PCIe Fundamentals Server Storage I/O Network Essentials

Updated 8/31/19

PCIe Fundamentals Server Storage I/O Network Essentials

PCIe fundamentals data infrastructure trends

This piece looks at PCIe Fundamentals topics for server, storage, I/O network data infrastructure environments. Peripheral Computer Interconnect (PCI) Express aka PCIe is a Server, Storage, I/O networking fundamentals component. This post is an excerpt from chapter 4 (Chapter 4: Servers: Physical, Virtual, Cloud, and Containers) of my new book Software Defined Data Infrastructure Essentials – Cloud, Converged and Virtual Fundamental Server Storage I/O Tradecraft (CRC Press 2017) Available via Amazon.com and other global venues. In this post, we look various PCIe fundamentals to learn and expand or refresh your server, storage, and I/O and networking tradecraft skills experience.

PCIe fundamentals Server Storage I/O Fundamentals

PCIe fundamental common server I/O component

Common to all servers is some form of a main system board, which can range from a few square meters in supercomputers, data center rack, tower, and micro towers converged or standalone, to small Intel NUC (Next Unit of Compute), MSI and Kepler-47 footprint, or Raspberry Pi-type desktop servers and laptops. Likewise, PCIe is commonly found in storage and networking systems, appliances among other devices.

For example, a blade server will have multiple server blades or modules, each with its motherboard, which shares a common back plane for connectivity. Another variation is a large server such as an IBM “Z” mainframe, Cray, or another supercomputer that consists of many specialized boards that function similar to a smaller-sized motherboard on a larger scale.

Some motherboards also have mezzanine or daughter boards for attachment of additional I/O networking or specialized devices. The following figure shows a generic example of a two-socket, with eight-memory-channel-type server architecture.

PCIe fundamentals SDDC, SDI, SDDI Server fundamentals
Generic computer server hardware architecture. Source: Software Defined Data Infrastructure Essentials (CRC Press 2017)

The above figure shows several PCIe, USB, SAS, SATA, 10 GbE LAN, and other I/O ports. Different servers will have various combinations of processor, and Dual Inline Memory Module (DIMM) Dynamic RAM (DRAM) sockets along with other features. What will also vary are the type and some I/O and storage expansion ports, power and cooling, along with management tools or included software.

PCIe, Including Mini-PCIe, NVMe, U.2, M.2, and GPU

At the heart of many servers I/O and connectivity solutions are the PCIe industry-standard interface (see PCIsig.com). PCIe is used to communicate with CPUs and the outside world of I/O networking devices. The importance of a faster and more efficient PCIe bus is to support more data moving in and out of servers while accessing fast external networks and storage.

For example, a server with a 40-GbE NIC or adapter would have to have a PCIe port capable of 5 GB per second. If multiple 40-GbE ports are attached to a server, you can see where the need for faster PCIe interfaces come into play.

As more VM are consolidated onto PM, as applications place more performance demand either regarding bandwidth or activity (IOPS, frames, or packets) per second, more 10-GbE adapters will be needed until the price of 40-GbE (also 25, 50 or 100 Gbe) becomes affordable. It is not if, but rather when you will grow into the performance needs on either a bandwidth/throughput basis or to support more activity and lower latency per interface.

PCIe is a serial interface specified for how servers communicate between CPUs, memory, and motherboard-mounted as well as AiC devices. This communication includes support attachment of onboard and host bus adapter (HBA) server storage I/O networking devices such as Ethernet, Fibre Channel, InfiniBand, RapidIO, NVMe (cards, drives, and fabrics), SAS, and SATA, among other interfaces.

In addition to supporting attachment of traditional LAN, SAN, MAN, and WAN devices, PCIe is also used for attaching GPU and video cards to servers. Traditionally, PCIe has been focused on being used inside of a given server chassis. Today, however, PCIe is being deployed on servers spanning nodes in dual, quad, or CiB, CI, and HCI or Software Defined Storage (SDS) deployments. Another variation of PCIe today is that multiple servers in the same rack or proximity can attach to shared devices such as storage via PCIe switches.

PCIe components (hardware and software) include:

  • Hardware chipsets, cabling, connectors, endpoints, and adapters
  • Root complex and switches, risers, extenders, retimers, and repeaters
  • Software drivers, BIOS, and management tools
  • HBAs, RAID, SSD, drives, GPU, and other AiC devices
  • Mezzanine, mini-PCIe, M.2, NVMe U.2 (8639 drive form factor)

There are many different implementations of PCIe, corresponding to generations representing speed improvements as well as physical packing options. PCIe can be deployed in various topologies, including a traditional model where an AiC such as GbE or Fibre Channel HBA connects the server to a network or storage device.

Another variation is for a server to connect to a PCIe switch, or in a shared PCIe configuration between two or more servers. In addition to different generations and topologies, there are also various PCIe form factors and physical connectors (see the following figure), ranging from AiC of various length and height, as well as M.2 small-form-factor devices and U.2 (8639) drive form-factor device for NVMe, among others.

Note that the presence of M.2 does not guarantee PCIe NVMe, as it also supports SATA.

Likewise, different NVMe devices run at various PCIe speeds based on the number of lanes. For example, in the following figure, the U.2 (8639) device (looks like a SAS device) shown is a PCIe x4.

SDDC, SDI, SDDI PCIe NVMe U.2 8639 drive fundamentals
PCIe devices NVMe U.2, M.2, and NVMe AiC. (Source: StorageIO Labs.)

PCIe leverages multiple serial unidirectional point-to-point links, known as lanes, compared to traditional PCI, which used a parallel bus design. PCIe interfaces can have one (x1), four (x4), eight (x8), sixteen (x16), or thirty-two (x32) lanes for data movement. Those PCIe lanes can be full-duplex, meaning data is sent and received at the same time, providing improved effective performance.

PCIe cards are upward-compatible, meaning that an x4 can work in an x8, an x8 in an x16, and so forth. Note, however, that the cards will not perform any faster than their specified speed; an x4 in an x8 slot will only run at x8. PCIe cards can also have single, dual, or multiple external ports and interfaces. Also, note that there are still some motherboards with legacy PCI slots that are not interoperable with PCIe cards and vice versa.

Note that PCIe cards and slots can be mechanically x1, x4, x8, x16, or x32, yet electrically (or signal) wired to a slower speed, based on the type and capabilities of the processor sockets and corresponding chipsets being used. For example, you can have a PCIe x16 slot (mechanical) that is wired for x8, which means it will only run at x8 speed.

In addition to the differences between electrical and mechanical slots, also pay attention to what generation the PCIe slots are, such as Gen 2 or Gen 3 or higher. Also, some motherboards or servers will advertise multiple PCIe slots, but those are only active with a second or additional processor socket occupied by a CPU. For example, a PCIe card that has dual x4 external PCIe ports requiring full PCIe bandwidth will need at least PCIe x8 attachment in the server slot. In other words, for full performance, the external ports on a PCIe card or device need to match the external electrical and mechanical card type and vice versa.

Recall big “B” as in Bytes vs. little “b” as in bits; for example, a PCIe Gen 3 x4 electrical could provide up to 4 GB/s bandwidth (your mileage and performance will vary), which translates to 8 × 4 GB or 32 Gbits/s. In the following table below, there is a mix of Big “B” Bytes per second and small “b” bits per second.

Each generation of PCIe has improved on the previous one by increasing the effective speed of the links. Some of the speed improvements have come from faster clock rates while implementing lower overhead encoding (e.g., from 8 b/10 b to 128 b/130 b).

For example, PCIe Gen 3 raw bit or line rate is 8 GT/s or 8 Gbps or about 2 GBps by using a 128 b/130 b encoding scheme that is very efficient compared to PCIe Gen 2 or Gen 1, which used an 8 b/10 b encoding scheme. With 8 b/10 b, there is a 20% overhead vs. a 1.5% overhead with 128 b/130 b (i.e., of 130 bits sent, 128 bits contain data, and 2 bits are for overhead).

PCIe Gen 1

PCIe Gen 2

PCIe Gen 3

PCIe Gen 4

PCIe Gen 5

Raw bit rate

2.5 GT/s

5 GT/s

8 GT/s

16 GT/s

32 GT/s

Encoding

8 b/10 b

8 b/10 b

128 b/130 b

128 b/130 b

128 b/130 b

x1 Lane bandwidth

2 Gb/s

4 Gb/s

8 Gb/s

16 Gb/s

32 Gb/s

x1 Single lane (one-way)

~250 MB/s

~500 MB/s

~1 GB/s

~2 GB/s

~4GB/s

x16 Full duplex (both ways)

~8 GB/s

~16 GB/s

~32 GB/s

~64 GB/s

~128 GB/s

Above Table: PCIe Generation and Sample Lane Comparison

Note that PCIe Gen 3 is the currently generally available shipping technology with PCIe Gen 4 appearing in the not so distant future, with PCIe Gen 5 in the wings appearing a few more years down the road.

By contrast, older generations of Fibre Channel and Ethernet also used 8 b/10 b, having switched over to 64 b/66 b encoding with 10 Gb and higher. PCIe, like other serial interfaces and protocols, can support full-duplex mode, meaning that data can be sent and received concurrently.

PCIe Bit Rate, Encoding, Giga Transfers, and Bandwidth

Let’s clarify something about data transfer or movement both internal and external to a server. At the core of a server, there is data movement within the sockets of the processors and its cores, as well as between memory and other devices (internal and external). For example, the QPI bus is used for moving data between some Intel processors whose performance is specified in giga transfers (GT).

PCIe is used for moving data between processors, memory, and other devices, including internal and external facing devices. Devices include host bus adapters (HBAs), host channel adapters (HCAs), converged network adapters (CNAs), network interface cards (NICs) or RAID cards, and others. PCIe performance is specified in multiple ways, given that it has a server processor focus which involves GT for raw bit rate as well as effective bandwidth per lane.

Note to keep in perspective PCIe mechanical as well as electrical lanes in that a card or slot may be advertised as say x8 mechanical (e.g., its physical slot form factor) yet only be x4 electrical (how many of those lanes are used or enabled). Also in the case of an adapter that has two or more ports, if the device is advertised as x8 does that mean it is x8 per port or x4 per port with an x8 connection to the PCIe bus.

Effective bandwidth per lane can be specified as half- or full-duplex (data moving in one or both directions for send and receive). Also, effective bandwidth can be specified as a single lane (x1), four lanes (x4), eight lanes (x8), sixteen lanes (x16), or 32 lanes (x32), as shown in the above table. The difference in speed or bits moved per second between the raw bit or line rate, and the effective bandwidth per lane in a single direction (i.e., half-duplex) is the encoding that is common to all serial data transmissions.

When data gets transmitted, the serializer/deserializer, or serdes, convert the bytes into a bit stream via encoding. There are different types of encoding, ranging from 8 b/10 b to 64 b/66 b and 128 b//130 b, shown in the following table.

Single 1542-byte frame

64 × 1542-byte frames

Encoding Scheme

Overhead

Data Bits

Encoding Bits

Bits Transmitted

Data Bits

Encoding Bits

Bits Transferred

8 b/10 b

20%

12,336

3,084

15,420

789,504

197,376

986,880

64 b/66 b

3%

12,336

386

12,738

789,504

24,672

814,176

128 b/130 b

1.5%

12,336

194

12,610

789,504

12,336

801,840

Above Table: Low-Level Serial Encoding Data Transmit Efficiency

In these encoding schemes, the smaller number represents the amount of data being sent, and the difference is the overhead. Note that this is different yet related to what occurs at a higher level with the various network protocols such as TCP/IP (IP). With IP, there is a data payload plus addressing and other integrity and management features in a given packet or frame.

The 8-b/10-b, 64-b/66-b or 128-b/130-b encoding is at the lower physical layer. Thus, a small change there has a big impact and benefit when optimized. Table 4.2 shows comparisons of various encoding schemes using the example of moving a single 1542-byte packet or frame, as well as sending (or receiving) 64 packets or frames that are 1542 bytes in size.

Why 1542? That is a standard IP packet including data and protocol framing without using jumbo frames (MTU or maximum transmission units).

What does this have to do with PCIe? GbE, 10-GbE, 40-GbE, and other physical interfaces that are used for moving TCP/IP packets and frames interface with servers via PCIe.

This encoding is important as part of server storage I/O tradecraft regarding understanding the impact of performance and network or resource usage. It also means understanding why there are fewer bits per second of effective bandwidth (independent of compression or deduplication) vs. line rate in either half- or full-duplex mode.

Another item to note is that looking at encoding such as the example given in the above table shows how a relatively small change at a large scale can have a big effective impact benefit. If the bits and bytes encoding efficiency and effectiveness scenario in Table 4.2 do not make sense, then try imagining 13 MINI Cooper automobiles each with eight people in it (yes, that would be a tight fit) end to end on the same road.

Now imagine a large bus that takes up much less length on the road than the 13 MINI Coopers. The bus holds 128 people, who would still be crowded but nowhere near as cramped as eight people in a MINI, plus 24 additional people can be carried on the bus. That is an example of applying basic 8-b/10-b encoding (the MINI) vs. applying 128-b/130-b encoding (the bus) and is also similar to PCIe G3 and G4, which use 128-b/130-b encoding for data movement.

PCIe Topologies

The basic PCIe topology configuration has one or more devices attached to the root complex shown in the following figure via an AiC or onboard device connector. Examples of AiC and motherboard-mounted devices that attach to PCIe root include LAN or SAN HBA, networking, RAID, GPU, NVM or SSD, among others. At system start-up, the server initializes the PCIe bus and enumerates the devices found with their addresses.

PCIe devices attach (shown in the following figure) to a bus that communicates with the root complex that connects with processor CPUs and memory. At the other end of a PCIe device is an end-point target, a PCIe switch that in turn has end-point targets attached. From a software standpoint, hypervisor or operating system device drivers communicate with the PCI devices that in turn send or receive data or perform other functions.

SDDC, SDI, SDDI PCIe fundamentals
Basic PCIe root complex with a PCIe switch or expander.

Note that in addition to PCIe AiC such as HBAs, GPU, and NVM SSD, among others that install into PCIe slots, servers also have converged storage or disk drive enclosures that support a mix of SAS, SATA, and PCIe. These enclosure backplanes have a connector that attaches to a SAS or SATA onboard port, or a RAID card, as well as to a PCIe riser card or motherboard connector. Depending on what type of drive is installed in the connector, either the SAS, SATA, or NVMe (AiC, U.2, and M2) using PCIe communication paths are used.

In addition to traditional and switched PCIe, using PCIe switches as well as nontransparent bridging (NTB), various other configurations can be deployed. These include server to server for clustering, failover, or device sharing as well as fabrics. Note that this also means that while traditionally found inside a server, PCIe can today use an extender, retimer, and repeaters extended across servers within a rack or cabinet.

A nontransparent bridge (NTB) is a point-to-point connection between two PCIe-based systems that provide electrical isolation yet functions as a transport bridge between two different address domains. Hosts on either side of the NTB see their respective memory or I/O address space. The NTB presents an endpoint exposed to the local system where writes are mirrored to memory on the remote system to allow the systems to communicate and share devices using associated device drivers. For example, in the following figure, two servers, each with a unique PCIe root complex, address, and memory map, are shown using NTB to any communication between the systems while maintaining data integrity.

SDDC, SDI, SDDI PCIe two server fundamentals
PCIe dual server example using NTB along with switches.

General PCIe considerations (slots and devices) include:

  • Power consumption (and heat dissipation)
  • Physical and software plug-and-play (good interoperability)
  • Drivers (in-the-box, built into the OS, or add-in)
  • BIOS, UEFI, and firmware being current versions
  • Power draw per card or adapters
  • Type of processor, socket, and support chip (if not an onboard processor)
  • Electrical signal (lanes) and mechanical form factor per slot
  • Nontransparent bridge and root port (RP)
  • PCI multi-root (MR), single-root (SR), and hot plug
  • PCIe expansion chassis (internal or external)
  • External PCIe shared storage

Various operating system and hypervisor commands are available for viewing and managing PCIe devices. For example, on Linux, the “lspci” and “lshw–c pci” commands displays PCIe devices and associated information. On a VMware ESXi host, the “esxcli hardware pci list” command will show various PCIe devices and information, while on Microsoft Windows systems, “device manager” (GUI) or “devcon” (command line) will show similar information.

Who Are Some PCIe Fundamentals Vendors and Service Providers

While not an exhaustive list, here is a sampling of some vendors and service providers involved in various ways with PCIe from solutions to components to services to trade groups include Amphenol (connectors and cables), AWS (cloud data infrastructure services), Broadcom (PCIe components), Cisco (servers), DataOn (servers), Dell EMC (servers, storage, software), E8 (storage software), Excelero (storage software), HPE (storage, servers), Huawei (storage, servers), IBM, Intel (storage, servers, adapters), Keysight (test equipment and tools).

Others include Lenovo (servers), Liqid (composable data infrastructure), Mellanox (server and storage adapters), Micron (storage devices), Microsemi (PCIe components), Microsoft (Cloud and Software including S2D), Molex (connectors, cables), NetApp, NVMexpress.org (NVM Express trade group organizations), Open Compute Project (server, storage, I/O network industry group), Oracle, PCISIG (PCIe industry trade group), Samsung (storage devices), ScaleMP (composable data infrastructure), Seagate (storage devices), SNIA (industry trade group), Supermicro (servers), Tidal (composable data infrastructure), Vantar (formerly known as HDS), VMware (Software including vSAN), and WD among others.

Where To Learn More

Learn more about related technology, trends, tools, techniques, and tips with the following links.

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What This All Means

PCIe fundamentals are resources for building legacy and software-defined data infrastructures (SDDI), software-defined infrastructures (SDI), data centers and other deployments from laptop to large scale, hyper-scale cloud service providers. Learn more about Servers: Physical, Virtual, Cloud, and Containers in chapter 4 of my new book Software Defined Data Infrastructure Essentials (CRC Press 2017) Available via Amazon.com and other global venues. Meanwhile, PCIe fundamentals continues to evolve as a Server, Storage, I/O networking fundamental component.

Ok, nuff said, for now.
Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio.

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

Top vBlog 2017 Voting Now Open

server storage I/O trends

Top vBlog 2017 Voting Now Open

It is that time of the year again when Eric Siebert (@ericsiebert) over at vSphere-land holds his annual Top vBlog (e.g. VMware and Virtualization related) voting (vote here until June 30, 2017). The annual Top vBlog event enables fans to vote for their favorite blogs (to get them into the top 10, 25, 50 and 100) as well as rank them for different categories which appear on Eric’s vLaunchPad site.

This years Top vBlog voting is sponsored by TurboNomic (e.g. formerly known as VMturbo) who if you are not aware of, have some interesting technology for cross-platform (cloud, container, virtualization, hardware, software, services) data infrastructure management software tools.

Software Defined Data Infrastructure Management

The blogs and sites listed on Eric’s site have common theme linkage to Virtualization and in particular tend to be more VMware focused, however some are also hybrid agnostic spanning other technologies, vendors, services and tools. Some examples of the different focus areas include hypervisors, VDI, cloud, containers, management tools, scripting, networking, servers, storage, data protection including backup/restore, replication, BC, DR among others).

In addition to the main list of blogs (that are active), there are also sub lists for different categories including:

  • Top 100 (Also top 10, 25, 50) vBlogs
  • Archive of retired (e.g. not active or seldom post)
  • News and Information sites
  • Podcasts
  • Scripting Blogs
  • Storage related
  • Various Virtualization Blogs
  • VMware Corporate Blogs

What To Do

Get out and vote for your favorite (or blogs that you frequent) in appreciation to those who create virtualization, VMware and data infrastructure related content. Click here or on the image above to reach the voting survey site where you will find more information and rules. In summary, select 12 of your favorite or preferred blogs, then rank them from 1 (most favorite) to 12. Then select your favorites for other categories such as Female Blog, Independent, New Blog, News websites, Podcast, Scripting and Storage among others.

Note: You will find my StorageIOblog in the main category (e.g. where you select 12 and then rank), as well as in the Storage, Independent, as well as Podcast categories, and thank you in advance for your continued support.

Which Blogs Do I Recommend (Among Others)

Two of my favorite blogs (and authors) are not included as Duncan Epping (Yellow Bricks) former #1 and Frank Denneman former #4 chose not to take part this year opening the door for some others to move up into the top 10 (or 25, 50 and 100). Of those listed some of my blogs I find valuable include Cormac Hogan of VMware, Demitasse (Alastair Cooke), ESX Virtualization (Vladan Seget), Kendrick Coleman, NTPro.nl (Eric Sloof), Planet VM (Tom Howarth), Virtually Ghetto (William Lam), VM Blog (David Marshall), vsphere-land.com (Eric Siebert) and Wahl Networks (Chris Wahl) among others.

Where to learn more

What this all means

It’s that time of the year again to take a few moments and show some appreciation for your favorite or preferred blogs along with their authors who spend time to create content for those sites. Also check out Turbonomic as they are an interesting technology that I have kept an eye on for some time now and so should you. Thank you all in advance regardless of if you take part in the voting as I also appreciate your continued support by viewing these posts either at StorageIOblog.com site or one of the many downstream sites where you can also read the content.

Ok, nuff said (for now…).

Cheers
Gs

Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

Dell EMC World 2017 Day One news announcement summary

server storage I/O trends

Dell EMC World 2017 Day One news announcement summary

This is the first day of the first combined Dell EMC World 2017 being held in Las Vegas Nevada. Last year’s event in Las Vegas was the end of the EMC World, while this being the first of the combined Dell EMC World events that succeeded its predecessors.

What this means is an expanded focus because of the new Dell EMC that has added servers among other items to the event focus. Granted, EMC had been doing servers via its VCE and converged divisions, however with the Dell EMC integration completed as of last fall, the Dell Server group is now part of the Dell EMC organization.

The central theme of this Dell EMC world is REALIZE with a focus on four pillars:

  • Digital Transformation (Pivotal focus) of applications
  • IT Transformation (Dell EMC, Virtustream, VMware) data center modernization
  • Workforce transformation (Dell Client Solutions) devices from mobile to IoT
  • Information Security (RSA and Secureworks)

software defined data infrastructures SDDI and SDDC

What Did Dell EMC Announce Today

Note that while there are focus areas of the different Dell Technologies business units aligned to the pillars, there is also leveraging across those areas and groups. For example, VMware NSX spans into security, and  PowerEdge servers span into other pillars as a core data infrastructure building block.

What Dell EMC and Dell Technologies announced today.

  • Wave of Innovations to help customers realize digital transformation
  • New 14th generation PowerEdge Servers that are core building blocks for data infrastructures
  • Flexible consumption models (financing and more) from desktop to data center
  • Hyper-Converged Infrastructure (HCI), Converged (CI) and Cloud like systems
  • New All-Flash (ADA) SSD Storage Systems (VMAX, XtremIO X2, Unity, SC, Isilon)
  • Integrated Data Protection Appliance (IDPA) and Cloud Protection solutions
  • Using Gen14 servers several Software Defined Storage (SDS) enhancements
  • Open Networking and software-defined networks (SDN) with 25G
  • Last week Dell EMC announced Microsoft Azure Stack hybrid cloud solutions

New 14th generation PowerEdge Servers that are core building blocks for data infrastructures

Dell EMC has announced the 14th generation of Intel-powered Dell EMC PowerEdge server portfolio systems. These includes servers that get defined with software for software-defined data centers (SDDC), software-defined data infrastructures (SDDI) for the cloud, virtual, the container as well as storage among other applications. Target application workloads and environments range from high-performance compute (HPC), and high-productivity (or profitability) compute (the other HPC), super compute (SC), little data and big data analytics, legacy and emerging business applications as well as cloud and beyond. Enhancements besides new Intel processor technology includes enhanced iDRAC, OpenManage, REST interface, QuickSync, Secure Boot among other management, automation, security, performance, and capacity updates.

Other Dell EMC enhancements with Gen14 include support for various NVDIMM to enable persistent memory also known as storage class memories such as 3D Xpoint among others. Note at this time, Dell EMC is not saying much about speeds, feeds and other details, stay tuned for more information on these in the weeks and months to come.

Dell EMC has also been leaders with deploying NVMe from PCIe flash cards to 8639 U.2 devices such as 2.5” drives. Thus it makes sense to see continued adoption and deployment of those devices along with SAS, SATA support. Note that Broadcom (formerly known as Avago) recently announced the release of their PCIe SAS, SATA and NVMe based adapters.

The reason this is worth mentioning is that in the past Dell has OEM sourced Avago (formerly known as LSI) based adapters. Given Dell EMC use of NVMe drives, it only makes sense to put two and two together.

Let’s wait a few months to see what the speeds, feeds, and specifications are to put the rest of the puzzle together. Speaking of NVMe, also look for Dell EMC to also supporting PCIe AIC and U.2 (8639) NVMe devices, also leverage M.2 Next Generation Form Factor (NGFF) aka Gum sticks as boot devices.

While these are all Intel focused, I would expect Dell EMC not to sit back, instead, watch for what they do with other processors and servers including ARMs among others.

Increased support for more GPUs to support VDI and other graphic intensive workloads such as video rendering, imaging among others. Part of enhanced GPU support is improvements (multi-vector cooling) to power and cooling including sensing the type of PCIe card, and then adjusting cooling fans and subsequent power draw accordingly. The benefit should be more proper cooling to reduce power to support more work and productivity.

Flexible consumption models (financing and more) from desktop to data center

Dell Technologies has announced several financing, procurement, and consumption models with cloud-like flexible options for different IT and data center, along with mobile device technologies. These range from licensing to deployment as a service, consumption and other options via Dell Financial Services (DFS).

Highlights include:

  • DFS Flex on Demand is available now in select countries globally.
  • DFS Cloud Flex for HCI is available now for Dell EMC VxRail and Dell EMC XC Series and has planned availability for Q3 2017 in Dell EMC VxRack Systems.
  • PC as a Service is available now in select countries globally.
  • Dell EMC VDI Complete Solutions are available now in select countries globally.
  • DFS Flex on Demand is available now in select countries globally.
  • DFS Cloud Flex for HCI is available now for Dell EMC VxRail and Dell EMC XC Series and has planned VxRack systems in Q3 2017.
  • PC as a Service solution is available now in select countries globally.
  • Dell EMC VDI Complete Solutions are available now in select countries.
  • Dell Technologies transformation license agreement (TLA) is available now in select countries

Hyper-Converged Infrastructure (HCI), Converged (CI) and Cloud like systems

Enhancements to VxRail system, VxRACK Systems, and XC Series leveraging Del EMC Gen14 PowerEdge servers along with other improvements. Note that this also includes continued support for VMware, Microsoft as well as Nutanix software-defined solutions.

New All-Flash (ADA) SSD Storage Systems (VMAX, XtremIO X2, Unity, SC, Isilon)

Storage system enhancements include from high-end (VMAX and XtremIO) to mid-range (Unity and SC) along with scale-out NAS (Isilon)

Highlights of the announcements include:

  • New VMAX 950F all flash array (AFA)
  • New XtremIO X2 with enhanced software, more powerful hardware
  • New Unity AFA systems
  • New SC5020 midrange hybrid storage
  • New generation of Isilon storage with improved performance, capacity, density

Integrated Data Protection Appliance (IDPA) and Cloud Protection solutions

Data protection enhancement highlights include:

  • New Turnkey Integrated Data Protection Appliance (IDPA) with four models (DP5300, DP5800, DP8300, and DP8800) starting at 34 TB usable scaling up to 1PB usable. Data services including encryption, data footprint reduction such as dedupe, remote monitoring, Maintenance service dispatch, along with application integration. Application integration includes MongoDB, Hadoop, MySQL.

  • Enhanced cloud capabilities powered by Data Domain virtual edition (DD VE 3.1) along with data protection suite enable data to be protected too, and restored from Amazon Web Services (AWS) Simple Storage Service (S3) as well as Microsoft Azure.

Open Networking and software-defined networks (SDN) with 25G

Dell EMC Open Networking highlights include:

  • Dell EMCs first 25GbE open networking top of rack (TOR) switch including S5100-ON series (With OS10 enterprise edition software) complimenting new PowerEdge Gen14 servers with native 25GbE support. Switches support 100GbE uplinks fabric connectivity for east-west (management) network traffic. Also announced is the S4100-ON series and N1100-ON series that are in addition to recently announce N3100-ON and N2100-ON switches.

  • Dell EMCs first optimized Open Networking platform for unified storage network switching including support for 16Gb/32GB Fibre Channel

  • New Network Function Virtualization (NFV) and IoT advisory consulting services

Note that Dell EMC is announcing the availability of these networking solutions in Dell Technologies 2018 fiscal year which occurs before the traditional calendar year.

Using Gen14 servers, several Software Defined Storage (SDS) enhancements

Dell EMC announced enhancements to their Software Defined Storage (SDS) portfolio that leveraging the PowerEdge 14th generation server portfolio. These improvements include ScaleIO, Elastic Cloud Storage (ECS), IsilonSD Edge and Preview of Project Nautilus.

Where to learn more

What this all means

This is a summary of what has been announced so far on the first morning of the first day of the first new Dell EMC world. Needless to say, there is more detail to look at for the above announcements from speeds, feeds, functionality and related topics that will get addressed in subsequent posts. Overall this is a good set of announcements expanding capabilities of the combined Dell EMC while enhancing existing systems as well as well as solutions.

Ok, nuff said (for now…)

Cheers
Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

The Future of Ethernet – 2016 Roadmap released by Ethernet Alliance

The Future of Ethernet – 2016 Roadmap released by Ethernet Alliance

server storage I/O trends

The Future of Ethernet – 2016 Roadmap released by Ethernet Alliance

Ethernet Alliance Roadmap

The Ethernet Alliance has announced their 2016 roadmap of enhancements for Ethernet.

Ethernet enhancements include speeds, connectivity interfaces that span needs from consumer, enterprise, to cloud and managed service providers.

Highlights of Ethernet Roadmap

  • FlexEthernet (FlexE)
  • QSFP-DD, microQSFP and OBO interfaces
  • Speeds from 10Mbps to 400GbE.
  • 4 Pair Power over Ethernet (PoE)
  • Power over Data Line (PoDL)

Ethernet Alliance 2016 Roadmap Image
Images via EthernetAlliance.org

Who is the Ethernet Alliance

The Ethernet Alliance (@ethernetallianc) is an industry trade and marketing consortium focused on the advancement and success of Ethernet related technologies.

Where to learn more

The Ethernet Alliance has also made available via their web site two presentations part one here and part two here (or click on the following images).

Ethernet Alliance 2016 roadmap presentation #1 Ethernet Alliance 2016 roadmap presentation #2

Also visit www.ethernetalliance.org/roadmap

What this all means

Ethernet technologies continue to be enhanced from consumer focused, Internet of Things (IoT) and Internet of Devices (IoD) to enterprise, data centers, IT and non-IT usage as well as cloud and managed service providers. At the lower end where there is broad adoption, the continued evolution of easier to use, lower cost, interoperable technologies and interfaces expands Ethernet adoption footprint while at the higher-end, all of those IoT, IoD, consumer and other devices aggregated (consolidate) into cloud and other services that have the need for speeds from 10GbE, 40GbE, 100GbE and 400GbE.

With the 2016 Roadmap the Ethernet Alliance has provided good direction as to where Ethernet fits today and tomorrow.

Ok, nuff said (for now)

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO All Rights Reserved

Is more of something always better? Depends on what you are doing

Storage I/O trends

Is more always better? Depends on what you are doing

As with many things it depends, however how about some of these?

Is more better for example (among others):

  • Facebook likes
  • Twitter followers or tweets (I’m @storageio btw)
  • Google+ likes, follows and hangouts
  • More smart phone apps
  • LinkedIn connections
  • People in your circle or community
  • Photos or images per post or article
  • People working with or for you
  • Partners vs. doing more with those you have
  • People you are working for or with
  • Posts or longer posts with more in them
  • IOPs or SSD and storage performance
  • Domains under management and supported
  • GB/TB/PB/EB supported or under management
  • Mart-time jobs or a better full-time opportunity
  • Metrics vs. those that matter with context
  • Programmers to get job done (aka mythical man month)
  • Lines of code per cost vs. more reliable and tested code per cost
  • For free items and time spent managing them vs. more productivity for a nominal fee
  • Meetings for planning on what to do vs. streamline and being more productive
  • More sponsors or advertisers or underwriters vs. fewer yet more effective ones
  • Space in your booth or stand at a trade show or conference vs. using what you have more effectively
  • Copies of the same data vs. fewer yet more unique (not full though) copies of information
  • Patents in your portfolio vs. more technology and solutions being delivered
  • Processors, sockets, cores, threads vs. using them more effectively
  • Ports and protocols vs. using them more effectively

Storage I/O trends

Thus does more resources matter, or making more effective use of them?

For example more ports, protocols, processors, cores, sockets, threads, memory, cache, drives, bandwidth, people among other things is not always better, particular if those resources are not being used effectively.

Likewise don’t confuse effective with efficient often assumed to mean used.

For example a cache or memory may be 100% used (what some call efficient) yet only providing a 35% effective benefit (cache hit or miss) vs. cache turn (misses etc).

Throwing more processing power in terms of clock speed, or cores is one thing, kind of like throwing more server blades at a software problem vs. using those cores and sockets not to mention threads more effectively.

Good software will run better on fast hardware while enabling more to be done with the same or less.

Thus with better software or tools, more work can be done in an effective way leveraging those resources vs. simply throwing or applying more at the situation.

Hopefully you get the point, so no need to do more with this post (for now), if not, stay tuned and pay more attention around you.

Ok, nuff said, I need to go get more work done now.

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

SNIA Spring 2013 update with Wayne Adams

Now also available via

This is a new episode in the continuing StorageIO industry trends and perspectives pod cast series (you can view more episodes or shows along with other audio and video content here) as well as listening via iTunes or via your preferred means using this RSS feed (https://storageio.com/StorageIO_Podcast.xml)

StorageIO industry trends cloud, virtualization and big data

In this episode from SNW Spring 2013 in Orlando Florida, Bruce Ravid (@BruceRave) and me visit with our guest SNIA Chairman Wayne Adams (@wma01606). Wayne was one of our first pod cast guests back in 2013 in the episode titled Waynes World, SNIA and SNW that you can listen to here.

SNIA image logo

Wayne gives us an update on what’s new with SNIA including education, tutorials, videos and other training material, along with standards such as SMIS among other items. Also check out the companion pod cast where Wayne is joined by SW Worth of SNIA education to discuss their new SNIA SPDEcon conference that will occur June 10th in Santa Clara California. Listen to the SPDEcon overview pod cast discussion here.

Click here (right-click to download MP3 file) or on the microphone image to listen to the conversation with Wayne.

StorageIO podcast

Also available via

Watch (and listen) for more StorageIO industry trends and perspectives audio blog posts pod casts and other upcoming events. Also be sure to heck out other related pod casts, videos, posts, tips and industry commentary at StorageIO.com and StorageIOblog.com.

Enjoy this episode from SNW Spring 2013 with Wayne Adams to learn more about SNIA and what is new.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Over 1,000 entries now on the StorageIO industry links page

Industry trends and perspective data protection modernization

Is your company, organization or one that you are a fan of, or represent listed on the StorageIO industry links page (click here to learn more about it).

The StorageIO industry links page has been updated with over thousand different industry related companies, vendors, vars, trade groups, part and solution suppliers along with cloud and managed service providers. The common theme with these industry links is information and data infrastructures which means severs, storage, IO and networking, hardware, software, applications and tools, services, products and related items for traditional, virtual and cloud environments.

StorageIO server storage IO networking cloud and virtualization links

The industry links page is accessed from the StorageIO main web page via the Tools and Links menu tab, or via the URL https://storageio.com/links. An example of the StorageIO industry links page is shown below with six different menu tabs in alphabetical order.

StorageIO server storage IO networking cloud and virtualization links

Know of a company, service or organization that is not listed on the links page, if so, send an email note to info at storageio.com. If your company or organization is listed, contact StorageIO to discuss how to expand your presence on the links page and other related options.

Visit the updated StorageIO industry links page and watch for more updates, and click here to learn more about the links page.

Ok, nuff said for now.

Cheers Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

Various cloud, virtualization, server, storage I/O poll’s

The following are a collection of on-going industry trends and perspectives poll’s pertaining to server, storage, IO, networking, cloud, virtualization, data protection (backup, archive, BC and DR) among other related themes and topics.

In addition to those listed below, check out the comments section where additional poll’s are added over time.

Storage I/O Industry Trends and Perspectives

Here is a link to a poll as a follow-up to a recent blog post Are large storage arrays dead at the hands of SSD? (also check these posts pertaining to storage arrays and SSD and flash SSD’s emerging role).

Poll: Are large storage arrays day’s numbered?

Poll: What’s your take on magnetic tape storage?

Poll: What do you think of IT clouds?

Poll: Who is responsible for cloud storage data loss?

Poll: What are the most popular Zombie technologies?

Storage I/O Industry Trends and Perspectives

Poll: What’s your take on OVA and other alliances?

Poll: Where is most common form or concern of vendor lockin?

Poll: Who is responsible for, or preventing vendor lockin?

Poll: Is vendor lockin a good or bad thing?

Poll: Is IBM V7000 relevant?

Storage I/O Industry Trends and Perspectives

Poll: What is your take on EMC and NetApp on similar tracks or paths?

Poll: What’s your take on RAID still being relevant?

Poll: What do you see as barriers to converged networks?

Poll: Who are you?

Poll: What is your preferred converged network?

Storage I/O Industry Trends and Perspectives

Poll: What is your converged network status?

Poll: Are converged networks in your future?

Poll: What do you think were top 2009 technologies, events or vendors?

Poll: What technologies, events, products or vendors did not live up to 2009 predictions?

Storage I/O Industry Trends and Perspectives

Poll: What do you think of IT clouds?

Poll: What is your take on the new FTC blogger disclosure guidelines?

Poll: Is RAID dead?

Poll: When will you deploy Windows 7? Note: I upgraded all my systems to Windows 7 during summer of 2011

Poll: EMC and Cisco VCE, what does it mean?

Poll: Is IBM XIV still relevant?

Storage I/O Industry Trends and Perspectives

Note: Feel free to share, use and make reference to the above poll’s and their results however please remember to attribute the source.

Ok, nuff said for now

Cheers Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

Congratulations to new and returning 2012 VMware vExperts

A quick note of congratulations to all the new as well as too my fellow returning 2012 VMware vExperts from around the world.

Here is a link listing the 2012 VMware vExperts including how you can follow them on twitter if you are interested in virtualization, cloud, data and storage networking related topics either VMware specific or industry and technology general.

Also, here are some added links to follow and check out.

twitter @VMwareCommunity
plantetv12n blogs and information
Wmware and community blogs
VMware communities
vExpert spotlights (follow links to various profiles)

I’m honored to be among such a great group of people and again, congratulations to all.

Ok, nuff said for now.

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

Part IV: PureSystems, something old, something new, something from big blue

This is the fourth in a five-part series around the recent IBM PureSystems announcements. You can view the earlier post here, and the next post here.

So what does this mean for IBM Business Partners (BPs) and ISVs?
What could very well differentiate IBM PureSystems from those of other competitors is to take what their partner NetApp has done with FlexPods combing third-party applications from Microsoft and SAP among others and take it to the next level. Similar to what helped make EMC Centera a success (or at least sell a lot of them) was inclusion and leveraging third-party ISVs and BPs  to add value. Compared to other vendors with object based or content accessible storage (CAS) or online archive platforms that focused on the technology feature, function speeds and feeds, EMC realized the key was getting ISVs to support so that BPs and their own direct sales force could sell the solution.

With PureSystems, IBM is revisiting what they have done in the past which if offer bundled solutions providing incentives for ISVs to support and BPs to sell the IBM brand solution. EMC took an early step with including VMware with their Vblock combing server, storage, networking and software with NetApp taking the next step adding SAP, Microsoft and other applications. Dell, HP, Oracle and others are following suit so it only makes sense that IBM returns to its roots leveraging its DNA to reach out and get their ISVs who are now, have been in the past, or are new opportunities to be on board.

IBM is throwing its resources including their innovation centers for training around the world where business partners can get the knowledge and technical support they need. In other words, workshops or seminars on how to sell deploy and setting up of these systems, application and customer testing or proof of concepts and things one would expect out of IBM for such an initiative. In addition to technology and sales training along with marketing support, IBM is making their financing capabilities available to help customers as well as offer incentives to their business partners to simplify acquisitions.

So what buzzword bingo topics and themes did IBM address with this announcement:
IBM did a fantastic job in terms of knocking the ball out of the park with this announcement pertaining buzzword bingo and deserves an atta boy or atta girl!

So what about how this will affect sales of Bladecenters  or other systems?
If all IBM and their BPs do are, encroach on existing systems sales to circle the wagons and protect the installed base, which would be one thing. However if IBM and their BPs can use the new packaging and model approach to reestablish customers and partnerships, or open and expand into new adjacent markets, then the net differences should be more Bladecenters (excuse me, PureFlex) being sold.

So what will this cost?
IBM is citing entry PureSystems Express models starting at around $100,000 USD for base systems with others starting at around $200,000 and $300,000 expandable into larger configurations and budgets. Note that like airlines that advertise a low airfare and then you get to pay extra for peanuts, drinks, extra bag space, changes to reservations and so forth, look at these and related systems not just for the first starting price, also for expansion costs over different time periods. Contact IBM, your BP or ISV to find out what one of these systems will do for and cost you.

So what about VARs and IBM business partners (BPs)?
This could be a boon for those BPs and ISVs  that had previously sold their software solutions bundled with IBM hardware platforms who were being challenged by other converged solution stacks or were being forced to unbundled. This will also allow those business partners to compete on par with other converged solutions or continue selling the pieces of what they are familiar with however under a new umbrellas. Of course, pricing will be a focus and concern for some who will want to see what added value exists vs. acquiring the various components. This also means that IBM will have to make incentives available for their partners to make a living while also allowing their customers to afford solutions and maximize their return on innovation (the new ROI) and enablement.

Click here to view the next post in this series, ok nuff said for now.

Here are some links to learn more:
Various IBM Redbooks and related content
The blame game: Does cloud storage result in data loss?
What do you need when its time to buy a new server?
2012 industry trends perspectives and commentary (predictions)
Convergence: People, Processes, Policies and Products
Buzzword Bingo and Acronym Update V2.011
The function of XaaS(X) Pick a letter
Hard product vs. soft product
Buzzword Bingo and Acronym Update V2.011
Part I: PureSystems, something old, something new, something from big blue
Part II: PureSystems, something old, something new, something from big blue
Part III: PureSystems, something old, something new, something from big blue
Part IV: PureSystems, something old, something new, something from big blue
Part V: PureSystems, something old, something new, something from big blue
Cloud and Virtual Data Storage Networking

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

Part V: PureSystems, something old, something new, something from big blue

This is the fifth in a five-part series around the recent IBM PureSystems announcements. You can view the earlier post here.

So what about vendor or technology lock in?
So who is responsible for vendor or technology lock in? When I was working in IT organizations, (e.g. what vendors call the customer) the thinking was vendors are responsible for lock in. Later when I worked for different vendors (manufactures and VARs) the thinking was lock in is what was caused by the competition. More recently I’m of the mind set that vendor lock in is a shared responsibility issue and topic. I’m sure some marketing wiz or sales type will be happy to explain the subtle differences of how their solution does not cause lock in.

Vendor lock in can be a shared responsibility. Generally speaking, lock in, stickiness and account control are essentially the same, or at least strive to get similar results. For example, vendor lock in too some has a negative stigma. However vendor stickiness may be a new term, perhaps even sounding cool thus it is not a concern. Remember the Mary Poppins song a spoon full of sugar makes the medicine go down? In other words, sometimes changing and using a different term such as sticky vs. vendor lock in helps make the situation taste better.

So what should you do?
Take a closer look if you are considering converged infrastructures, cloud or data centers in a box, turnkey application or information services deployment platforms. Likewise, if you are looking at specific technologies such as those from Cisco UCS, Dell vStart, EMC Vblock (or via VCE), HP, NetApp FlexPod or Oracle (ExaLogic, ExaData, etc) among others, also check out the IBM PureSystems (Flex and PureApplication). Compare and contrast these converged solutions with your traditional procurement and deployment modes including cost of acquiring hardware, software, ongoing maintenance or service fees along with value or benefit of bundled tools. There may be a higher cost for converged systems in some scenarios, however compare on the value and benefit derived vs. doing the integration yourself.

Compare and contrast how converged solutions enable, however also consider what constraints exists in terms of flexibility to reconfigure in the future or make other changes. For example as part of integration, does a solution take a lowest common denominator approach to software and firmware revisions for compatibility that may lag behind what you can apply to standalone components. Also, compare and contrast various reference architectures with different solution bundles or packages.

Most importantly compare and evaluate the solutions on their ability to meet and exceed your base requirements while adding value and enabling return on innovation while also being cost-effective. Do not be scared of these bundled solutions; however do your homework to make informed decisions including overcoming any concerns of lock in or future costs and fees. While these types of solutions are cool or interesting from a technology perspective and can streamline acquisition and deployment, make sure that there is a business benefit that can be addressed as well as enablement of new capabilities.

So what does this all mean?
Congratulations to IBM with their PureSystems for leveraging their DNA and roots bundling what had been unbundled before cloud and stacks were popular and trendy. IBM has done a good job of talking vision and strategy along lines of converged and dynamic, elastic and smart, clouds and other themes for past couple of years while selling the pieces as parts of solutions or ala carte or packaged by their ISVs and business partners.

What will be interesting to see is if bladecenter customers shift to buying PureFlex, which should be an immediate boost to give proof points of adoption, while essentially up selling what was previously available. However, more interesting will be to see if net overall new customers and footprints are sold as opposed to simply selling a newer and enhanced version of previous components.

In other words will IBM be able to keep up their focus and execution where they have sold the previous available components, while also holding onto current ISV and BP footprint sales and perhaps enabling those partners to recapture some hardware and solution sales that had been unbundled (e.g. ISV software sold separate of IBM platforms) and move into new adjacent markets.

Here are some links to learn more:
Various IBM Redbooks and related content
The blame game: Does cloud storage result in data loss?
What do you need when its time to buy a new server?
2012 industry trends perspectives and commentary (predictions)
Convergence: People, Processes, Policies and Products
Buzzword Bingo and Acronym Update V2.011
The function of XaaS(X) Pick a letter
Hard product vs. soft product
Buzzword Bingo and Acronym Update V2.011
Part I: PureSystems, something old, something new, something from big blue
Part II: PureSystems, something old, something new, something from big blue
Part III: PureSystems, something old, something new, something from big blue
Part IV: PureSystems, something old, something new, something from big blue
Part V: PureSystems, something old, something new, something from big blue
Cloud and Virtual Data Storage Networking

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

Here are some links to learn more:
Various IBM Redbooks and related content
The blame game: Does cloud storage result in data loss?
What do you need when its time to buy a new server?
2012 industry trends perspectives and commentary (predictions)
Convergence: People, Processes, Policies and Products
Buzzword Bingo and Acronym Update V2.011
The function of XaaS(X) – Pick a letter
Hard product vs. soft product
Buzzword Bingo and Acronym Update V2.011
Part I: PureSystems, something old, something new, something from big blue
Part II: PureSystems, something old, something new, something from big blue
Part III: PureSystems, something old, something new, something from big blue
Part IV: PureSystems, something old, something new, something from big blue
Part V: PureSystems, something old, something new, something from big blue
Cloud and Virtual Data Storage Networking

Ok, so what is next, lets see how this unfolds for IBM and their partners.

Nuff said for now.

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

Part III: PureSystems, something old, something new, something from big blue

This is the third in a five-part series around the recent IBM PureSystems announcements. You can view the earlier post here, and the next post here.

So what about the IBM Virtual Appliance Factory?
Where PureFlex and PureApplication (PureSystems) are the platforms or vehicles for enabling your journey to efficient and effective information services delivery, and PureSystem centre (or center for those of you in the US) is the portal or information center, the IBM Virtual Appliance Factory (VAF) is a collection of tools, technologies, processes and methodologies. The VAF  helps developers or ISVs to prepackage applications or solutions for deployment into Kernel Virtual Machine (KVM) on Intel and IBM PowerVM  virtualized environments that are also supported by PureFlex and PureApplication  systems.

VAF technologies include Distributed Management Task Force (DMTF) Open Virtual Alliance (OVA) Open Virtualization Format (OVF) along with other tools for combing operating systems (OS), middleware and solution software into a delivery package or a virtual appliance that can be deployed into cloud and virtualized environments. Benefits include reducing complexity of working logical partions (LPAR) and VM configuration, abstraction and portability for deployment or movement from private to public environments. Net result should be less complexity lowering costs while reducing mean time to install and deploy. Here is a link to learn more about VAF and its capabilities and how to get started.

So what does cloud ready mean?
IBM is touting cloud ready capability in the context of rapid out of the box, ease of deployment and use as well as easy to acquire. This is in line with what others are doing with converged server, storage, networking, hardware, software and hypervisor solutions. IBM is also touting that they are using the same public available products as what they use in their own public services SmartCloud offerings.

So what is scale in vs. scale up, scale out or scale within?
Traditional thinking is that scaling refers to increasing capacity. Scaling also means increasing performance, availability, functionality with stability. Scaling with stability means that as performance, availability, capacity or other features are increased problems are not introduced or complexity is not increased. For example, scaling with stability for performance should not result in loss of availability or capacity, capacity increase should not be at the cost of performance or availability, should not cost performance or capacity and management tools should work for you, instead of you working for them.

Scaling up and scaling out have been used to describe scaling performance, availability, capacity and other attributes beyond the limits of a single system, box or cabinet. For example clustered, cloud, grid and other approaches refer to scaling out or horizontally across different physical resources. Scaling up or scaling vertically means scaling within in a system using faster, denser technologies doing more in the same footprint. HDS announced a while back what they refer to 3D scaling which embraces the above notions of scaling up, out and within across different dimensions. IBM is building on that by emphasizing scaling leveraging faster, denser components such as Power7 and Intel processors to scale within the box or system or node, which can also be scaled out using enhanced networking from IBM and their partners.

So what about backup/restore, BC, DR and general data protection?
I would expect IBM to step up and talk about how they can leverage their data protection and associated management toolsets, technologies and products. IBM has the components (hardware, software) already for backup/restore, BC, DR, data protection and security along with associated service offerings. One would expect IBM to not only come out with a backup, restore, BC, DR and archiving solution or version, as well as ones for archiving or data preservation, compliance appliance variants as well as related themes. We know that IBM has the pieces, people, process and practices, let us see if IBM has learned from their competitors who may have missed data protection messaging opportunities. Sometimes what is assumed to be understood does not get discussed, however often what is assumed and is not understood should be discussed, hence, let us see if IBM does more than say oh yes, we have those capabilities and products too.

So what do these have compared to others who are doing similar things?
Different vendors have taken various approaches for bringing converged products or solutions to the market place. Not surprising, storage centric vendors EMC and NetApp have partnered with Cisco for servers (compute). Where Cisco was known for networking having more recently moved into compute servers, EMC and NetApp are known for storage and moving into converged space with servers. Since EMC and NetApp often compete with storage solutions offerings from traditional server vendors Dell, HP, IBM and Oracle among others, and now Cisco is also competing with those same server vendors it has previously partnered with for networking thus it makes sense for Cisco, EMC and NetApp to partner.

While EMC owns a large share of VMware, they do also support Microsoft and other partners including Citrix. NetApp followed EMC into the converged space partnering with Cisco for compute and networking adding their own storage along with supporting hypervisors from Citrix, Microsoft and VMware along with third-party ISVs including Microsoft and SAP among others. Dell has evolved from reference architectures to products called vStart that leverage their own technologies along with those of partners.

A challenge for Dell however is that vStart  sounds more like a service offering as opposed to a product that they or their VARs and business partners can sell and add value around. HP is also in the converged game as is Oracle among others. With PureSystems IBM is building on what their competitors and in some cases partners are doing by adding and messaging more around the many ISVs and applications that are part of the PureSystems initiative. Rest assured, there is more to PureSystems than simply some new marketing, press releases, videos and talking about partners and ISVs. The following table provides a basic high level comparison of what different vendors are doing or working towards and is not intended to be a comprehensive review.

Who

What

Server

Storage

Network

Software

Other comments

Cisco

UCS

Cisco

Partner

Cisco

Cisco and Partners

Various hypervisors and OS

Dell

vStart

Dell

Dell

Dell and Partners

Dell and partners

Various hypervisors, OS and bundles

EMC
VCE

Vblock VSPEX

Cisco

EMC

Cisco and partners

EMC, Cisco and partners

Various hypervisors, OS and bundles, VSPEX adds more partner solution bundles

HP

Converged

HP

HP

HP and partners

HP and partners

Various hypervisors, OS and bundles

IBM

PureFlex

IBM

IBM

IBM and partners

IBM and partners

Various hypervisors, OS and bundles adding more ISV partners

NetApp

FlexPod

Cisco

NetApp

Cisco and partners

NetApp, Cisco and partners

Various hypervisors, OS and bundles for SAP, Microsoft among others

Oracle

ExaLogic (Exadata  database)

Oracle

Oracle

Partners

Oracle and partners

Various Oracle software tools and technologies

So what took IBM so long compared to others?
Good question, what is the saying? Rome was not built-in a day!

Click here to view the next post in this series, ok, nuff said for now.

Here are some links to learn more:
Various IBM Redbooks and related content
The blame game: Does cloud storage result in data loss?
What do you need when its time to buy a new server?
2012 industry trends perspectives and commentary (predictions)
Convergence: People, Processes, Policies and Products
Buzzword Bingo and Acronym Update V2.011
The function of XaaS(X) Pick a letter
Hard product vs. soft product
Buzzword Bingo and Acronym Update V2.011
Part I: PureSystems, something old, something new, something from big blue
Part II: PureSystems, something old, something new, something from big blue
Part III: PureSystems, something old, something new, something from big blue
Part IV: PureSystems, something old, something new, something from big blue
Part V: PureSystems, something old, something new, something from big blue
Cloud and Virtual Data Storage Networking

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

Part II: PureSystems, something old, something new, something from big blue

This is the second in a five-part series around the recent IBM PureSystems announcements. You can view the earlier post here, and the next post here.

So what are the speeds and feeds of a PureFlex system?
The components that make up the PureFlex line include:

  • IBM management node (server with management software tools).
  • 10Gb Ethernet (LAN) switch, adapters and associated cabling.
  • IBM V7000 virtual storage (also see here and here).
  • Dual 8GFC (8Gb Fibre Channel) SAN switches and adapters.
  • Servers with either x86 xSeries using for example Intel Sandy Bridge EP 2.6 GHz 8 core processors, or IBMs Power7 based pSeries for AIX. Note that IBM with their blade center systems (now rebadged as part of being PureSystems) support various IO and networking interfaces include SAS, Ethernet, Fibre Channel (FC), Fibre Channel over Ethernet (FCoE), and InfiniBand using adapters and switches from various partners.
  • Virtual machine (VM) hypervisors such as Microsoft Hyper V and VMware vSphere/ESX among others. In addition to x86 based hypervisors or kernel virtual machines (KVM), IBM also supports its own virtual technology found in Power7 based systems. Check IBM support matrix for specific configurations and current offerings.
  • Optional middleware such as IBM WebSphere.

Read more speeds and feeds at the various IBM sites including on Tony Pearson’s blog site.

So what is IBM PureApplication System?
This builds off and on PureFlex systems as a foundation for deploying various software stacks to deliver traditional IT applications or cloud Platform as a Service (PaaS) or Software as a Service (SaaS) and Application as a Service (AaaS) models. For example cloud or web stacks, java, database, analytics or other applications with buzzwords of elastic, scalable, repeatable, self-service, rapid provisioning, resilient, multi tenant and secure among others. Note that if are playing or into Buzzword bingo, go ahead and say Bingo when you are ready as IBM has a winner in this category.

So what is the difference between PureFlex and PureApplication systems?
PureApplication systems leverage PureFlex technologies adding extra tools and functionality for cloud like application functionality delivery.

So what is IBM PureSystems Centre?
It is a portal or central place where IBM and their business partner solutions pertaining to PureApplication and PureFlex systems can be accessed for including information for first installation support along with maintenance and upgrades. At launch, IBM is touting more than 150 solutions or applications that are available or qualified for deployment on PureApplication and PureFlex systems. In addition, IBM Patterns (aka templates) can also be accessed via this venue. Examples of application or independent software vendor (ISV) developed solutions for banking, education, financial, government, healthcare and insurance can be found at the PureSystems Centre portal (here, here and here).

So what part of this is a service and what is a product?
Other than the PureSystem center, which is a web portal for accessing information and technologies, PureFlex and PureApplication along with Virtual Appliance Factory are products or solutions that can be bought from IBM or their business partners. In addition, IBM business partners or third parties can also use these solutions housed in their own, a customer, or third-party facility for delivering managed service provided (MSP) capabilities, along with other PaaS and SaaS or AaaS type functionalities. In other words, these solutions can be bought or leased by IT and other organizations for their own use in a traditional IT deployment model, private, hybrid or public cloud model.

Another option is for service providers to acquire these solutions for use in developing and delivering their own public and private or hybrid services. IBM is providing the hard product (hardware and software) that enables your return on innovation (the new ROI) to create and deliver your own soft product (services and experiences) consumed by those who use those capabilities. In addition to traditional financial quantitative return on investment (traditional ROI) and total cost of ownership (TCO), the new ROI complements those by adding a qualitative aspect. Your return on innovation will be dependent on what you are capable of doing that enables your customers or clients to be productive or creative. For example enabling your customers or clients to boost productivity, remove complexity and cost while maintaining or enhancing Quality of Service (QoS), service level objectives (SLOs) and service level agreements (SLAs) in addition to supporting growth by using a given set of hard products. Thus, your soft product is a function of your return on innovation and vise versa.

Note that in this context, not to be confused with hardware and software, hard product are those technologies including hardware, software and services that are obtained and deployed as a soft product. A soft product in this context does not refer to software, rather the combination of hard products plus your own developed or separately obtained software and tools along with best practices and usage models. Thus, two organizations can use the same hard products and deliver separate soft products with different attributes and characteristics including cost, flexibility and customer experience.

So what is a Pattern of Expertise?
Combines operational know how experience and knowledge about common infrastructure resource management (IRM), data center infrastructure management (DCIM) and other commonly repeatable related process, practices and workflows including provisioning. Common patterns of activity and expertise for routine or other time-consuming tasks, which some might refer to as templates or workflows enable policy driven based automation. For example, IBM cites recurring time-consuming tasks that lend themselves to being automated such as provisioning, configuration, and upgrades and associated IRM, DCIM and data protection, storage and application management activities. Automation software tools are included as part of the PureSystems with patterns being downloadable as packages for common tasks and applications found at the IBM PureSystem center.

At announcement, there are three types or categories of patterns:

  • IBM patterns: Factory created and supplied with the systems based on experiences IBM has derived from various managers, engineers and technologist for automating common tasks including configuration, deployment and application upgrades and maintenance. The aim is to cut the amount of time and intervention for deployment of applications and other common functions enabling IT staff to be more productive and address other needs.
  • ISV patterns: These leverage experience and knowledge from ISVs partnered with IBM, which at time of launch numbers over 125 vendors offering certified PureSystems Ready applications. The benefit and objective are to cut the time and complexity associated with procuring (e.g. purchasing), deploying and managing third-party ISV software. Downloadable patterns packages can be found at the IBM PureSystem center.
  • Customer patterns: Enables customers to collect and package their own knowledge, processes, rules, policies and best practices into patterns for automation. In addition to collecting knowledge for acquisition, configuration, day to day management and troubleshooting, these patterns can facility automation of tasks to ease on boarding of new staff employees or contractors. In addition, these patterns or templates capture workflows for automation enabling shorter deployment times of systems and applications into locations where skill sets do not exist.

Here is a link to some additional information about patterns on the IBM developerWorks site.

Click here to view the next post in this series, ok, nuff said for now.

Here are some links to learn more:
Various IBM Redbooks and related content
The blame game: Does cloud storage result in data loss?
What do you need when its time to buy a new server?
2012 industry trends perspectives and commentary (predictions)
Convergence: People, Processes, Policies and Products
Buzzword Bingo and Acronym Update V2.011
The function of XaaS(X) Pick a letter
Hard product vs. soft product
Buzzword Bingo and Acronym Update V2.011
Part I: PureSystems, something old, something new, something from big blue
Part II: PureSystems, something old, something new, something from big blue
Part III: PureSystems, something old, something new, something from big blue
Part IV: PureSystems, something old, something new, something from big blue
Part V: PureSystems, something old, something new, something from big blue
Cloud and Virtual Data Storage Networking

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

Part I: PureSystems, something old, something new, something from big blue

This is the first in a five-part series around the recent IBM PureSystems announcements. You can view the next post here.

For a certain generation of IBM faithful or followers the recently announced PureFlex and PureApplication systems might give a sense of DejaVu perhaps even causing some to wonder if they just woke up from a long Rip Van Winkle type nap.

Yet for another generation who may not yet be future IBM followers, fans, partners or customers, there could be a sense of something new and revolutionary with the PureFlex and PureApplication systems (twitter @ibmpuresystems).

In between those two groups, exist others who are either scratching their heads or reinvigorated with enthusiasm to get out and be able to discuss opportunities around little data (traditional and transactional) and big data, servers, virtualized, converged infrastructure, dynamic data centers, private clouds, ITaaS, SaaS and AaaS, PaaS, IaaS and other related themes or buzzword bingo topics.

Let us dig a little deeper and look at some So What types of questions and industry trends perspectives comments around what IBM has announced.

So what did IBM announce?
IBM announced PureSystems including:

  • PureFlex systems, products and technologies
  • PureApplication systems
  • PureSystems Centre

You can think of IBM PureSystems and Flex Systems Products and technology as a:

  • Private cloud or turnkey solution bundle solution
  • Platform deploying public or hybrid clouds
  • Data center in a box or converged and dynamic system
  • ITaaS or SaaS/AaaS or PaaS or IaaS or Cloud in a box
  • Rackem stack and package them type solution

So what is an IBM PureFlex System and what is IBM using?
It is a factory integrated data and compute infrastructure in a cabinet combing cloud, virtualization, servers, data and storage networking capabilities. The IBM PureFlex system is comprised of various IBM and products and technologies (hardware, software and services) optimized with management across physical and virtual resources (servers, storage (V7000), networking, operating systems, hypervisors and tools).

PureFlex includes automation and optimization technologies along with what IBM is referring to as patterns of expertise or what you might relate to as templates. Support for various hypervisors and management integration along with application and operating system support by leveraging IBM xSeries (x86 such as Intel) and pSeries (Power7) based processors for compute. Storage is the IBM V7000 (here and here) with networking and connectivity via IBM and their partners. The solution is capable of supporting traditional, virtual and cloud deployment models as well as platform for deploying Infrastructure as a Service (IaaS) on a public, managed service provider (MSP), hosting or private basis.

Click here to view the next post in this series, ok nuff said for now.

Here are some links to learn more:
Various IBM Redbooks and related content
The blame game: Does cloud storage result in data loss?
What do you need when its time to buy a new server?
2012 industry trends perspectives and commentary (predictions)
Convergence: People, Processes, Policies and Products
Buzzword Bingo and Acronym Update V2.011
The function of XaaS(X) Pick a letter
Hard product vs. soft product
Buzzword Bingo and Acronym Update V2.011
Part I: PureSystems, something old, something new, something from big blue
Part II: PureSystems, something old, something new, something from big blue
Part III: PureSystems, something old, something new, something from big blue
Part IV: PureSystems, something old, something new, something from big blue
Part V: PureSystems, something old, something new, something from big blue
Cloud and Virtual Data Storage Networking

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved