Part II Revisting AWS S3 Storage Gateway (Test Drive Deployment)

server storage I/O trends

Part II Revisiting AWS S3 Storage Gateway (Test Drive Deployment)

This Amazon Web Service (AWS) Storage Gateway Revisited posts is a follow-up to the AWS Storage Gateway test drive and review I did a few years ago (thus why it’s called revisited). As part of a two-part series, the first post looks at what AWS Storage Gateway is, how it has improved since my last review of AWS Storage Gateway along with deployment options. The second post in the series looks at a sample test drive deployment and use.

What About Storage Gateway Costs?

Costs vary by region, type of storage being used (files stored in S3, Volume Storage, EBS Snapshots, Virtual Tape storage, Virtual Tape storage archive), as well as type of gateway host, along with how access and used. Request pricing varies including data written to AWS storage by gateway (up to maximum of $125.00 per month), snapshot/volume delete, virtual tape delete, (prorate fee for deletes within 90 days of being archived), virtual tape archival, virtual tape retrieval. Note that there are also various data transfer fees that also vary by region and gateway host. Learn more about pricing here.

What Are Some Storage Gateway Alternatives

AWS and S3 storage gateway access alternatives include those from various third-party (including that are in the AWS marketplace), as well as via data protection tools (e.g. backup/restore, archive, snapshot, replication) and more commonly storage systems. Some tools include Cloudberry, S3FS, S3 motion, S3 Browser among many others.

Tip is when a vendor says they support S3, ask them if that is for their back-end (e.g. they can access and store data in S3), or front-end (e.g. they can be accessed by applications that speak S3 API). Also explore what format the application, tool or storage system stores data in AWS storage, for example, are files mapped one to one to S3 objects along with corresponding directory hierarchy, or are they stored in a save set or other entity.

AWS Storage Gateway Deployment and Management Tips

Once you have created your AWS account (if you did not already have one) and logging into the AWS console (note the link defaults to US East 1 Region), go to the AWS Services Dashboard and select Storage Gateway (or click here which goes to US East 1). You will be presented with three options (File, Volume or VTL) modes.

What Does Storage Gateway and Install Look Like

The following is what installing a AWS Storage Gateway for file and then volume looks like. First, access the AWS Storage Gateway main landing page (it might change by time you read this) to get started. Scroll down and click on the Get Started with AWS Storage Gateway button or click here.

AWS Storage Gateway Landing Page

Select type of gateway to create, in the following example File is chosen.

Select type of AWS storage gateway

Next select the type of file gateway host (EC2 cloud hosted, or on-premises VMware). If you choose VMware, an OVA will be downloaded (follow the onscreen instructions) that you deploy on your ESXi system or with vCenter. Note that there is a different VMware VM gateway OAV for File Gateway and another for Volume Gateway. In the following example VMware ESXi OVA is selected and downloaded, then accessed via VMware tools such as vSphere Web Client for deployment.

AWS Storage Gateway select download

Once your VMware OVA file is downloaded from AWS, install using your preferred VMware tool, in this case I used the vSphere Web Client.

AWS Storage Gateway VM deploy

Once you have deployed the VMware VM for File Storage Gateway, it is time to connect to the gateway using the IP address assigned (static or DHCP) for the VM. Note that you may need to allocate some extra VMware storage to the VM if prompted (this mainly applies to Volume Gateway). Also follow directions about setting NTP time, using paravirtual adapters, thick vs. thin provisioning along with IP settings. Also double-check to make sure your VM and host are set for high-performance power setting. Note that the default username is sguser and password is sgpassword for the gateway.

AWS Storage Gateway Connect

Once you successfully connect to the gateway, next step will be to configure file share settings.

AWS Storage Gateway Configure File Share

Configure file share by selecting which gateway to use (in case you have more than one), name of an S3 bucket name to create, type of storage (S3 Standard or IA), along with Access Management security controls.

AWS Storage Gateway Create Share

Next step is to complete file share creation, not the commands provided for Linux and Windows for accessing the file share.

AWS Storage Gateway Review Share Settings

Review file share settings

AWS Storage Gateway access from Windows

Now lets use the file share by accessing and mounting to a Windows system, then copy some files to the file share.

AWS Storage Gateway verify Bucket Items

Now let’s go to the AWS console (or in our example use S3 Browser or your favorite tool) and look at the S3 bucket for the file share and see what is there. Note that each file is an object, and the objects simply appear as a file. If there were sub-directory those would also exist. Note that there are other buckets that I have masked out as we are only interested in the one named awsgwydemo that is configured using S3 Standard storage.

AWS Storage Gateway Volume

Now lets look at using the S3 Storage Gateway for Volumes. Similar to deploying for File Gateway, start out at the AWS Storage Gateway page and select Volume Gateway, then select what type of host (EC2 cloud, VMware or Hyper-V (2008 R2 or 2012) for on-premises deployment). Lets use the VMware Gateway, however as mentioned above, this is a different OVA/OVF than the File Gateway.

AWS Storage Gateway Configure Volume

Download the VMware OVA/OVF from AWS, and then install using your preferred VMware tools making sure to configure the gateway per instructions. Note that the Volume Gateway needs a couple of storage devices allocated to it. This means you will need to make sure that a SCSI adapter exists (or add one) to the VM, along with the disks (HDD or SSD) for local storage. Refer to AWS documentation about how to size, for my deployment I added a couple of small 80GB drives (you can choose to put on HDD or SSD including NVMe). Note that when connecting to the gateway if you get an error similar to below, make sure that you are in fact using the Volume Gateway and not mistakenly using the File Gateway OVA (VM). Note that the default username is sguser and password is sgpassword for the gateway.

AWS Storage Gateway Connect To Volume

Now connect to the local Volume Storage Gateway and notice the two local disks allocated to it.

AWS Storage Gateway Cached Volume Deploy

Next its time to create the Gateway which are deploying a Volume Cached below.

AWS Storage Gateway Volume Create

Next up is creating a volume, along with its security and access information.

AWS Storage Gateway Volume Settings

Volume configuration continued.

AWS Storage Gateway Volume CHAP

And now some additional configuration of the volume including iSCSI CHAP security.

AWS Storage Gateway Windows Access

Which leads us up to some Windows related volume access and configuration.

AWS Storage Gateway Using iSCSI Volume

Now lets use the new iSCSI based AWS Storage Gateway Volume. On the left you can see various WIndows command line activity, along with corresponding configuration information on the right.

AWS Storage Gateway Being Used by Windows

And there you have it, a quick tour of AWS Storage Gateway, granted there are more options that you can try yourself.

AWS

Where To Learn More

What This All Means

Overall I like the improvements that AWS has made to the Storage Gateway along with the different options it provides. Something to keep in mind is that if you are planning to use the AWS Storage Gateway File serving sharing mode that there are caveats to multiple concurrent writers to the same bucket. I would not be surprised if some other gateway or software based tool vendors tried to throw some fud towards the Storage Gateway, however ask them then how they coordinate multiple concurrent updates to a bucket while preserving data integrity.

Which Storage Gateway variant from AWS to use (e.g. File, Volume, VTL) depends on what your needs are, same with where the gateway is placed (Cloud hosted or on-premises with VMware or Hyper-V). Keep an eye on your costs, and more than just the storage space capacity. This means pay attention to your access and requests fees, as well as different service levels, along with data transfer fees.

You might wonder what about EFS and why you would want to use AWS Storage Gateway? Good question, at the time of this post EFS has evolved from being internal (e.g. within AWS and across regions) to having an external facing end-point however there is a catch. That catch which might have changed by time you read this is that the end-point can only be accessed from AWS Direct Connect locations.

This means that if your servers are not in a AWS Direct Connect location, without some creative configuration, EFS is not an option. Thus Storage Gateway File mode might be an option in place of EFS as well as using AWS storage access tools from others. For example I have some of my S3 buckets mounted on Linux systems using S3FS for doing rsync or other operations from local to cloud. In addition to S3FS, I also have various backup tools that place data into S3 buckets for backup, BC and DR as well as archiving.

Check out AWS Storage Gateway yourself and see what it can do or if it is a fit for your environment.

Ok, nuff said (for now…).

Cheers
Gs

Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, VMware vExpert (and vSAN). Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Watch for the spring 2017 release of his new book "Software-Defined Data Infrastructure Essentials" (CRC Press).

Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2023 Server StorageIO(R) and UnlimitedIO. All Rights Reserved.

Seagate 1200 12Gbs Enterprise SAS SSD StorgeIO lab review

Seagate 1200 12Gbs Enterprise SAS SSD StorgeIO lab review

This is the first post of a two part series, read the second post here.

Earlier this year I had the opportunity to test drive some Seagate 1200 12Gbs Enterprise SAS SSD’s as a follow-up to some earlier activity trying their Enterprise TurboBoost Drives. Disclosure: Seagate has been a StorageIO client and was also the sponsor of this white paper and associated proof-points mentioned in this post.

The question to ask yourself is not if flash Solid State Device (SSD) technologies are in your future, Instead the questions are when, where, using what, how to configure and related themes. SSD including traditional DRAM and NAND flash-based technologies are like real estate where location matters; however, there are different types of properties to meet various needs. This means leveraging different types of NAND flash SSD technologies in different locations in a complementary and cooperative aka hybrid way. For example nand flash SSD as part of an enterprise tiered storage strategy can be implemented server-side using PCIe cards, SAS and SATA drives as targets or as cache along with software, as well as leveraging SSD devices in storage systems or appliances.

Seagate 1200 SSD
Seagate 1200 Enterprise SAS 12Gbs SSD Image via Seagate.com

Another place where nand flash can be found and compliments SSD devices are so-called Solid State Hybrid Drives (SSHD) or Hybrid Hard Disk Drives (HHDD) including a new generation that accelerate writes as well as reads such as those Seagate refers to as with Enterprise TurboBoost. The Enterprise TurboBoost drives (view the companion StorageIO Lab review TurboBoost white paper here) were previously known as the Solid State Hybrid Drives (SSHD) or Hybrid Hard Disk Drives (HHDD). Read more about TurboBoost here and here.

The best server and storage I/O is the one you do not have to do

Keep in mind that the best server or storage I/O is that one that you do not have to do, with the second best being the one with the least overhead resolved as close to the processor (compute) as possible or practical. The following figure shows that the best place to resolve server and storage I/O is as close to the compute processor as possible however only a finite amount of storage memory located there. This is where the server memory and storage I/O hierarchy comes into play which is also often thought of in the context of tiered storage balancing performance and availability with cost and architectural limits.

Also shown is locality of reference which refers to how close data is to where it is being used and includes cache effectiveness or buffering. Hence a small amount of cache of flash and DRAM in the right location can have a large benefit. Now if you can afford it, install as much DRAM along with flash storage as possible, however if you are like most organizations with finite budgets yet server and storage I/O challenges, then deploy a tiered flash storage strategy.

flash cache locality of reference
Server memory storage I/O hierarchy, locality of reference

Seagate 1200 12Gbs Enterprise SAS SSD’s

Back to the Seagate 1200 12Gbs Enterprise SAS SSD which is covered in this StorageIO Industry Trends Perspective thought leadership white paper. The focus of the white paper is to look at how the Seagate 1200 Enterprise class SSD’s and 12Gbps SAS address current and next generation tiered storage for virtual, cloud, traditional Little and Big Data infrastructure environments.

Seagate 1200 Enteprise SSD

This includes providing proof points running various workloads including Database TPC-B, TPC-E and Microsoft Exchange in the StorageIO Labs along with cache software comparing SSD, SSHD and different HDD’s including 12Gbs SAS 6TB near-line high-capacity drives.

Seagate 1200 Enterprise SSD Proof Points

The proof points in this white paper are from an applications focus perspective representing more of an end-to-end real-world situation. While they are not included in this white paper, StorageIO has run traditional storage building-block focus workloads, which can be found at StorageIOblog (Part II: How many IOPS can a HDD, HHDD or SSD do with VMware?). These include tools such as Iometer, iorate, vdbench among others for various IO sizes, mixed, random, sequential, reads, writes along with “hot-band" across different number of threads (concurrent users). “Hot-Band” is part of the SNIA Emerald energy effectiveness metrics for looking at sustained storage performance using tools such as vdbench. Read more about other various server and storage I/O benchmarking tools and techniques here.

For the following series of proof-points (TPC-B, TPC-E and Exchange) a system under test (SUT) consisted of a physical server (described with the proof-points) configured with VMware ESXi along with guests virtual machines (VMs) configured to do the storage I/O workload. Other servers were used in the case of TPC workloads as application transactional requester to drive the SQL Server database and resulting server storage I/O workload. VMware was used in the proof-points to reflect a common industry trend of using virtual server infrastructures (VSI) supporting applications including database, email among others. For the proof-point scenarios, the SUT along with storage system device under test were dedicated to that scenario (e.g. no other workload running) unless otherwise noted.

Server Storage I/O config
Server Storage I/O configuration for proof-points

Microsoft Exchange Email proof-point configuration

For this proof-point, Microsoft Jet Stress Exchange performance workloads were placed (e.g. Exchange Database – EDB file) on each of the different devices under test with various metrics shown including activity rates and response time for reads as well as writes. For the Exchange testing, the EDB was placed on the device being tested while its log files were placed on a separate Seagate 400GB Enterprise 12Gbps SAS SSD.

Test configuration: Seagate 400GB 12000 2.5” SSD (ST400FM0073) 12Gbps SAS, 600GB 2.5” Enterprise 15K with TurboBoost™ (ST600MX) 6 Gbps SAS, 600GB 2.5” Enterprise Enhanced 15K V4 (15K RPM) HDD (ST600MP) with 6 Gbps SAS, Seagate Enterprise Capacity Nearline (ST6000NM0014) 6TB 3.5” 7.2K RPM HDD 12 Gbps SAS and 3TB 7.2K SATA HDD. Email server hosted as guest on VMware vSphere/ESXi V5.5, Microsoft SBS2011 Service Pack 1 64 bit. Guest VM (VMware vSphere 5.5) was on a SSD based dat, had a physical machine (host), with 14 GB DRAM, quad CPU (4 x 3.192GHz) Intel E3-1225 v300, with LSI 9300 series 12Gbps SAS adapters in a PCIe Gen 3 slot with Jet Stress 2010.  All devices being tested were Raw Device Mapped (RDM) where EDB resided. VM on a SSD based separate data store than devices being tested. Log file IOPs were handled via a separate SSD device also persistent (no delayed writes). EDB was 300GB and workload ran for 8 hours.

Microsoft Exchange VMware SSD performance
Microsoft Exchange proof-points comparing various storage devices

TPC-B (Database, Data Warehouse, Batch updates) proof-point configuration

SSD’s are a good fit for both transaction database activity with reads and write as well as query-based decision support systems (DSS), data warehouse and big data analytics. The following are proof points of SSD capabilities for database activity. In addition to supporting database table files and objects, along with transaction journal logs, other uses include for meta-data, import/export or other high-IO and write intensive scenarios. Two database workload profiles were tested including batch update (write-intensive) and transactional. Activity involved running Transaction Performance Council (TPC) workloads TPC-B (batch update) and TPC-E (transaction/OLTP simulate financial trading system) against Microsoft SQL Server 2012 databases. Each test simulation had the SQL Server database (MDF) on a different device with transaction log file (LDF) on a separate SSD. TPC-B for a single device results shown below.

TPC-B (write intensive) results below show how TPS work being done (blue) increases from left to right (more is better) for various numbers of simulated users. Also shown on the same line for each amount of TPS work being done is the average latency in seconds (right to left) where lower is better. Results are shown from top to bottom for each group of users (100, 50, 20 and 1) for the different drives being tested (top to bottom). Note how the SSD device does more work at a lower response time vs. traditional HDD’s

Test configuration: Seagate 400GB 12000 2.5” SSD (ST400FM0073) 12Gbps SAS, 600GB 2.5” Enterprise 15K with TurboBoost™ (ST600MX) 6 Gbps SAS, 600GB 2.5” Enterprise Enhanced 15K V4 (15K RPM) HDD (ST600MP) with 6 Gbps SAS, Seagate Enterprise Capacity Nearline (ST6000NM0014) 6TB 3.5” 7.2K RPM HDD 12 Gbps SAS and 3TB Seagate 7.2K SATA HDD Workload generator and virtual clients Windows 7 Ultimate 64 bit. Microsoft SQL Server 2012 database was on Windows 7 guest. Guest VM (VMware vSphere 5.5) had a dedicated 14 GB DRAM, quad CPU (4 x 3.192GHz) Intel E3-1225 v300, with LSI 9300 series 12Gbps SAS adapters in a PCIe Gen 3 slot along with TPC-B (www.tpc.org) workloads.

VM with guest OS along with SQL tempdb and masterdb resided on separate SSD based data store from devices being tested (e.g., where MDF (main database tables) and LDF (log file) resided). All devices being tested were Raw Device Mapped (RDM) independent persistent with database log file on a separate SSD device also persistent (no delayed writes) using VMware PVSCSI driver. MDF and LDF file sizes were 142GB and 26GB with scale factor of 10000, with each step running for one hour (10-minute preamble). Note that these proof-points DO NOT use VMware or any other third-party cache software or I/O acceleration tool technologies as those are covered later in a separate proof-point.

TPC-B sql server database SSD performance
TPC-B SQL Server database proof-points comparing various storage devices

TPC-E (Database, Financial Trading) proof-point configuration

The following shows results from TPC-E test (OLTP/transactional workload) simulating a financial trading system. TPC-E is an industry standard workload that performs a mix of reads and writes database queries. Proof-points were performed with various numbers of users from 10, 20, 50 and 100 to determine (TPS) Transaction per Second (aka I/O rate) and response time in seconds. The TPC-E transactional results are shown for each device being tested across different user workloads. The results show how TPC-E TPS work (blue) increases from left to right (more is better) for larger numbers of users along with corresponding latency (green) that goes from right to left (less is better). The Seagate Enterprise 1200 SSD is shown on the top in the figure below with a red box around its results. Note how the SSD as a lower latency while doing more work compared to the other traditional HDD’s

Test configuration: Seagate 400GB 12000 2.5” SSD (ST400FM0073) 12Gbps SAS, 600GB 2.5” Enterprise 15K with TurboBoost™ (ST600MX) 6 Gbps SAS, 600GB 2.5” Enterprise Enhanced 15K V4 (15K RPM) HDD (ST600MP) with 6 Gbps SAS, Seagate Enterprise Capacity Nearline (ST6000NM0014) 6TB 3.5” 7.2K RPM HDD 12 Gbps SAS and 3TB Seagate 7.2K SATA HDD Workload generator and virtual clients Windows 7 Ultimate 64 bit. Microsoft SQL Server 2012 database was on Windows 7 guest. Guest VM (VMware vSphere 5.5) had a dedicated 14 GB DRAM, quad CPU (4 x 3.192GHz) Intel E3-1225 v300, with LSI 9300 series 12Gbps SAS adapters in a PCIe Gen 3 slot along with TPC-B (www.tpc.org) workloads.

VM with guest OS along with SQL tempdb and masterdb resided on separate SSD based data store from devices being tested (e.g., where MDF (main database tables) and LDF (log file) resided). All devices being tested were Raw Device Mapped (RDM) independent persistent with database log file on a separate SSD device also persistent (no delayed writes) using VMware PVSCSI driver. MDF and LDF file sizes were 142GB and 26GB with scale factor of 10000, with each step running for one hour (10-minute preamble). Note that these proof-points DO NOT use VMware or any other third-party cache software or I/O acceleration tool technologies as those are covered later in a separate proof-point.

TPC-E sql server database SSD performance
TPC-E (Financial trading) SQL Server database proof-points comparing various storage devices

Continue reading part-two of this two-part series here including the virtual server storage I/O blender effect and solution.

Ok, nuff said (for now).

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved