash solid state devices (SSDs) have become popular storage for use internal as well as external to servers, there remains the need for HDD’s Like many of you who need to make informed server, storage, I/O hardware, software and configuration selection decisions, time is often in short supply.

A common industry trend is to use SSD and HDD based storage mediums together in hybrid configurations. Another industry trend is that HDD’s continue to be enhanced with larger space capacity in the same or smaller footprint, as well as with performance improvements. Thus, a common challenge is what type of HDD to use for various content and application workloads balancing performance, availability, capacity and economics.

Content Applications and Servers

Fast Content Needs Fast Solutions

An industry and customer trend are that information and data are getting larger, living longer, as well as there is more of it. This ties to the fundamental theme that applications and their underlying hardware platforms exist to process, move, protect, preserve and serve information.

Content solutions span from video (4K, HD, SD and legacy streaming video, pre-/post-production, and editing), audio, imaging (photo, seismic, energy, healthcare, etc.) to security surveillance (including Intelligent Video Surveillance [ISV] as well as Intelligence Surveillance and Reconnaissance [ISR]). In addition to big fast data, other content solution applications include content distribution network (CDN) and caching, network function virtualization (NFV) and software-defined network (SDN), to cloud and other rich unstructured big fast media data, analytics along with little data (e.g. SQL and NoSQL database, key-value stores, repositories and meta-data) among others.

Content Solutions And HDD Opportunities

A common theme with content solutions is that they get defined with some amount of hardware (compute, memory and storage, I/O networking connectivity) as well as some type of content software. Fast content applications need fast software, multi-core processors (compute), large memory (DRAM, NAND flash, SSD and HDD’s) along with fast server storage I/O network connectivity. Content-based applications benefit from having frequently accessed data as close as possible to the application (e.g. locality of reference).

Content solution and application servers need flexibility regarding compute options (number of sockets, cores, threads), main memory (DRAM DIMMs), PCIe expansion slots, storage slots and other connectivity. An industry trend is leveraging platforms with multi-socket processors, dozens of cores and threads (e.g. logical processors) to support parallel or high-concurrent content applications. These servers have large amounts of local storage space capacity (NAND flash SSD and HDD) and associated I/O performance (PCIe, NVMe, 40 GbE, 10 GbE, 12 Gbps SAS etc.) in addition to using external shared storage (local and cloud).

Where To Learn More

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

Fast content applications need fast content and flexible content solution platforms such as those from Equus Computer Systems and HDD’s from Seagate. Key to a successful content application deployment is having the flexibility to hardware define and software defined the platform to meet your needs. Just as there are many different types of content applications along with diverse environments, content solution platforms need to be flexible, scalable and robust, not to mention cost effective.

Continue reading part two of this multi-part series here where we look at how and what to test as well as project planning.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

In the data center or information factory, not everything is the same

StorageIO Industry trends and perspectives image

Sometimes what should be understood, or that is common sense or that you think everybody should know needs to be stated. After all, there could be somebody who does not know what some assume as common sense or what others know for various reasons. At times, there is simply the need to restate or have a reminder of what should be known.

Storage I/O data center image

Consequently, in the data center or information factory, either traditional, virtual, converged, private, hybrid or public cloud, everything is not the same. When I say not everything is the same, is that different applications with various service level objectives (SLO’s) and service level agreements (SLA’s). These are based on different characteristics from performance, availability, reliability, responsiveness, cost, security, privacy among others. Likewise, there are different size and types of organizations with various requirements from enterprise to SMB, ROBO and SOHO, business or government, education or research.

Various levels of HA, BC and DR

There are also different threat risks for various applications or information services within in an organization, or across different industry sectors. Thus various needs for meeting availability SLA’s, recovery time objectives (RTO’s) and recovery point objectives (RPO’s) for data protection ranging from backup/restore, to high-availability (HA), business continuance (BC), disaster recovery (DR) and archiving. Let us not forget about logical and physical security of information, assets and people, processes and intellectual property.

Storage IO RTO and RPO image

Some data centers or information factories are compute intensive while others are data centric, some are IO or activity intensive with a mix of compute and storage. On the other hand, some data centers such as a communications hub may be network centric with very little data sticking or being stored.

SLA and SLO image

Even within in a data center or information factory, various applications will have different profiles, protection requirements for big data and little data. There can also be a mix of old legacy applications and new systems developed in-house, purchased, open-source based or accessed as a service. The servers and storage may be software defined (a new buzzword that has already jumped the shark), virtualized or operated in a private, hybrid or community cloud if not using a public service.

Here are some related posts tied to everything is not the same:
Optimize Data Storage for Performance and Capacity
Is SSD only for performance?
Cloud conversations: Gaining cloud confidence from insights into AWS outages
Data Center Infrastructure Management (DCIM) and IRM
Saving Money with Green IT: Time To Invest In Information Factories
Everything Is Not Equal in the Datacenter, Part 1
Everything Is Not Equal in the Datacenter, Part 2
Everything Is Not Equal in the Datacenter, Part 3

Storage I/O data center image

Thus, not all things are the same in the data center, or information factories, both those under traditional management paradigms, as well as those supporting public, private, hybrid or community clouds.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

More Storage IO momentus HHDD and SSD moments part II

This follows the first of a two-part series on my latest experiences with Hybrid Hard Disk Drives (HHDD’s) and Solid State Devices (SSD’s). In my ongoing last momentus moment post I discussed what I have done with HHDD’s and setting the stage for expanded SSD use. I have the newer HHDD’s, e.g. Seagate Momentus XT II 750GB (8GB SLC nand flash) installed and have since bought another from Amazon as well as having some of the older 500GB (4GB SLC nand flash) in various systems. Those are all functioning great, however still waiting and looking forward to the rumored firmware enhancements to boost write capabilities.

This brings me up to the latest momentus moment which now includes SSD’s.

Well its two years later and I now have a 256GB (usable capacity is lower) Samsung SSD that I bought from Amazon.com and installed in one of my laptops and just as when I made the first switch to HHDD’s, I also have a backup copy/clone to fall back to in case of emergency.

Was it worth the wait? Yes, particularly using the HHDD’s to bridge the gap and enable some productivity gain which more than paid for them based on some different projects. I’m already seeing productivity improvements that will make future upgrades more easy to justify (to myself).

I deviated from my strategy a bit and installed the SSD about six months earlier than I was planning to do so because of a physical barrier. That physical barrier was my new traveling laptop only accepts 7mm height 2.5 inch small form factor devices and the 750GB HHDD that I had planned on installing was 2.5mm to thick which pushed up the SSD installation.

What will become of the 750GB HHDD? Its being redeployed to help speed up file serving, backups and other functions.

Will I replace the HHDD’s in my other workstations and laptops now with SSD’s? Across the board no, not yet, however there is one other system that is a prime candidate to maybe upgrade in a month or two (maybe less).

Will I stick with the Samsung SSD’s or look at other options? I’m keeping my options open and using this as a gauge to test and compare other options in a real world working environment as opposed to a lab bench test simulation. In other words, taking the next step past the lab test and product reviews, gaining comfort and confidence and then trying out with real use activity.

What will happen in the future as I install more SSD’s and have surplus HHDD’s? Redeployed them of course into file or NAS servers, backup targets that in turn will replace HDD’s that will either get retired, or redeployed to replace older, smaller capacity, higher cost to handle HDD’s used for offsite protection.

I tried using the software that came with the SSD to do the cloning and should have known better, however wanted to see what the latest version of ghost was like (it was a waste of time to be polite). Instead I used Seagate Discwizard (aka Acronis) which requires at least one Seagate product (source or target) for cloning.

Cloning from the Seagate HHDD that have been previously cloned from the Hitachi HDD that came with the laptop, was a none issue. However, I wanted to see what would happen if I attached the Samsung SSD to the Seagate Goflex cable and clone directly from the Hitachi HDD, it worked. Hence another reason to have some of the Seagate Goflex cables (USB and eSATA) like the ones I bought at Amazon.com around in your toolbox.

While I do not have concrete empirical numbers to share, cloning from a HDD to a SSD is shall we say fast, however, what’s really fun to watch is cloning from a HHDD to a SSD using an eSata (GoFlex) connector adapter. The reason I say that it is fun is that you don’t have to sit and wait for hours, it’s not minutes to move 100s of GBs, however you can very much see the progress bar move at a good pace.

Also, I put the HHDD on an eSata port and try that out as a backup or data dump target if you have the need for speed, capacity and cost effectiveness, yes its fast, has lots of capacity and so forth. Now if Seagate and Synology or EMC Iomega would get their acts together and add support for the HHDD’s in those different unified SMB and SOHO NAS solutions, that would be way cool.

Will I be racing to put SSD’s in my other laptops or workstations soon? Probably not as there are things in the works and working their way into and through the market place that I wanted to wait for, and thus will wait for now, that is unless a more interesting opportunity pops up.

Related links on SDD, HHDD and HDD
More Storage IO momentus HHDD and SSD moments part I
More Storage IO momentus HHDD and SSD moments part II
IO IO it is off to Storage and IO metrics we go
New Seagate Momentus XT Hybrid drive (SSD and HDD)
Other Momentus moments posts here here, here, here and here
SSD and Storage System Performance
Speaking of speeding up business with SSD storage
Are Hard Disk Drives (HDD’s) getting too big?
Has SSD put Hard Disk Drives (HDD’s) On Endangered Species List?
Why SSD based arrays and storage appliances can be a good idea (Part I)
Why SSD based arrays and storage appliances can be a good idea (Part II)
IT and storage economics 101, supply and demand
Researchers and marketers dont agree on future of nand flash SSD
EMC VFCache respinning SSD and intelligent caching (Part I)
EMC VFCache respinning SSD and intelligent caching (Part II)
SSD options for Virtual (and Physical) Environments Part I: Spinning up to speed on SSD
SSD options for Virtual (and Physical) Environments Part II: The call to duty, SSD endurance
SSD options for Virtual (and Physical) Environments Part III: What type of SSD is best for you?
SSD options for Virtual (and Physical) Environments Part IV: What type of SSD is best for your needs

Ok, nuff said for now.

Cheers Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

More Storage IO momentus HHDD and SSD moments part I

This is the first of a two part series on my latest experiences with HHDD and SSD’s

About two years ago I wanted to start installing solid state devices (SSD’s) into my workstations and laptops. Like many others, I found the expensive price for the limited capacity gains of the then generation SSD’s did not make for a good business decision based on my needs. Don’t get me wrong, I have been a huge fan of SSD for decades as an IT user, vendor, analysts, consultant and consumer and still am. In fact I have some SSD’s used for different purposes as well as many Hard Disk Drives (HDD) and Hybrid Hard Disk Drives (HHDD’s). Almost two years ago when I first tested the HHDD’s, I did an first post in this ongoing series and this two-part post is part of that string of experiences observed evolving from HDD’s to HHDD’s to SSD’s


Image courtesy of Seagate.com

As a refresher, HHDD’s like the Seagate Momentus XT combine a traditional 7,200 RPM 2.5 inch 500GB or 750GB HDD with an integrated single level cell (SLC) nand flash SSD within the actual device. The SSD in the HHDD’s is part of the HDD’s controller complementing the existing DRAM buffer by adding 4GB (500GB models) or 8GB (750GB models) of fast nand flash SSD cache. This means that no external special controller, adapter, data movement or migration software are required to get the performance boost over a traditional HDD and the capacity above a SSD at an affordable cost. In other words, the HHDD’s bridge the gap between those who need large capacity and some performance increases, without having to spend a lot on a lower capacity SSD.

However based on my needs or business requirements two years ago I found the justification to get all the extra performance of  SSD not quite there when. Back two years ago my thinking was that it would be about two maybe three years before the right point for a mix of performance, availability (or reliability e.g. duty cycles), capacity and economics aligned.

Note that this was based on my specific needs and requirements as opposed to my wants or wishes (I wanted SSD back then, however my budget needed to go elsewhere). My requirements and performance needs are probably not the same as yours or others might be. I also wanted to see the incremental technology, product and integration improvements ranging from duty cycle or program/erase cycles (P/E) with newer firmware and flash translation layers (FTLs) among other things. Particularly with multilevel cell (MLC) or enhanced multilevel cell (eMLC) which helps bring the cost down while boosting the capacity, I’m seeing enough to have more confidence in those devices. Note that for the past couple of years I have used single level cell (SLC) nand flash SSD technology in my HHDD’s, the same SSD flash technology that has been found in enterprise class storage.

While I wanted SSD’s two years ago in my laptops and workstations to improve productivity which involves a lot of content creation in addition to consumption, however as mentioned above, there were barriers. So instead of sitting on the sidelines, waiting for SSD’s to either become lower cost, or more capacity for a given cost, or wishing somebody would send me some free stuff (that may or may not have worked), I took a different route. That route was to try the HHDD’s such as Seagate Momentus XT.

Disclosure: Seagate sent me my first HHDD for first testing and verifications before buying several more from Amazon.com and installing them in all laptops, workstations and a server (not all servers have the HHDD’s, or at least yet).

The main reason I went with the HHDD’s two years ago and continue to use them today is to bridge the gap and gain some benefit vs. waiting and wishing and talking about what SSD’s would enable me to do in the future while missing out on productivity enhancements.

The HHDD’s also appealed to me in that my laptops are space constrained for putting two drives and playing the hybrid configuration game of installing both a small SSD and HDD and migrating data back and forth. Sure I could do that for in the office or carry an extra external device around however been there, done that in the past and want to move away from those types of models where possible.

Related links on SDD, HHDD and HDD
More Storage IO momentus HHDD and SSD moments part I
More Storage IO momentus HHDD and SSD moments part II
IO IO it is off to Storage and IO metrics we go
New Seagate Momentus XT Hybrid drive (SSD and HDD)
Other Momentus moments posts here here, here, here and here
SSD and Storage System Performance
Speaking of speeding up business with SSD storage
Are Hard Disk Drives (HDD’s) getting too big?
Has SSD put Hard Disk Drives (HDD’s) On Endangered Species List?
Why SSD based arrays and storage appliances can be a good idea (Part I)
Why SSD based arrays and storage appliances can be a good idea (Part II)
IT and storage economics 101, supply and demand
Researchers and marketers dont agree on future of nand flash SSD
EMC VFCache respinning SSD and intelligent caching (Part I)
EMC VFCache respinning SSD and intelligent caching (Part II)
SSD options for Virtual (and Physical) Environments Part I: Spinning up to speed on SSD
SSD options for Virtual (and Physical) Environments Part II: The call to duty, SSD endurance
SSD options for Virtual (and Physical) Environments Part III: What type of SSD is best for you?
SSD options for Virtual (and Physical) Environments Part IV: What type of SSD is best for your needs

Ok, nuff said for now, lets resume this discussion in part II.

Cheers Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

Is 14.4TBytes of data storage for $52,503 a good deal? It depends!

A news story about the school board in Marshall Missouri approving data storage plans in addition to getting good news on health insurance rates just came into my in box.

I do not live in or anywhere near Marshall Missouri as I live about 420 miles north in the Stillwater Minnesota area.

What caught my eye about the story is the dollar amount ($52,503) and capacity amount (14.4TByte) for the new Marshall school district data storage solution to replace their old, almost full 4.8TByte system.

That prompted me to wonder, if the school district are getting a really good deal (if so congratulations), paying too much, or if about right.

Industry Trends and Perspectives

Not knowing what type of storage system they are getting, it is difficult to know what type of value the Marshall School district is getting with their new solution. For example, what type of performance and availability in addition to capacity? What type of system and features such as snapshots, replication, data footprint reduction aka DFR capabilities (archive, compression, dedupe, thin provisioning), backup, cloud access, redundancy for availability, application agents or integration, virtualization support, tiering. Or if the 14.4TByte is total (raw) or usable storage capacity or if it includes two storage systems for replication. Or what type of drives (SSD, fast SAS HDD or high-capacity SAS or SATA HDDs), block (iSCSI, SAS or FC) or NAS (CIFS and NFS) or unified, management software and reporting tools among capabilities not to mention service and warranty.

Sure there are less expensive solutions that might work, however since I do not know what their needs and wants are, saying they paid too much would not be responsible. Likewise, not knowing their needs vs. wants, requirements, growth and application concerns, given that there are solutions that cost a lot more with extensive capabilities, saying that they got the deal of the century would also not be fair. Maybe somewhere down the road we will hear some vendor and VAR make a press release announcement about their win in taking out a competitor from the Marshall school district, or perhaps that they upgraded a system they previously sold so we can all learn more.

With school districts across the country trying to stretch their budgets to go further while supporting growth, it would be interesting to hear more about what type of value the Marshall school district is getting from their new storage solution. Likewise, it would also be interesting to hear what alternatives they looked at that were more expensive, as well as cheaper however with less functionality. I’m guessing some of the cloud crowd cheerleaders will also want to know why the school district is going the route they are vs. going to the cloud.

IMHO value is not the same thing as less or lower cost or cheaper, instead its the benefit derived vs. what you pay. This means that something might cost more than something cheaper, however if I get more benefit from what might be more expensive, then it has more value.

Industry Trends and Perspectives

If you are a school district of similar size, what criteria or requirements would you want as opposed to need, and then what would you do or have you done?

What if you are a commercial or SMB environment, again not knowing the feature functionality benefit being obtained, what requirements would you have including want to have (e.g. nice to have) vs. must or have to have (e.g. what you are willing to pay more for), what would you do or have done?

How about if you were a cloud or managed service provider (MSP) or a VAR representing one of the many services, what would your pitch and approach be beyond simply competing on a cost per TByte basis?

Or if you are a vendor or VAR facing a similar opportunity, again not knowing the requirements, what would you recommend a school district or SMB environment to do, why and how to cost justify it?

What this all means to me is the importance of looking beyond lowest cost, or cost per capacity (e.g. cost per GByte or TByte) also factoring in value, feature functionality benefit.

Ok, nuff said for now, I need to get my homework assignments done.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

New Seagate Momentus XT Hybrid drive (SSD and HDD)

Seagate recently announced the next generation Momentus XT Hybrid Hard Disk Drive (HHDD) with a capacity of 750GB in a 2.5 inch form factor and MSRP of $245.00 USD including integrated NAND flash solid state device (SSD). As a refresher, the Momentus XT is a HHDD in that it includes a 4GB nand flash SSD integrated with a 500GB (or larger) 7,200 RPM hard disk drive (HDD) in a single 2.5 inch package.

Seagate Momentus XT
HHDD with integrated nand flash SSD photo courtesy Seagate.com

This is the fifth installment of a series that I have done since June 2010 when I received my first HHDD a Seagate Momentus XT. You can read the other installments of my momentus moments here, here, here and here.

Whats is new with the new generation.
Besides extra storage space capacity up to 750GB (was 500GB), there is twice as much single level cell (SLC) nand flash memory (8GB vs. 4GB in previous generation) along with an enhanced interface using 6Gb per second SATA that supports native command queuing (NCQ) for better performance. Note that NCQ was available on the previous generation Momentus XT that used a 3Gb SATA interface. Other enhancements include a larger block or sector size of 4096 bytes vs. traditional 512 bytes on previous generation storage devices.

This bigger sector size results in less overhead with managing data blocks on large capacity storage devices. Also new are caching enhancements are FAST Factor Flash Management, FAST Factor Boot and Adaptive Memory Technology. Not to be confused with EMC Fully Automated Storage Tiering the other FAST; Seagate FAST is technology that exists inside the storage drive itself. FAST Factor boot enables systems to boot and be productive with speeds similar to SSD or several times faster than traditional HDDs.

The FAST Factor Flash Management provides the integrated intelligence to maximize use of the nand flash or SSD capabilities along with spinning HDD to boot performance, keep up compatibility with different systems and their operating systems. In addition to performance and interoperability, data integrity and SSD flash endurance are also enhanced for investment protection. The Adaptive Memory technology is a self learning algorithm to give SSD like performance for often used applications and data to close the storage capacity too performance gap that has increased along with data center bottlenecks.

Some questions and discussion comments:

When to use SSD vs. HDD vs. HHDD?
If you need the full speed of SSD to boost performance across all data access and cost is not an issue for available capacity that is where you should be focused. However if you are looking for lowest total cost of storage capacity with no need for performance, than lower cost high capacity HDDs should be on your shopping list. On the other hand, if you want a mix of performance and capacity at an effective price, than HHDDs should be considered.

Why the price jump compared to first generation HHDD?
IMHO, it has a lot to do with current market conditions, supply and demand.

With recent floods in Thailand and forecasted HDD and other technology shortages, the lay of supply and demand applies. This means that the supply may be constrained for some products causing demand to rise for others. Your particular vendor or supplier may have inventory however will be less likely to heavily discount while there are shortages or market opportunities to keep prices high. There are already examples of this if you check around on various sites to compare prices now vs. a few months ago. Granted it is the holiday shopping season for both people as well as organizations spending the last of their available budgets so more demand for available supplies.

What kind of performance or productivity have I seen with HHDDs?
While I have not yet tested and compared the second generation or new devices, I can attest to the performance improvements resulting in better productivity over the past year using Seagate Momentus XT HHDDs compared to traditional HDDs. Here is a post that you can follow to see some boot performance comparisons as part of some virtual desktop infrastructure (VDI) sizing testing I did earlier this year that included both HHDD and HDD.

HHDD desktop 1

HDD desktop 1

HHDD desktop 2

Avg. IOPS

334

69 to 113

186 to 353

Avg. MByte sec

5.36

1.58 to 2.13

2.76 to 5.2

Percent IOPS read

94

80 to 88

92

Percent MBs read

87

63 to 77

84

Mbytes read

530

201 to 245

504

Mbytes written

128

60 to 141

100

Avg. read latency

2.24ms

8.2 to 9.5ms

1.3ms

Avg. write latency

10.41ms

20.5 to 14.96ms

8.6ms

Boot duration

120 seconds

120 to 240 sec

120

Click here to read the entire post about the above table

When will I jump on the SSD bandwagon?
Great question, I have actually been on the SSD train for several decades using them, selling them, covering, analyzing and consulting around them along with other storage mediums including HDD, HHDD, cloud and tape. I have some SSDs and will eventually put them into my laptops, workstations and servers as primary storage when the opportunity makes sense.

Will HHDDs help backup and other data protection tasks?
Yes, in fact I initially used my Momentus XTs as backup or data protection targets along with for moving large amounts of data between systems faster than what my network could support.

Why not use a SSD?
If you need the performance and can afford the price, go SSD!

On the other hand, if you are looking to add a small 64GB, 128GB or even 256GB SSD while retaining a larger capacity, slower and lower cost HDD, an HHDD should be considered as an option. By using an HHDD instead of both a SSD and HDD, you will cut the need of figuring out how to install both in space constrained laptops, desktop or workstations. In addition, you will cut the need to either manually move data between the different devices or avoid having to acquire software or drivers to do that for you.

How much does the new Seagate Momentus XT HHDD cost?
Manufactures Suggested Retail Price (MSRP) is listed at $245 for a 750GB version.

Does the Momentus XT HHDD need any special drivers, adapters or software?
No, they are plug and play. There is no need for caching or performance acceleration drivers, utilities or other software. Likewise no needs for tiering or data movement tools.

How do you install an HHDD into an existing system?
Similar to installing a new HDD to replace an existing one if you are familiar with that process. If not, it goes like this (or uses your own preferred approach).

  • Attach a new HHDD to an existing system using a cable
  • Utilize a disk clone or image tool to make a copy of the existing HDD to HHDD
  • Note that the system may not be able to be used during the copy, so plan ahead.
  • After the clone or image copy is made, shutdown system, remove existing HDD and replace it with the HHDD that was connected to the system during the copy (remember to remove the copy cable).
  • Reboot the system to verify all is well, note that it will take a few reboots before the HHDD will start to learn your data and files along with how they are used.
  • Regarding your old HDD, save it, put it in a safe place and use it as a disaster recovery (DR) backup. For example if you have a safe deposit box or somewhere else safe, put it there for when you will need it in the future.


Seagate Momentus XT and USB to SATA cable

Can an HHDD fit into an existing slot in a laptop, workstation or server?
Yes. In fact, unlike a HDD and SSD combination, that requires multiple slots or forcing one device to be external, HHDDs like the Momentus XT simply use the space where your current HDD is installed.

How do you move data to it?
Beyond the first installation described above, the HHDD appears as just another local device meaning you can move data to or from it like any other HDD, SSD or CD.

Do you need automated tiering software?
No, not unless you need it for some other reason or if you want to use an HHDD as the lower cost, larger capacity option as a companion to a smaller SSD.

Do I have any of the new or second generation HHDDs?
Not yet, maybe soon and I will do another momentus moment point when that time arrives. For the time being, I will continue to use the first generation Momentus XT HHDDs

Bottom line (for now), If you are considering a large capacity, HDDs check out the HHDDs for an added performance boost including faster boot times as well as accessing other data quicker.

On the other hand if you want an SSD however your budget restricts you to a smaller capacity version, look into how an HHDD can be a viable option for some of your needs.

Ok, nuff said

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2011 StorageIO and UnlimitedIO All Rights Reserved

Speaking of speeding up business with SSD storage

Solid state devices (SSD) are a popular topic gaining both industry adoption and customer deployment to speed up storage performance. Here is a link to a recent conversation that I had with John Hillard to discuss industry trends and perspectives pertaining to using SSD to boost performance and productivity for SMB and other environments.

I/O consolidation from Cloud and Virtual Data Storage Networking (CRC Press) www.storageio.com/book3.html

SSDs can be a great way for organizations to do IO consolidation to reduce costs in place of using many hard disk drives (HDDs) grouped together to achieve a certain level of performance. By consolidating the IOs off of many HDDs that often end up being under utilized from a space capacity basis, organizations can boost performance for applications while reducing, or reusing HDD based storage capacity for other purposes including growth.

Here is some related material and comments:
Has SSD put Hard Disk Drives (HDDs) On Endangered Species List?
SSD and Storage System Performance
Are Hard Disk Drives (HDDs) getting too big?
Solid state devices and the hosting industry
Achieving Energy Efficiency using FLASH SSD
Using SSD flash drives to boost performance

Four ways to use SSD storage
4 trends that shape how agencies handle storage
Giving storage its due

You can read a transcript of the conversation and listen to the pod cast here, or download the MP3 audio here.

Ok, nuff said about SSD (for now)

Cheers Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2011 StorageIO and UnlimitedIO All Rights Reserved

StorageIO going Dutch: Seminar for Storage and I/O professionals

Data and Storage Networking Industry Trends and Technology Seminar

Greg Schulz of StorageIO in conjunction with or dutch parter Brouwer Storage Consultancy will be presenting a two day seminar for Storage Professionals Tuesday 24th and Wednesday 25th of May 2011 at Ampt van Nijkerk Netherlands.

Brouwer Storage ConsultanceyThe Server and StorageIO Group

This two day interactive education seminar for storage professionals will focus on current data and storage networking trends, technology and business challenges along with available technologies and solutions. During the seminar learn what technologies and management techniques are available, how different vendors solutions compare and what to use when and where. This seminar digs into the various IT tools, techniques, technologies and best practices for enabling an efficient, effective, flexible, scalable and resilient data infrastructure.

The format of this two seminar will be a mix of presentation and interactive discussion allowing attendees plenty of time to discuss among themselves and with seminar presenters. Attendees will gain insight into how to compare and contrast various technologies and solutions in addition to identifying and aligning those solutions to their specific issues, challenges and requirements.

Major themes that will be discussed include:

  • Who is doing what with various storage solutions and tools
  • Is RAID still relevant for today and tomorrow
  • Are hard disk drives and tape finally dead at the hands of SSD and clouds
  • What am I routinely hearing, seeing or being asked to comment on
  • Enabling storage optimization, efficiency and effectiveness (performance and capacity)
  • What do I see as opportunities for leveraging various technologies, techniques,trends
  • Supporting virtual servers including re-architecting data protection
  • How to modernize data protection (backup/restore, BC, DR, replication, snapshots)
  • Data footprint reduction (DFR) including archive, compression and dedupe
  • Clarifying cloud confusion, don’t be scared, however look before you leap

In addition this two day seminar will look at what are some new and improved technologies and techniques, who is doing what along with discussions around industry and vendor activity including mergers and acquisitions. Greg will also preview the contents and themes of his new book Cloud and Virtual Data Storage Networking (CRC) for enabling efficient, optimized and effective information services delivery across cloud, virtual and traditional environments.

Buzzwords and topic themes to be discussed among others include:
E2E, FCoE and DCB, CNAs, SAS, I/O virtualization, server and storage virtualization, public and private cloud, Dynamic Infrastructures, VDI, RAID and advanced data protection options, SSD, flash, SAN, DAS and NAS, object storage, application optimized or aware storage, open storage, scale out storage solutions, federated management, metrics and measurements, performance and capacity, data movement and migration, storage tiering, data protection modernization, SRA and SRM, data footprint reduction (archive, compress, dedupe), unified and multi-protocol storage, solution bundle and stacks.

For more information or to register contact Brouwer Storage Consultancy

Brouwer Storage Consultancy
Olevoortseweg 43
3861 MH Nijkerk
The Netherlands
Telephone: +31-33-246-6825
Cell: +31-652-601-309
Fax: +31-33-245-8956
Email: info@brouwerconsultancy.com
Web: www.brouwerconsultancy.com

Brouwer Storage Consultancey

Learn about other events involving Greg Schulz and StorageIO at www.storageio.com/events

Ok, nuff said for now

Cheers Gs

Greg Schulz – Author The Green and Virtual Data Center (CRC), Resilient Storage Networks (Elsevier) and coming summer 2011 Cloud and Virtual Data Storage Networking (CRC)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2011 StorageIO and UnlimitedIO All Rights Reserved

Its US Census time, What about IT Data Centers?

It is that once a decade activity time this year referred to as the US 2010 Census.

With the 2010 census underway, not to mention also time for completing and submitting your income tax returns, if you are in IT, what about measuring, assessing, taking inventory or analyzing your data and data center resources?

US 2010 Cenus formsUS 2010 Cenus forms
Figure 1: IT US 2010 Census forms

Have you recently taken a census of your data, data storage, servers, networks, hardware, software tools, services providers, media, maintenance agreements and licenses not to mention facilities?

Likewise have you figured out what if any taxes in terms of overhead or burden exists in your IT environment or where opportunities to become more optimized and efficient to get an IT resource refund of sorts are possible?

If not, now is a good time to take a census of your IT data center and associated resources in what might also be called an assessment, review, inventory or survey of what you have, how its being used, where and who is using and when along with associated configuration, performance, availability, security, compliance coverage along with costs and energy impact among other items.

IT Data Center Resources
Figure 2: IT Data Center Metrics for Planning and Forecasts

How much storage capacity do you have, how is it allocated along with being used?

What about storage performance, are you meeting response time and QoS objectives?

Lets not forget about availability, that is planned and unplanned downtime, how have your systems been behaving?

From an energy or power and cooling standpoint, what is the consumption along with metrics aligned to productivity and effectiveness. These include IOPS per watt, transactions per watt, videos or email along with web clicks or page views per watt, processor GHz per watt along with data movement bandwidth per watt and capacity stored per watt in a given footprint.

Other items to look into for data centers besides storage include servers, data and I/O networks, hardware, software, tools, services and other supplies along with physical facility with metrics such as PUE. Speaking of optimization, how is your environment doing, that is another advantage of doing a data center census.

For those who have completed and sent in your census material along with your 2009 tax returns, congratulations!

For others in the US who have not done so, now would be a good time to get going on those activities.

Likewise, regardless of what country or region you are in, its always a good time to take a census or inventory of your IT resources instead of waiting every ten years to do so.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

2010 and 2011 Trends, Perspectives and Predictions: More of the same?

2011 is not a typo, I figured that since Im getting caught up on some things, why not get a jump as well.

Since 2009 went by so fast, and that Im finally getting around to doing an obligatory 2010 predictions post, lets take a look at both 2010 and 2011.

Actually Im getting around to doing a post here having already done interviews and articles for others soon to be released.

Based on prior trends and looking at forecasts, a simple predictions is that some of the items for 2010 will apply for 2011 as well given some of this years items may have been predicted by some in 2008, 2007, 2006, 2005 or, well ok, you get the picture. :)

Predictions are fun and funny in that for some, they are taken very seriously, while for others, at best they are taken with a grain of salt depending on where you sit. This applies both for the reader as well as who is making the predictions along with various motives or incentives.

Some are serious, some not so much…

For some, predictions are a great way of touting or promoting favorite wares (hard, soft or services) or getting yet another plug (YAP is a TLA BTW) in to meet coverage or exposure quota.

Meanwhile for others, predictions are a chance to brush up on new terms for the upcoming season of buzzword bingo games (did you pick up on YAP).

In honor of the Vancouver winter games, Im expecting some cool Olympic sized buzzword bingo games with a new slippery fast one being federation. Some buzzwords will take a break in 2010 as well as 2011 having been worked pretty hard the past few years, while others that have been on break, will reappear well rested, rejuvenated, and ready for duty.

Lets also clarify something regarding predictions and this is that they can be from at least two different perspectives. One view is that from a trend of what will be talked about or discussed in the industry. The other is in terms of what will actually be bought, deployed and used.

What can be confusing is sometimes the two perspectives are intermixed or assumed to be one and the same and for 2010 I see that trend continuing. In other words, there is adoption in terms of customers asking and investigating technologies vs. deployment where they are buying, installing and using those technologies in primary situations.

It is safe to say that there is still no such thing as an information, data or processing recession. Ok, surprise surprise; my dogs could have probably made that prediction during a nap. However what this means is more data will need to be moved, processed and stored for longer periods of time and at a lower cost without degrading performance or availability.

This means, denser technologies that enable a lower per unit cost of service without negatively impacting performance, availability, capacity or energy efficiency will be needed. In other words, watch for an expanded virtualization discussion around life beyond consolidation for servers, storage, desktops and networks with a theme around productivity and virtualization for agility and management enablement.

Certainly there will be continued merger and acquisitions on both a small as well as large scale ranging from liquidation sales or bargain hunting, to large and a mega block buster or two. Im thinking in terms of outside of the box, the type that will have people wondering perhaps confused as to why such a deal would be done until the whole picture is reveled and thought out.

In other words, outside of perhaps IBM, HP, Oracle, Intel or Microsoft among a few others, no vendor is too large not to be acquired, merged with, or even involved in a reverse merger. Im also thinking in terms of vendors filling in niche areas as well as building out their larger portfolio and IT stacks for integrated solutions.

Ok, lets take a look at some easy ones, lay ups or slam dunks:

  • More cluster, cloud conversations and confusion (public vs. private, service vs. product vs. architecture)
  • More server, desktop, IO and storage consolidation (excuse me, server virtualization)
  • Data footprint impact reduction ranging from deletion to archive to compress to dedupe among others
  • SSD and in particular flash continues to evolve with more conversations around PCM
  • Growing awareness of social media as yet another tool for customer relations management (CRM)
  • Security, data loss/leap prevention, digital forensics, PCI (payment card industry) and compliance
  • Focus expands from gaming/digital surveillance /security and energy to healthcare
  • Fibre Channel over Ethernet (FCoE) mainstream in discussions with some initial deployments
  • Continued confusion of Green IT and carbon reduction vs. economic and productivity (Green Gap)
  • No such thing as an information, data or processing recession, granted budgets are strained
  • Server, Storage or Systems Resource Analysis (SRA) with event correlation
  • SRA tools that provide and enable automation along with situational awareness

The green gap of confusion will continue with carbon or environment centric stories and messages continue to second back stage while people realize the other dimension of green being productivity.

As previously mentioned, virtualization of servers and storage continues to be popular with an expanding focus from just consolidation to one around agility, flexibility and enabling production, high performance or for other systems that do not lend themselves to consolidation to be virtualized.

6GB SAS interfaces as well as more SAS disk drives continue to gain popularity. I have said in the past there was a long shot that 8GFC disk drives might appear. We might very well see those in higher end systems while SAS drives continue to pick up the high performance spinning disk role in mid range systems.

Granted some types of disk drives will give way over time to others, for example high performance 3.5” 15.5K Fibre Channel disks will give way to 2.5” 15.5K SAS boosting densities, energy efficiency while maintaining performance. SSD will help to offload hot spots as they have in the past enabling disks to be more effectively used in their applicable roles or tiers with a net result of enhanced optimization, productivity and economics all of which have environmental benefits (e.g. the other Green IT closing the Green Gap).

What I dont see occurring, or at least in 2010

  • An information or data recession requiring less server, storage, I/O networking or software resources
  • OSD (object based disk storage without a gateway) at least in the context of T10
  • Mainframes, magnetic tape, disk drives, PCs, or Windows going away (at least physically)
  • Cisco cracking top 3, no wait, top 5, no make that top 10 server vendor ranking
  • More respect for growing and diverse SOHO market space
  • iSCSI taking over for all I/O connectivity, however I do see iSCSI expand its footprint
  • FCoE and flash based SSD reaching tipping point in terms of actual customer deployments
  • Large increases in IT Budgets and subsequent wild spending rivaling the dot com era
  • Backup, security, data loss prevention (DLP), data availability or protection issues going away
  • Brett Favre and the Minnesota Vikings winning the super bowl

What will be predicted at end of 2010 for 2011 (some of these will be DejaVU)

  • Many items that were predicted this year, last year, the year before that and so on…
  • Dedupe moving into primary and online active storage, rekindling of dedupe debates
  • Demise of cloud in terms of hype and confusion being replaced by federation
  • Clustered, grid, bulk and other forms of scale out storage grow in adoption
  • Disk, Tape, RAID, Mainframe, Fibre Channel, PCs, Windows being declared dead (again)
  • 2011 will be the year of Holographic storage and T10 OSD (an annual prediction by some)
  • FCoE kicks into broad and mainstream deployment adoption reaching tipping point
  • 16Gb (16GFC) Fibre Channel gets more attention stirring FCoE vs. FC vs. iSCSI debates
  • 100GbE gets more attention along with 4G adoption in order to move more data
  • Demise of iSCSI at the hands of SAS at low end, FCoE at high end and NAS from all angles

Gaining ground in 2010 however not yet in full stride (at least from customer deployment)

  • On the connectivity front, iSCSI, 6Gb SAS, 8Gb Fibre Channel, FCoE and 100GbE
  • SSD/flash based storage everywhere, however continued expansion
  • Dedupe  everywhere including primary storage – its still far from its full potential
  • Public and private clouds along with pNFS as well as scale out or clustered storage
  • Policy based automated storage tiering and transparent data movement or migration
  • Microsoft HyperV and Oracle based server virtualization technologies
  • Open source based technologies along with heterogeneous encryption
  • Virtualization life beyond consolidation addressing agility, flexibility and ease of management
  • Desktop virtualization using Citrix, Microsoft and VMware along with Microsoft Windows 7

Buzzword bingo hot topics and themes (in no particular order) include:

  • 2009 and previous year carry over items including cloud, iSCSI, HyperV, Dedupe, open source
  • Federation takes over some of the work of cloud, virtualization, clusters and grids
  • E2E, End to End management preferably across different technologies
  • SAS, Serial Attached SCSI for server to storage systems and as disk to storage interface
  • SRA, E23, Event correlation and other situational awareness related IRM tools
  • Virtualization, Life beyond consolidation enabling agility, flexibility for desktop, server and storage
  • Green IT, Transitions from carbon focus to economic with efficiency enabling productivity
  • FCoE, Continues to evolve and mature with more deployments however still not at tipping point
  • SSD, Flash based mediums continue to evolve however tipping point is still over the horizon
  • IOV, I/O Virtualization for both virtual and non virtual servers
  • Other new or recycled buzzword bingo candidates include PCoIP, 4G,

RAID will again be pronounced as being dead no longer relevant yet being found in more diverse deployments from consumer to the enterprise. In other words, RAID may be boring and thus no longer relevant to talk about, yet it is being used everywhere and enhanced in evolutionary ways, perhaps for some even revolutionary.

Tape remains being declared dead (e.g. on the Zombie technology list) yet being enhanced, purchased and utilized at higher rates with more data stored than in past history. Instead of being killed off by the disk drive, tape is being kept around for both traditional uses as well as taking on new roles where it is best suited such as long term or bulk off-line storage of data in ultra dense and energy efficient not to mention economical manners.

What I am seeing and hearing is that customers using tape are able to reduce the number of drives or transports, yet due to leveraging disk buffers or caches including from VTL and dedupe devices, they are able to operate their devices at higher utilization, thus requiring fewer devices with more data stored on media than in the past.

Likewise, even though I have been a fan of SSD for about 20 years and am bullish on its continued adoption, I do not see SSD killing off the spinning disk drive anytime soon. Disk drives are helping tape take on this new role by being a buffer or cache in the form of VTLs, disk based backup and bulk storage enhanced with compression, dedupe, thin provision and replication among other functionality.

There you have it, my predictions, observations and perspectives for 2010 and 2011. It is a broad and diverse list however I also get asked about and see a lot of different technologies, techniques and trends tied to IT resources (servers, storage, I/O and networks, hardware, software and services).

Lets see how they play out.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

EPA Server and Storage Workshop Feb 2, 2010

EPA Energy Star

Following up on a recent previous post pertaining to US EPA Energy Star(r) for Servers, Data Center Storage and Data Centers, there will be a workshop held Tuesday February 2, 2010 in San Jose, CA.

Here is the note (Italics added by me for clarity) from the folks at EPA with information about the event and how to participate.

 

Dear ENERGY STAR® Servers and Storage Stakeholders:

Representatives from the US EPA will be in attendance at The Green Grid Technical Forum in San Jose, CA in early February, and will be hosting information sessions to provide updates on recent ENERGY STAR servers and storage specification development activities.  Given the timing of this event with respect to ongoing data collection and comment periods for both product categories, EPA intends for these meetings to be informal and informational in nature.  EPA will share details of recent progress, identify key issues that require further stakeholder input, discuss timelines for the completion, and answer questions from the stakeholder community for each specification.

The sessions will take place on February 2, 2010, from 10:00 AM to 4:00 PM PT, at the San Jose Marriott.  A conference line and Webinar will be available for participants who cannot attend the meeting in person.  The preliminary agenda is as follows:

Servers (10:00 AM to 12:30 PM)

  • Draft 1 Version 2.0 specification development overview & progress report
    • Tier 1 Rollover Criteria
    • Power & Performance Data Sheet
    • SPEC efficiency rating tool development
  • Opportunities for energy performance data disclosure

 

Storage (1:30 PM to 4:00 PM)

  • Draft 1 Version 1.0 specification development overview & progress report
  • Preliminary stakeholder feedback & lessons learned from data collection 

A more detailed agenda will be distributed in the coming weeks.  Please RSVP to storage@energystar.gov or servers@energystar.gov no later than Friday, January 22.  Indicate in your response whether you will be participating in person or via Webinar, and which of the two sessions you plan to attend.

Thank you for your continued support of ENERGY STAR.

 

End of EPA Transmission

For those attending the event, I look forward to seeing you there in person on Tuesday before flying down to San Diego where I will be presenting on Wednesday the 3rd at The Green Data Center Conference.

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

RAID Relevance Revisited

Following up from some previous posts on the topic, a continued discussion point in the data storage industry is the relevance (or lack there) of RAID (Redundant Array of Independent Disks).

These discussions tend to evolve around how RAID is dead due to its lack of real or perceived ability to continue scaling in terms of performance, availability, capacity, economies or energy capabilities needed or when compared to those of newer techniques, technologies or products.

RAID Relevance

While there are many new and evolving approaches to protecting data in addition to maintaining availability or accessibility to information, RAID despite the fan fare is far from being dead at least on the technology front.

Sure, there are issues or challenges that require continued investing in RAID as has been the case over the past 20 years; however those will also be addressed on a go forward basis via continued innovation and evolution along with riding technology improvement curves.

Now from a marketing standpoint, ok, I can see where the RAID story is dead, boring, and something new and shiny is needed, or, at least change the pitch to sound like something new.

Consequently, when being long in the tooth and with some of the fore mentioned items among others, older technologies that may be boring or lack sizzle or marketing dollars can and often are declared dead on the buzzword bingo circuit. After all, how long now has the industry trade group RAID Advisory Board (RAB) been missing in action, retired, spun down, archived or ILMed?

RAID remains relevant because like other dead or zombie technologies it has reached the plateau of productivity and profitability. That success is also something that emerging technologies envy as their future domain and thus a classic marketing move is to declare the incumbent dead.

The reality is that RAID in all of its various instances from hardware to software, standard to non-standard with extensions is very much alive from the largest enterprise to the SMB to the SOHO down into consumer products and all points in between.

Now candidly, like any technology that is about 20 years old if not older after all, the disk drive is over 50 years old and been declared dead for how long now?.RAID in some ways is long in the tooth and there are certainly issues to be addressed as have been taken care of in the past. Some of these include the overhead of rebuilding large capacity 1TB, 2TB and even larger disk drives in the not so distant future.

There are also issues pertaining to distributed data protection in support of cloud, virtualized or other solutions that need to be addressed. In fact, go way way back to when RAID appeared commercially on the scene in the late 80s and one of the value propositions among others was to address the reliability of emerging large capacity multi MByte sized SCSI disk drives. It seems almost laughable today that when a decade later, when the 1GB disk drives appeared in the market back in the 90s that there was renewed concern about RAID and disk drive rebuild times.

Rest assured, I think that there is a need and plenty of room for continued innovate evolution around RAID related technologies and their associated storage systems or packaging on a go forward basis.

What I find interesting is that some of the issues facing RAID today are similar to those of a decade ago for example having to deal with large capacity disk drive rebuild, distributed data protecting and availability, performance, ease of use and so the list goes.

However what happened was that vendors continued to innovate both in terms of basic performance accelerated rebuild rates with improvements to rebuild algorithms, leveraged faster processors, busses and other techniques. In addition, vendors continued to innovate in terms of new functionality including adopting RAID 6 which for the better part of a decade outside of a few niche vendors languished as one of those future technologies that probably nobody would ever adopt, however we know that to be different now and for the past several years. RAID 6 is one of those areas where vendors who do not have it are either adding it, enhancing it, or telling you why you do not need it or why it is no good for you.

An example of how RAID 6 is being enhanced is boosting performance on normal read and write operations along with acceleration of performance during disk rebuild. Also tied to RAID 6 and disk drive rebuild are improvements in controller design to detect and proactively make repairs on the fly to minimize or eliminate errors or diminished the need for drive rebuilds, similar to what was done in previous generations. Lets also not forget the improvements in disk drives boosting performance, availability, capacity and energy improvements over time.

Funny how these and other enhancements are similar to those made to RAID controllers hardware and software fine tuning them in the early to mid 2000s in support for high capacity SATA disk drives that had different RAS characteristics of higher performance lower capacity enterprise drives.

Here is my point.

RAID to some may be dead while others continue to rely on it. Meanwhile others are working on enhancing technologies for future generations of storage systems and application requirements. Thus in different shapes, forms, configurations, feature; functionality or packaging, the spirit of RAID is very much alive and well remaining relevant.

Regardless of if a solution using two or three disk mirroring for availability, or RAID 0 fast SSD or SAS or FC disks in a stripe configuration for performance with data protection via rapid restoration from some other low cost medium (perhaps RAID 6 or tape), or perhaps single, dual or triple parity protection, or if using small block or multiMByte or volume based chunklets, let alone if it is hardware or software based, local or disturbed, standard or non standard, chances are there is some theme of RAID involved.

Granted, you do not have to call it RAID if you prefer!

As a closing thought, if RAID were no longer relevant, than why do the post RAID, next generation, life beyond RAID or whatever you prefer to call them technologies need to tie themselves to the themes of RAID? Simple, RAID is still relevant in some shape or form to different audiences as well as it is a great way of stimulating discussion or debate in a constantly evolving industry.

BTW, Im still waiting for the revolutionary piece of hardware that does not require software, and the software that does not require hardware and that includes playing games with server less servers using hypervisors :) .

Provide your perspective on RAID and its relevance in the following poll.

Here are some additional related and relevant RAID links of interests:

Stay tuned for more about RAIDs relevance as I dont think we have heard the last on this.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved