Microsoft Azure Elastic SAN from Cloud to On-Prem

What is Azure Elastic SAN

Azure Elastic SAN (AES) is a new (now GA) Azure Cloud native storage service that provides scalable, resilient, easy management with rapid provisioning, high performance, and cost-effective storage. AES (figure 1) supports many workloads and computing resources. Workloads that benefit from AES include tier 1 and tier 2, such as Mission Critical, Database, and VDI, among others traditionally relying upon consolidated Storage Area Network (SAN) shared storage.

Compute resources that can use AES, including bare metal (BM) physical machines (PM), virtual machines (VM), and containers, among others, using iSCSI for access. AES is accessible by computing resources and services within the Azure Cloud in various regions (check Azure Website for specific region availability) and from on-prem core and edge locations using iSCSI. The AES management experience and value proposition are similar to traditional hardware or software-defined shared SAN storage combined with Azure cloud-based management capabilities.

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 1 General Concept and Use of Azure Elastic SAN (AES)

While Microsoft Azure describes AES as a cloud-native storage solution, that does not mean that AES is only for containers and other cloud-native apps or DevOPS. Rather, AES has been built for and is native to the cloud (e.g., software-defined) that can be accessed by various compute and other resources (e.g., VMs, Containers, AKS, etc) using iSCSI.

How Azure Elastic SAN differs from other Azure Storage

AES differs from traditional Azure block storage (e.g., Azure Disks) in that the storage is independent of the host compute server (e.g., BM, PM, VM, containers). With AES, similar to a conventional software-defined or hardware-based shared SAN solution, storage is disaggregated from host servers for sharing and management using iSCSI for connectivity. By comparison, AES differs from traditional Azure VM-based storage typically associated with a given virtual machine in a DAS (Direct Attached Storage) type configuration. Likewise, similar to conventional on-prem environments, there is a mix of DAS and SAN, including some host servers that leverage both.

AES supports Azure VM, Azure Kubernetes Service (AKS), cloud-native, edge, and on-prem computing (BM, VM, etc.) via iSCSI. Support for Azure VMware Solution (AVS) is in preview; check the Microsoft Azure website for updates and new feature functionality enhancements.

Does this mean everything is moving to AES? Similar to traditional SANs, there are roles and needs for various storage options, including DAS, shared block, file, and object, among storage offerings. Likewise, Microsoft and Azure have expanded their storage offerings to include AES, DAS (azure disks, including Ultra, premium, and standard, among other options), append, block, and page blobs (objects), and files, including Azure file sync, tables, and Data Box, among other storage services.

Azure Elastic Storage Feature Highlights

AES feature highlights include, among others:

    • Management via Azure Portal and associated tools
    • Azure cloud-based shared scalable bock storage
    • Scalable capacity, low latency, and high performance (IOPs and throughput)
    • Space capacity-optimized without the need for data reduction
    • Accessible from within Azure cloud and from on-prem using iSCSI
    • Supports Azure compute  (VMs, Containers/AKS, Azure VMware Solution)
    • On-prem access via iSCSI from PM/BM, VM, and containers
    • Variable number of volumes and volume size per volume group
    • Flexible easy to use Azure cloud-based management
    • Encryption and network private endpoint security
    • Local (LRS) and Zone (ZRS) with replication resiliency
    • Volume snapshots and cluster support

Who is Azure Elastic SAN for

AES is for those who need cost-effective, shared, resilient, high capacity, high performance (IOPS, Bandwidth), and low latency block storage within Azure and from on-prem access. Others who can benefit from AES include those who need shared block storage for clustering app workloads, server and storage consolidation, and hybrid and migration. Another consideration is for those familiar with traditional hardware and software-defined SANs to facilitate hybrid and migration strategies.

How Azure Elastic SAN works

Azure Elastic SAN is a software-defined (cloud native if you prefer) block storage offering that presents a virtual SAN accessible within Azure Cloud and to on-prem core and edge locations currently via iSCSI. Using iSCSI, Azure VMs, Clusters, Containers, Azure VMware Solution among other compute and services, and on-prem BM/PM, VM, and containers, among others, can access AES storage volumes.

From the Azure Portal or associated tools (Azure CLI or PowerShell), create an AES SAN, giving it a 3 to 24-character name and specify storage capacity (base units with performance and any additional space capacity). Next, create a Volume Group, assigning it to a specific subscription and resource group (new or existing), then specify which Azure Region to use, type of redundancy (LRS or GRS), and Zone to use. LRS provides local redundancy, while ZRS provides enhanced zone resiliency, with highspeed synchronous resiliency without setting up multiple SAN systems and their associated replication configurations along with networking considerations (e.g., Azure takes care of that for you within their service).

The next step is to create volumes by specifying the volume name, volume group to use, volume size in GB, maximum IOPs, and bandwidth. Once you have made your AES volume group and volumes, you can create private endpoints, change security and access controls, and access the volumes from Azure or on-prem resources using iSCSI. Note that AES currently needs to be LRS (not ZRS) for clustered shared storage and that Key management includes using your keys with Azure key vault.

Using Azure Elastic SAN

Using AES is straightforward, and there are good easy to follow guides from Microsoft Azure, including the following:

The following images show what AES looks like from the Azure Portal, as well as from an Azure Windows Server VM and an onprem physical machine (e.g., Windows 10 laptop).

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 2 AES Azure Portal Big Picture

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 3 AES Volume Groups Portal View

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 4  AES Volumes Portal View

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 5 AES Volume Snapshot Views

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 6 AES Connected Volume Portal View

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 7 AES Volume iSCSI view from on-prem Windows Laptop

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 8 AES iSCSI Volume attached to Azure VM

Azure Elastic SAN Cost Pricing

The cost of AES is elastic, depending on whether you scale capacity with performance (e.g., base unit) or add more space capacity. If you need more performance, add base unit capacity, increasing IOPS, bandwidth, and space. In other words, base capacity includes storage space and performance, which you can grow in various increments. Remember that AES storage resources get shared across volumes within a volume group.

Azure Elastic SAN is billed hourly based on a monthly per-capacity base unit rate, with a minimum of 1TB  provisioned capacity with minimum performance (e.g., 5,000 IOPs, 200MBps bandwidth). The base unit rate varies by region and type of redundancy, aka resiliency. For example, at the time of this writing, looking at US East, the Local Redundant Storage (LRS) base unit rate is 1TB with 5,000 IOPs and 200MBps bandwidth, costing $81.92 per unit per month.

The above example breaks down to a rate of $0.08 per GB per month, or $0.000110 per GB per hour (assumes 730 hours per month). An example of simply adding storage capacity without increasing base unit (e.g., performance) for US East is $61.44 per month. That works out to $0.06 per GB per month (no additional provisioned IOPs or Bandwidth) or $0.000083 per GB per hour.

Note that there are extra fees for Zone Redundant Storage (ZRS). Learn more about Azure Elastic SAN pricing here, as well as via a cost calculator here.

Azure Elastic SAN Performance

Performance for Azure Elastic SAN includes IOPs, Bandwidth, and Latency. AES IOPs get increased in increments of 5,000 per base TB. Thus, an AES with a base of 10TB would have 50,000 IOPs distributed (shared) across all of its volumes (e.g., volumes are not restricted). For example, if the base TB is increased from 10TB to 20TB, then the IOPs would increase from 50,000 to 100,000 IOPs.

On the other hand, if the base capacity (10TB) is not increased, only the storage capacity would increase from 10TB to 20TB, and the AES would have more capacity but still only have the 50,000 IOPs. AES bandwidth throughput increased by 200MBps per TB. For example, a 5TB AES would have 5 x 200MBps (1,000 MBps) throughput bandwidth shared across the volume groups volumes.

Note that while the performance gets shared across volumes, individual volume performance is determined by its capacity with a maximum of 80,000 IOPs and up to 1,024 MBps. Thus, to reach 80,000 IOPS and 1,024 MBps, an AES volume would have to be at least 107GB in space capacity. Also, note that the aggregate performance of all volumes cannot exceed the total of the AES. If you need more performance, then create another AES.

Will all VMs or compute resources see performance improvements with AES? Traditional Azure Disks associated with VMs have per-disk performance resource limits, including IOPs and Bandwidth. Likewise, VMs have storage limits based on their instance type and size, including the number of disks (HDD or SSD), performance (IOPS and bandwidth), and the number of CPUs and memory.

What this means is that an AES volume could have more performance than what a given VM is limited to. Refer to your VM instance sizing and configuration to determine its IOP and bandwidth limits; if needed, explore changing the size of your VM instance to leverage the performance of Azure Elastic SAN storage.

Additional Resources Where to learn more

The following links are additional resources to learn about Microsoft Azure Elastic SAN and related data infrastructures and tradecraft topics.

Azure AKS Storage Concepts 
Azure Elastic SAN (AES) Documentation and Deployment Guides
Azure Elastic SAN Microsoft Blog
Azure Elastic SAN Overview
Azure Elastic SAN Performance topics
Azure Elastic SAN Pricing calculator
Azure Products by Region (see where AES is currently available)
Azure Storage Offerings 
Azure Virtual Machine (VM) sizes
Azure Virtual Machine (VM) types
Azure Elastic SAN General Pricing
Azure Storage redundancy 
Azure Service Level Agreements (SLA) 
StorageIOBlog.com Data Box Family 
StorageIOBlog.com Data Box Review
StorageIOBlog.com Data Box Test Drive 
StorageIOblog.com Microsoft Hyper-V Alive Enhanced with Win Server 2025
StorageIOblog.com If NVMe is the answer, what are the questions?
StorageIOblog.com NVMe Primer (or refresh)

Additional learning experiences along with common questions (and answers), are found in my Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

Azure Elastic SAN (AES) is a new and now generally available shared block storage offering that is accessible using iSCSI from within Azure Cloud and on-prem environments. Even with iSCSI, AES is relatively easy to set up and use for shared storage, mainly if you are used to or currently working with hardware or software-defined SAN storage solutions.

With NVMe over TCP fabrics gaining industry and customer traction, I’m hoping for Microsoft to adding that in the future. Currently, AES supports LRS and ZRS for redundancy, and an excellent future enhancement would be to add Geo Redundant Storage (GRS) capabilities for those who need it.

I like the option of elastic shared storage regarding performance, availability, capacity, and economic costs (PACE). Suppose you understand the value proposition of evolving from dedicated DAS to shared SAN (independent of the underlying fabric network); or are currently using some form of on-prem shared block storage. In that case, you will find AES familiar and easy to use. Granted, AES is not a solution for everything as there are roles for other block storage, including DAS such as Azure disks and VMs within Azure, along with on-prem DAS, as well as file, object, and blobs, tables, among others.

Wrap up

The notion that all cloud storage must be objects or blobs is tied those who only need, provide, or prefer those solutions. The reality is that everything is not the same. Thus, there is a need for various storage mediums, devices, tiers, access, and types of services. Microsoft and Azure have done an excellent job of providing. I like what Microsoft Azure is doing with Azure Elastic SAN.

Ok, nuff said, for now.

Cheers Gs

Greg Schulz – Nine time Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of UnlimitedIO LLC.

June 2018 Server StorageIO Data Infrastructure Update Newsletter

June 2018 Server StorageIO Data Infrastructure Update Newsletter

June 2018 Server StorageIO Data Infrastructure Update Newsletter

Volume 18, Issue 6 (June 2018)

Hello and welcome to the June 2018 Server StorageIO Data Infrastructure Update Newsletter.

In cased you missed it, the May 2018 Server StorageIO Data Infrastructure Update Newsletter can be viewed here (HTML and PDF).

In this issue buzzwords topics include AI, All Flash, HPC, Lustre, Multi Cloud, NVMe, NVMeoF, SAS, and SSD among others:

Enjoy this edition of the Server StorageIO Data Infrastructure update newsletter.

Cheers GS

Data Infrastructure and IT Industry Activity Trends

June data infrastructure, server, storage, I/O network, hardware, software, cloud, converged, and container as well as data protection industry activity includes among others:

Check out what’s new at Amazon Web Services (AWS) here, as well as Microsoft Azure here, Google Cloud Compute here, IBM Softlayer here, and OVH here. CTERA announced new cloud storage gateways (HC Series) for enterprise environments that include all flash SSD options, capacity up to 96TB (raw), Petabyte scale tiering to public and private cloud, 10 Gbe Ethernet connectivity, virtual machine deployment, along with high availability configuration.

Cray announced enhancements to its Lustre (parallel file system) based ClusterStor storage system for high performance compute (HPC) along with it previously acquired from Seagate (Who had acquired it as part of the Xyratex acquisition). New enhancements for ClusterStor include all flash SSD solution that will integrate and work with our existing hard disk drive (HDD) based systems.

In related Lustre based activity, DataDirect Network (DDN) has acquired from Intel, their Lustre File system capability. Intel acquired its Lustre capabilities via its purchase of Whamcloud back in 2012, and in 2017 announced that it was getting out of the Lustre business (here and here). DDN also announced new storage solutions for enabling HPC environment workloads along with Artificial Intelligence (AI) centric applications.

HPE which held its Discover event announced a $4 Billion USD investment over four years pertaining to development of edge technologies and services including software defined WAN (SD-WAN) and security among others.

Microsoft held its first virtual Windows Server Summit in June that outlined current and future plans for the operating system along with its hybrid cloud future.

Penguin computing has announced the Accelion solution for accessing geographically dispersed data enabling faster file transfer or other data movement functions.

SwiftStack has added multi cloud features (enhanced search, universal access, policy management, automation, data migration) and making them available via 1space open source project. 1space enables a single object namespace across different object storage locations including integration with OpenStack Swift.

Vexata announced a new version of its Vexata operating system (VX-OS) for its storage solution including NVMe over Fabric (NVMe-oF) support.

Speaking of NVMe and fabrics, the Fibre Channel Industry Association (FCIA) announced that the International Committee on Information Technology Standards (INCITS) has published T11 technical committee developed  Fibre Channel over NVMe (FC-NVMe) standard.

NVMe frontend NVMeoF
Various NVMe front-end including NVMeoF along with NVMe back-end devices (U.2, M.2, AiC)

Keep in mind that there are many different facets to NVMe including direct attached (M.2, U.2/8639, PCIe AiC) along with fabrics. Likewise, there are various fabric options for the NVMe protocol including over Fibre Channel (FC-NVMe), along with other NVMe over Fabrics including RDMA over Converged Ethernet (RoCE) as well as IP based among others. NVMe can be used as a front-end on storage systems supporting server attachment (e.g. competes with Fibre Channel, iSCSI, SAS among others).

Another variation of NVMe is as a back-end for attachment of drives or other NVMe based devices in storage systems, as well as servers. There is also end to end NVMe (e.g. both front-end and back-end) options. Keep context in mind when you hear or talk about NVMe and in particular, NVMe over fabrics, learn more about NVMe at https://storageioblog.com/nvme-place-volatile-memory-express/.

Toshiba announced new RM5 series of high capacity SAS SSDs for replacement of SATA devices in servers. The RM5 series being added to the Toshiba portfolio combine capacity and economics traditional associated with SATA SSDs along with performance as well as connectivity of SAS.

Check out other industry news, comments, trends perspectives here.

Data Infrastructure Server StorageIO Comments Content

Server StorageIO Commentary in the news, tips and articles

Recent Server StorageIO industry trends perspectives commentary in the news.

Via SearchStorage: Comments The storage administrator skills you need to keep up today
Via SearchStorage: Comments Managing storage for IoT data at the enterprise edge
Via SearchCloudComputing: Comments Hybrid cloud deployment demands a change in security mindset

View more Server, Storage and I/O trends and perspectives comments here.

Data Infrastructure Server StorageIOblog posts

Server StorageIOblog Data Infrastructure Posts

Recent and popular Server StorageIOblog posts include:

Announcing Windows Server Summit Virtual Online Event
May 2018 Server StorageIO Data Infrastructure Update Newsletter
Solving Application Server Storage I/O Performance Bottlenecks Webinar
Have you heard about the new CLOUD Act data regulation?
Data Protection Recovery Life Post World Backup Day Pre GDPR
Microsoft Windows Server 2019 Insiders Preview
Which Enterprise HDD for Content Server Platform
Server Storage I/O Benchmark Performance Resource Tools
Introducing Windows Subsystem for Linux WSL Overview
Data Infrastructure Primer Overview (Its Whats Inside The Data Center)
If NVMe is the answer, what are the questions?

View other recent as well as past StorageIOblog posts here

Server StorageIO Recommended Reading (Watching and Listening) List

Software-Defined Data Infrastructure Essentials SDDI SDDC

In addition to my own books including Software Defined Data Infrastructure Essentials (CRC Press 2017) available at Amazon.com (check out special sale price), the following are Server StorageIO data infrastructure recommended reading, watching and listening list items. The Server StorageIO data infrastructure recommended reading list includes various IT, Data Infrastructure and related topics including Intel Recommended Reading List (IRRL) for developers is a good resource to check out. Speaking of my books, Didier Van Hoye (@WorkingHardInIt) has a good review over on his site you can view here, also check out the rest of his great content while there.

Watch for more items to be added to the recommended reading list book shelf soon.

Data Infrastructure Server StorageIO event activities

Events and Activities

Recent and upcoming event activities.

July 25, 2018 – Webinar – Data Protect & Storage

June 27, 2018 – Webinar – App Server Performance

June 26, 2018 – Webinar – Cloud App Optimize

May 29, 2018 – Webinar – Microsoft Windows as a Service

April 24, 2018 – Webinar – AWS and on-site, on-premises hybrid data protection

See more webinars and activities on the Server StorageIO Events page here.

Data Infrastructure Server StorageIO Industry Resources and Links

Various useful links and resources:

Data Infrastructure Recommend Reading and watching list
Microsoft TechNet – Various Microsoft related from Azure to Docker to Windows
storageio.com/links – Various industry links (over 1,000 with more to be added soon)
objectstoragecenter.com – Cloud and object storage topics, tips and news items
OpenStack.org – Various OpenStack related items
storageio.com/downloads – Various presentations and other download material
storageio.com/protect – Various data protection items and topics
thenvmeplace.com – Focus on NVMe trends and technologies
thessdplace.com – NVM and Solid State Disk topics, tips and techniques
storageio.com/converge – Various CI, HCI and related SDS topics
storageio.com/performance – Various server, storage and I/O benchmark and tools
VMware Technical Network – Various VMware related items

What this all means and wrap-up

Data Infrastructures are what exists inside physical data centers as well as spanning cloud, converged, hyper-converged, virtual, serverless and other software defined as well as legacy environments. NVMe continues to gain in industry adoption as well as customer deployment. Cloud adoption also continues along with multi-cloud deployments. Enjoy this edition of the Server StorageIO Data Infrastructure update newsletter and watch for more NVMe,cloud, data protection among other topics in future posts, articles, events, and newsletters.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.