The other Green Storage: Efficiency and Optimization

Some believe that green storage is specifically designed to reduce power and cooling costs.

The reality is that there are many ways to reduce environmental impact while enhancing the economics of data storage besides simply booting utilizing.

These include optimizing data storage capacity as well as boosting performance to increase productivity per watt of energy used when work needs to be done.

Some approaches require new hardware or software while others can be accomplished with changes to management including reconfiguration leveraging insight and awareness of resource needs.

Here are some related links:

The Other Green: Storage Efficiency and Optimization (Videocast)

Energy efficient technology sales depend on the pitch

Performance metrics: Evaluating your data storage efficiency

How to reduce your Data Footprint impact (Podcast)

Optimizing enterprise data storage capacity and performance to reduce your data footprint

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Green IT and Virtual Data Centers

Green IT and virtual data centers are no fad nor are they limited to large-scale environments.

Paying attention to how resources are used to deliver information services in a flexible, adaptable, energy-efficient, environmentally, and economically friendly way to boost efficiency and productivity are here to stay.

Read more here in the article I did for the folks over at Enterprise Systems Journal.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

What is the Future of Servers?

Recently I provided some comments and perspectives on the future of servers in an article over at Processor.com.

In general, blade servers will become more ubiquitous, that is they wont go away, rather become more common place with even higher density processors with more cores and performance along with faster I/O and larger memory capacity per given footprint.

While the term blade server may fade giving way to some new term or phrase, rest assured their capabilities and functionality will not disappear, rather be further enhanced to support virtualization with VMware vsphere, Microsoft HyperV, Citrix/Zen along with public and private clouds, both for consolidation and in the next wave of virtualization called life beyond consolidation.

The other trend is that not only will servers be able to support more processing and memory per footprint; they will also do that drawing less energy requiring lower cooling demands, hence more Ghz per watt along with energy savings modes when less work needs to be performed.

Another trend is around convergence both in terms of packaging along with technology improvements from a server, I/O networking and storage perspective. For example, enhancements to shared PCIe with I/O virtualization, hypervisor optimization, and integration such as the recently announced EMC, Cisco, Intel and VMware VCE coalition and vblocks.

Read more including my comments in the article here.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Justifying Green IT and Home Hardware Upgrades with EnergyStar

Energy Star

Have you seen the TV commercials or print advertisements where an energy star washer is mentioned as so efficient that the savings from reduced power consumption are enough to pay for the dryer? If not, check out the EPA Energy Star website for information about various programs, savings and efficiency options to learn more

What does this have to do with servers, storage, networking, data centers or other IT equipment?

Simple, if you are not aware, Energy Star for Servers now exits and is being enhanced while good progress is being made on the Energy Star for storage program.

The Energy Star for household appliances has been around a bit longer and more refined, something that I anticipated the server and storage programs to follow-suit with over time.

What really caught my eye with the commercial is the focus on closing the green gap, that is instead of the green environmental impact savings of an appliance that uses less power and subsequent carbon footprint benefits, the message is to the economic hot button. That is, switch to more energy efficient technology that allows more work to done at a lower overall cost and the savings can help self fund the enhancements.

For example, a more energy efficient server that can do more work or GHz per watt of energy when needed, or, to go into lower power modes (intelligent power management: IPM). Low power modes do not necessarily mean turning completely off, rather, drawing less energy and subsequently lower cooling demands during slow periods such as with new Intel Nehalem and other processors.

From a disk storage perspective, energy efficiency is often thought to be avoidance or turning disk drives off boosting capacity and squeezing data footprints.

However energy efficiency and savings can also be achieved by slowing a disk drive down or turning of some of the electronics to reduce energy consumption and heat generation.

Other forms of energy savings include thin provisioning and deduplication however another form of energy efficiency for storage is boosting performance. That is, doing more work per watt of energy for active or time sensitive applications or usage scenarios.

Thus there is another Green IT, one that provides both economic and environmental benefits!

Here are some related links:

Saving Money with Green IT: Time To Invest In Information Factories

EPA Energy Star for Data Center Storage Update

Green Storage is Alive and Well: ENERGY STAR Enterprise Storage Stakeholder Meeting Details

Shifting from energy avoidance to energy efficiency

U.S. EPA Energy Star for Server Update

U.S. EPA Looking for Industry Input on Energy Star for Storage

Update: EnergyStar for Server Workshop

US EPA EnergyStar for Servers Wants To Hear From YOU!

Optimize Data Storage for Performance and Capacity Efficiency

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Saving Money with Green IT: Time To Invest In Information Factories

There is a good and timely article titled Green IT Can Save Money, Too over at Business Week that has a familiar topic and theme for those who read this blog or other content, articles, reports, books, white papers, videos, podcasts or in-person speaking and keynote sessions that I have done..

I posted a short version of this over there, here is the full version that would not fit in their comment section.

Short of calling it Green IT 2.0 or the perfect storm, there is a resurgence and more importantly IMHO a growing awareness of the many facets of Green IT along with Green in general having an economic business sustainability aspect.

While the Green Gap and confusion still exists, that is, the difference between what people think or perceive and actual opportunities or issues; with growing awareness, it will close or at least narrow. For example, when I regularly talk with IT professionals from various sized, different focused industries across the globe in diverse geographies and ask them about having to go green, the response is in the 7-15% range (these are changing) with most believing that Green is only about carbon footprint.

On the other hand, when I ask them if they have power, cooling, floor space or other footprint constraints including frozen or reduced budgets, recycling along with ewaste disposition or RoHS requirements, not to mention sustaining business growth without negatively impacting quality of service or customer experience, the response jumps up to 65-75% (these are changing) if not higher.

That is the essence of the green gap or disconnect!

Granted carbon dioxide or CO2 reduction is important along with NO2, water vapors and other related issues, however there is also the need to do more with what is available, stretch resources and footprints do be more productive in a shrinking footprint. Keep in mind that there is no such thing as an information, data or processing recession with all indicators pointing towards the need to move, manage and store larger amounts of data on a go forward basis. Thus, the need to do more in a given footprint or constraint, maximizing resources, energy, productivity and available budgets.

Innovation is the ability to do more with less at a lower cost without compromise on quality of service or negatively impacting customer experience. Regardless of if you are a manufacturer, or a service provider including in IT, by innovating with a diverse Green IT focus to become more efficient and optimized, the result is that your customers become more enabled and competitive.

By shifting from an avoidance model where cost cutting or containment are the near-term tactical focus to an efficiency and productivity model via optimization, net unit costs should be lowered while overall service experience increase in a positive manner. This means treating IT as an information factory, one that needs investment in the people, processes and technologies (hardware, software, services) along with management metric indicator tools.

The net result is that environmental or perceived Green issues are addressed and self-funded via the investment in Green IT technology that boosts productivity (e.g. closing or narrowing the Green Gap). Thus, the environmental concerns that organizations have or need to address for different reasons yet that lack funding get addressed via funding to boost business productivity which have tangible ROI characteristics similar to other lean manufacturing approaches.

Here are some additional links to learn more about these and other related themes:

Have a read over at Business Week about how Green IT Can Save Money, Too while thinking about how investing in IT infrastructure productivity (Information Factories) by becoming more efficient and optimized helps the business top and bottom line, not to mention the environment as well.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

EPA Energy Star for Data Center Storage Update

EPA Energy Star

Following up on a recent post about Green IT, energy efficiency and optimization for servers, storage and more, here are some additional  thoughts, perspectives along with industry activity around the U.S. Environmental Protection Agency (EPA) Energy Star for Server, Data Center Storage and Data Centers.

First a quick update, Energy Star for Servers is in place with work now underway on expanding and extending beyond the first specification. Second is that Energy Star for Data Center storage definition is well underway including a recent workshop to refine the initial specification along with discussion for follow-on drafts.

Energy Star for Data Centers is also currently undergoing definition which is focused more on macro or facility energy (notice I did not say electricity) efficiency as opposed to productivity or effectiveness, items that the Server and Storage specifications are working towards.

Among all of the different industry trade or special interests groups, at least on the storage front the Storage Networking Industry Association (SNIA) Green Storage Initiative (GSI) and their Technical Work Groups (TWG) have been busily working for the past couple of years on taxonomies, metrics and other items in support of EPA Energy Star for Data Center Storage.

A challenge for SNIA along with others working on related material pertaining to storage and efficiency is the multi-role functionality of storage. That is, some storage simply stores data with little to no performance requirements while other storage is actively used for reading and writing. In addition, there are various categories, architectures not to mention hardware and software feature functionality or vendors with different product focus and interests.

Unlike servers that are either on and doing work, or, off or in low power mode, storage is either doing active work (e.g. moving data), storing in-active or idle data, or a combination of both. Hence for some, energy efficiency is about how much data can be stored in a given footprint with the least amount of power known as in-active or idle measurement.

On the other hand, storage efficiency is also about using the least amount of energy to produce the most amount of work or activity, for example IOPS or bandwidth per watt per footprint.

Thus the challenge and need for at least a two dimensional  model looking at, and reflecting different types or categories of storage aligned for active or in-active (e.g. storing) data enabling apples to apples, vs. apples to oranges comparison.

This is not all that different from how EPA looks at motor vehicle categories of economy cars, sport utility, work or heavy utility among others when doing different types of work, or, in idle.

What does this have to do with servers and storage?

Simple, when a server powers down where does its data go? That’s right, to a storage system using disk, ssd (RAM or flash), tape or optical for persistency. Likewise, when there is work to be done, where does the data get read into computer memory from, or written to? That’s right, a storage system. Hence the need to look at storage in a multi-tenant manner.

The storage industry is diverse with some vendors or products focused on performance or activity, while others on long term, low cost persistent storage for archive, backup, not to mention some doing a bit of both. Hence the nomenclature of herding cats towards a common goal when different parties have various interests that may conflict yet support needs of various customer storage usage requirements.

Figure 1 shows a simplified, streamlined storage taxonomy that has been put together by SNIA representing various types, categories and functions of data center storage. The green shaded areas are a good step in the right direction to simplify yet move towards realistic and achievable befits for storage consumers.


Figure 1 Source: EPA Energy Star for Data Center Storage web site document

The importance of the streamlined SNIA taxonomy is to help differentiate or characterize various types and tiers of storage (Figure 2) products facilitating apples to apples comparison instead of apples or oranges. For example, on-line primary storage needs to be looked at in terms of how much work or activity per energy footprint determines efficiency.


Figure 2: Tiered Storage Example

On other hand, storage for retaining large amounts of data that is in-active or idle for long periods of time should be looked at on a capacity per energy footprint basis. While final metrics are still being flushed out, some examples could be active storage gauged by IOPS or work or bandwidth per watt of energy per footprint while other storage for idle or inactive data could be looked at on a capacity per energy footprint basis.

What benchmarks or workloads to be used for simulating or measuring work or activity are still being discussed with proposals coming from various sources. For example SNIA GSI TWG are developing measurements and discussing metrics, as have the storage performance council (SPC) and SPEC among others including use of simulation tools such as IOmeter, VMware VMmark, TPC, Bonnie, or perhaps even Microsoft ESRP.

Tenants of Energy Star for Data Center Storage overtime hopefully will include:

  • Reflective of different types, categories, price-bands and storage usage scenarios
  • Measure storage efficiency for active work along with in-active or idle usage
  • Provide insight for both storage performance efficiency and effective capacity
  • Baseline or raw storage capacity along with effective enhanced optimized capacity
  • Easy to use metrics with more in-depth back ground or disclosure information

Ultimately the specification should help IT storage buyers and decision makers to compare and contrast different storage systems that are best suited and applicable to their usage scenarios.

This means measuring work or activity per energy footprint at a given capacity and data protection level to meet service requirements along with during in-active or idle periods. This also means showing storage that is capacity focused in terms of how much data can be stored in a given energy footprint.

One thing that will be tricky however will be differentiating GBytes per watt in terms of capacity, or, in terms of performance and bandwidth.

Here are some links to learn more:

Stay tuned for more on Energy Star for Data Centers, Servers and Data Center Storage.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Upcoming Out and About Events

Following up on previous Out and About updates ( here and here ) of where I have been, heres where I’m going to be over the next couple of weeks.

On September 15th and 16th 2009, I will be the keynote speaker along with doing a deep dive discussion around data deduplication in Minneapolis, MN and Toronto ON. Free Seminar, register and learn more here.

The Infrastructure Optimization and Planning Best Practices (V2.009) – Doing more with less without sacrificing storage, system or network capabilities Seminar series continues September 22, 2009 with a stop in Chicago. Free Seminar, register and learn more here.

On September 23, 2009 I will be in New York City at Storage Decisions conference participating in the Ask the Experts during the expo session as well as presenting The Other Green — Storage Efficiency and Optimization.

Throw out the "green“: buzzword, and you’re still left with the task of saving or maximizing use of space, power, and cooling while stretching available IT dollars to support growth and business sustainability. For some environments the solution may be consolation while others need to maintain quality of service response time, performance and availability necessitating faster, energy efficient technologies to achieve optimization objectives. To accomplish these and other related issues, you can turn to the cloud, virtualization, intelligent power management, data footprint reduction and data management not to mention various types of tiered storage and performance optimization techniques. The session will look at various techniques and strategies to optimize either on-line active or primary as well as near-line or secondary storage environment during tough economic times, as well as to position for future growth, after all, there is no such thing as a data recession!

Topics, technologies and techniques that will be discussed include among others:

  • Energy efficiency (strategic) vs. energy avoidance (tactical)
  • Optimization and the need for speed vs. the need for capacity
  • Metrics and measurements for management insight
  • Tiered storage and tiered access including SSD, FC, SAS and clouds
  • Data footprint reduction (archive, compress, dedupe) and thin provision
  • Best practices, financial incentives and what you can do today

Free event, learn more and register here.

Check out the events page for other upcoming events and hope to see you this fall while Im out and about.

Cheers – gs

Greg Schulz – StorageIOblog, twitter @storageio Author “The Green and Virtual Data Center” (CRC)

Recent tips, videos, articles and more

Its been a busy year so far and there is still plenty more to do. Taking advantage of a short summer break, I’m getting caught up on some items including putting up a link to some of the recent articles, tips, reports, webcasts, videos and more that I have eluded to in recent posts. Realizing that some prefer blogs to webs to tweets to other venues, here are some links to recent articles, tips, videos, podcasts, webcasts, white papers and more that can be found on the StorageIO Tips, tools and White Papers pages.

Recent articles, columns, tips, white papers and reports:

  • ITworld: The new green data center: From energy avoidance to energy efficiency August 2009
  • SearchSystemsChannel: Comparing I/O virtualization and virtual I/O benefits July 2009
  • SearchDisasterRecovery: Top server virtualization myths in DR and BC July 2009
  • Enterprise Storage Forum: Saving Money with Green Data Storage Technology July 2009
  • SearchSMB ATE Tips: SMB Tips and ATE by Greg Schulz
  • SearchSMB ATE Tip: Tape library storage July 2009
  • SearchSMB ATE Tip: Server-based operating systems vs. PC-based operating systems June 2009
  • SearchSMB ATE Tip: Pros/cons of block/variable block dedupe June 2009
  • FedTechAt the Ready: High-availability storage hinges on being ready for a system failure May 2009
  • Byte & Switch Part XI – Key Elements For A Green and Virtual Data Center May 2009
  • Byte & Switch Part X – Basic Steps For Building a Green and Virtual Data Center May 2009
  • InfoStor Technology Options for Green Storage: April 2009
  • Byte & Switch Part IX – I/O, I/O, Its off to Virtual Work We Go: Networks role in Virtual Data Centers April 2009
  • Byte & Switch Part VIII – Data Storage Can Become Green: There are many steps you can take April 2009
  • Byte & Switch Part VII – Server Virtualization Can Save Costs April 2009
  • Byte & Switch Part VI – Building a Habitat for Technology April 2009
  • Byte & Switch Part V – Data Center Measurement, Metrics & Capacity Planning April 2009
  • zJournal Storage & Data Management: Tips for Enabling Green and Virtual Efficient Data Management March 2009
  • Serial Storage Wire (STA): Green and SASy = Energy and Economic, Effective Storage March 2009
  • SearchSystemsChannel: FAQs: Green IT strategies for solutions providers March 2009
  • Computer Technology Review: Recent Comments on The Green and Virtual Data Center March 2009
  • Byte & Switch Part IV – Virtual Data Centers Can Promote Business Growth March 2009
  • Byte & Switch Part III – The Challenge of IT Infrastructure Resource Management March 2009
  • Byte & Switch Part II – Building an Efficient & Ecologically Friendly Data Center March 2009
  • Byte & Switch Part I – The Green Gap – Addressing Environmental & Economic Sustainability March 2009
  • Byte & Switch Green IT and the Green Gap February 2009
  • GreenerComputing: Enabling a Green and Virtual Data Center February 2009
  • Some recent videos and podcasts include:

  • bmighty.com The dark side of SMB virtualization July 2009
  • bmighty.com SMBs Are Now Virtualization’s “Sweet Spot” July 2009
  • eWeek.com Green IT is not dead, its new focus is about efficiency July 2009
  • SearchSystemsChannel FAQ: Using cloud computing services opportunities to get more business July 2009
  • SearchStorage FAQ guide – How Fibre Channel over Ethernet can combine networks July 2009
  • SearchDataCenter Business Benefits of Boosting Web hosting Efficiency June 2009
  • SearchStorageChannel Disaster recovery services for solution providers June 2009
  • The Serverside The Changing Dynamic of the Data Center April 2009
  • TechTarget Virtualization and Consolidation for Agility: Intels Xeon Processor 5500 series May 2009
  • TechTarget Virtualization and Consolidation for Agility: Intels Xeon Processor 5500 series May 2009
  • Intel Reduce Energy Usage while Increasing Business Productivity in the Data Center May 2009
  • WSRadio Closing the green gap and shifting towards an IT efficiency and productivity April 2009
  • bmighty.com July 2009
  • Check out the Tips, Tools and White Papers, and News pages for more commentary, coverage and related content or events.

    Ok, nuff said.

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

    Green IT Confusion Continues, Opportunities Missed!

    I continue to see those looking for fast silver bullets in the quest to be green, efficient, optimized or sustainable while addressing issues ranging from power/energy, cooling, floor-space/footprint, EH&S (environmental health & safety) not to mention recycling. Yet, I’m also continued to be  amazed by the focus and emphasis around reduce as in reduce your capacity and your performance or processing capabilities in the form of consolidation or aggregation along with energy avoidance which for some is applicable.

    However, there is also the other side of the tale which is shifting from avoidance to becoming more efficient, that is doing more with what you have or with less while boosting productivity. For example, having a server or processor that can do more work in the same or smaller physical footprint drawing the same or less energy and requiring less cooling is a form of reducing overall impact yet boosting productivity. The same can be done with data and I/O networks, storage and even software.

    Similar to automobiles after the 1970s oil and energy crisis, the focus was on reduction, conservation and avoidance as the form of being efficient. Over time, this approach gave way to levering more efficient engines and vehicles that boosted the MPG city and highway, change in driving or usage habits, awareness of issues including applicable metrics and energy costs, as well as the continuing quest for alternative fuels.

    This is no different than what is happening with the IT organizations or compute focused entities in that there has been an initial focus of avoidance to meet short term tactical requirements, not to mention all of the green hype of a few years ago. Today there is a shift taking place towards efficiency and awareness that optimization and efficiency is more than consolidation, that it also includes boosting productivity as part of achieving reduced energy and cooling demands.

    How this can be done is to leverage multiple different techniques including new servers with processors that have intelligent power management (IPM) also known as adaptive voltage scaling (AVS) or other marketing terms enabling variable performance and energy consumption. For example, vary clock cycles and turn on cores when needed, then to turn off cores, slow clock speed down when there is less work to be done. Likewise there are improvements with cooling closer to the heat source ranging from leveraging inert liquid cooling inside the cabinet of computers to surface attached cooling to emerging micro cooling located inside silicon. There is a fascination with using virtualization to consolidate and reduce servers that are underutilized, which again is applicable for some environments and applications.

    However not all servers including many that are underutilized lend themselves to being consolidated for various reasons including quality of service (QoS) or performance, security, vendor support or software compatibility, politics or finance among others. This however does not mean that they cannot be virtualized, it more than likely mean that they cannot be consolidated. There is a common myth that virtualization equals consolidation and vice versa, however virtualization can also be used for abstraction, transparency, emulation and enabling agility including support for load-balancing, scale-up and scale-out performance oriented clustering among other uses. Thus there is another side of virtualization and that is to achieve   efficiency, life beyond consolidation.

    Needless to say there are many more technologies and techniques to address various issues now along with those that are emerging. The good news in all of this is the growing awareness that there are many different faces or facets of being green. That green wash and green hype may be on the endangered species list, that green means more than reducing carbon footprints or recycling or energy avoidance. That green is really about shifting and becoming more efficient, more optimized to support more processing, more work in a cost effective manner to sustain growth on a go forward basis. For high performance compute (HPC) or other large scale IT organizations, there is a notion that small improvements on a large broad scale have significant impact.

    Some organizations are in pursuit of technologies of solutions that promise significant saving ratios over small sets or instances, solutions that provide  smaller reduction or savings over a larger basis can prove to be more effective. For example, if power is a concern, powering down servers or storage that promises 85-100% savings might only be applicable to less than 5% of the devices. However, if 85-100% of the devices can be upgraded to newer models that boost productivity by 5-15% (or more) in the same or smaller footprint, using 5-15% (or more) less power, the results add up quickly. Think of it this way, a 1% saving for an environment using 1,000 kilo watt hour (kWh) or 1mWh of energy is a savings of 10kWh. The point being that for large environments, don’t forget to look at small savings that apply to a large installed base that then add up to big benefits.

    The net result is that one can pursue being green or being perceived as being green which can have a high cost, or, can pursue various efficiency that help the overall organization by boosting productivity, helping the top and bottom line, doing more in a smaller footprint and guess what, the result is not only economic, it’s also environmental positive. Thus, the byproduct of shifting towards efficiency (and not just avoidance) is to become green!

    Ok, nuff said.

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    Mirror mirror on the wall, who’s the greenest of them all?

    If you subscribe to the notion that Green IT is all about carbon footprints, you may be missing out on some real opportunities to go green. After all, carbon is part of the green movement, there are many other aspects including supply chain, efficiency, sustainability in addition to recycling, not to mention optimizing power, cooling footprints in order to do more work in a productive manner.

    So who is the greenest of them all? Could it be Brocade, CA, Cisco, EMC, Hitachi, IBM, Intel, LSI, Microsoft, NetApp, Oracle, Symantec, VMware or 3PAR? What about the cloud crowd or perhaps one of the industry trade groups such as Green grid, SNIA GSI, Climate Savers Computing or Carbon disclosure project perhaps among others?

    You might be surprised, now granted, this list is for consumer products. However, given their broad adoption, and looking at Green as more than carbon impact, and with the EPA implanting Energy Star for Servers and now Energy Star for storage in the works, not to mention factoring in the green supply chain, have a look here.

    Here’s an interesting read about how the Internet is causing global warming. How ironic, given Al Gore’s carbon crusade, and the folk-lore claim about  (or mistaken have claimed) to have invented the Internet, no wonder he has been able to cash-in and transform Green to Gold.

    For those interested in saving money with efficient and optimized storage (e.g. the new Green) to boost productivity, here’s an article to check out.

    Ok, that’s enough "Green" fun for now.

    Cheers gs

    Shifting from energy avoidance to energy efficiency

    Storage I/O trends

    I’m continually amazed at the number of people in the IT industry from customers to vendors, vars to media and even analysts who associate Green IT with and only with reducing carbon footprints. I guess I should not be surprised given the amount of rhetoric around Green and carbon both in the IT industry as well as in general resulting in a Green Gap.

    The reality as I have discussed in the past is that Green IT while addressing carbon footprint topics, is really more about efficiency and optimization for business economic benefits that also help the environment. From a near-term tactical perspective, Green IT is about boosting productivity and enabling business sustainability during tough economic times, doing more with less, or, doing more with what you have. On a strategic basis, Green IT is about continued sustainability while also improving top and bottom line economics and repositioning IT as a competitive advantage resource.

    There is a lot of focus on energy avoidance, as it is relatively easy to understand and it is also easy to implement. Turning off the lights, turning off devices when they are not in use, enabling low-power, energy-savings or Energy Star® (now implemented for servers with storage being a new focus) modes are all means to saving or reducing energy consumption, emissions, and energy bills.

    Ideal candidates for powering down when not in use or inactive include desktop workstations, PCs, laptops, and associated video monitors and printers. Turning lights off or implementing motion detectors to turn lights off automatically, along with powering off or enabling energy-saving modes on general-purpose and consumer products has a significant benefit. New generations of processors such as the Intel Xeon 5xxx or 7xxx series (formerly known as Nehalem) provide the ability to boost performance when needed, or, go into various energy conservation modes when possible to balance performance, availability and energy needs to applicable service requirements, a form of intelligent power management.

    In Figure 1 are shown four basic approaches (in addition to doing nothing) to energy efficiency. One approach is to avoid energy usage, similar to following a rationing model, but this approach will affect the amount of work that can be accomplished. Another approach is to do more work using the same amount of energy, boosting energy efficiency, or the complement—do the same work using less energy.

    Tiered Storage
    Figure 1 the Many Faces of Energy Efficiency (Source: “The Green and Virtual Data Center” (CRC)

    The energy efficiency gap is the difference between the amount of work accomplished or information stored in a given footprint and the energy consumed. In other words, the bigger the energy efficiency gap, the better, as seen in the fourth scenario, doing more work or storing more information in a smaller footprint using less energy.

    Given the shared nature of their use along with various intersystem dependencies, not all data center resources can be powered off completely. Some forms of storage devices can be powered off when they are not in use, such as offline storage devices or mediums for backups and archiving. Technologies such as magnetic tape or removable hard disk drives that do not need power when they are not in use can be used for storing inactive and dormant data.

    Avoiding energy use can be part of an approach to address power, cooling, floor space and environmental (PCFE) challenges, particularly for servers, storage, and networks that do not need to be used or accessible at all times. However, not all applications, data or workloads can be consolidated, or, powered down due to performance, availability, capacity, security, compatibility, politics, financial and many other reasons. For those applications that cannot be consolidated, the trick is to support them in a more efficient and effective means.

    Simply put, when work needs to be done or information needs to be stored or retrieved or data moved, it should be done so in the most energy-efficient manner aligned to a given level of service which can mean leveraging faster, higher performing resources (servers, storage and networks) to get the job done fast resulting in improved productivity and efficiency.

    Tiering is an approach that applies to servers, storage, and networks as well as data protection. For example, tiered servers include large frame or mainframes, rack mount as well as blades with various amounts of memory, I/O or expansion slots and number of processor cores at different speeds. Tiered storage includes different types of mediums and storage system architectures such as those shown in figure 2. Tiered networking or tiered access includes 10Gb and 1Gb Ethernet, 2/4/8 Gb Fibre Channel, Fibre Channel over Ethernet (FCoE), iSCSI, NAS and shared SAS among others. Tiered data protection includes various technologies to meet various recovery time objectives (RTO) and recovery point objectives (RPO) such as real-time synchronous mirroring with snapshots, to periodic backup to disk or tape among other approaches, techniques and technologies.

    Technology alignment (Figure 2), that is aligning the applicable type of storage or server resource and devices to the task at hand to meet application service requirements is essential to archiving an optimized and efficient IT environment. For example, for very I/O intensive active data as shown in figure 2, leveraging ultra fast tier-0 high-performance SSD (FLASH or RAM) storage, or for high I/O active data, tier-1 fast 15.5K SAS and Fibre Channel storage based systems would be applicable.

    For active and on-line data, that’s where energy efficiency in the form of fast disk drives including RAM SSD or FLASH SSD (for reads, writes are another story) and in particular fast 15.5K or 10K FC and SAS energy efficient disks and their associated storage systems come into play. The focus for active data and storage systems should be around more useful work per unit of energy consumed in a given footprint. For example, more IOPS per watt, more transactions per watt, more bandwidth or video streams per watt, more files or emails processed per watt.

    Tiered Storage

    Figure 2 Tiered Storage: Balancing Performance, Availability, Capacity and Energy to QoS (Source: “The Green and Virtual Data Center” (CRC)

    For low-performance, low activity applications where the focus is around storing as much data as possible with the lowest cost including for disk to disk based backup, slower high capacity SATA based storage systems are the fit (lower right in figure 2). For long-term bulk storage to meet archiving, data retention or other retention needs as well as storing large monthly full backups or long term data preservation, tape remains the ticket for large environments with the best combination of performance, availability capacity and energy efficiency and cost per footprint.

    General approaches to boost energy efficiency include:

    • Do more work using the same or less amount of power and subsequently cooling
    • Leverage faster processors/controllers that use the same or less power
    • Apply applicable RAID level to application and data QoS requirements
    • Consolidate slower storage or servers to a faster, more energy-efficient solution
    • Use faster disk drives with capacity boost and that draw less power
    • Upgrade to newer, faster, denser, more energy-efficient technologies
    • Look beyond capacity utilization; keep response time and availability in mind
    • Leverage IPM, AVS, and other techniques to vary performance and energy usage
    • Manage data both locally and remote; gain control and insight before moving problems
    • Leverage a data footprint reduction strategy across all data and storage tiers
    • Utilize multiple data footprint techniques including archive, compression and de-dupe
    • Reduce data footprint impact, enabling higher densities of stored on-line data

    Find a balance between energy avoidance and energy efficiency, consolidation and business enablement for sustainably, hardware and software, best practices including policy and producers, as well as leveraging available financial rebates and incentives. Addressing green and PCFE issues is a process; there is no one single solution or magic formula.

    Efficient and Optimized IT Wheel of Oppourtunity

    Figure 3 Wheel of Opportunity – Various Techniques and Technologies for Infrastructure Optimization (Source: “The Green and Virtual Data Center” (CRC)

    Instead, leverage a combination of technologies, techniques, and best practices to address various issues and requirements is needed (Figure 3). Some technologies and techniques include among others infrastructure resource management (IRM), data management, archiving (including for non-compliance), and compression (on-line and off-line, primary and secondary) as well as de-dupe for backups, space saving snapshots, and effective use of applicable raid levels.

    Green washing and green hype may fade away, however power, cooling, footprint, energy (PCFE) and related issues and initiatives that enable IT infrastructure optimization and business sustainability will not fade away. Addressing IT infrastructure optimization and efficiency is thus essential to IT and business sustainability and growth in an environmentally friendly manner which enables shifting from talking about green to being green and efficient.

    Learn more on the tips, tools, articles, videos and reports page as well as in “Cloud and Virtual Data Storage Networking” (CRC) pages, “The Green and Virtual Data Center” (CRC) pages at StorageIO.com.

    Ok, nuff said.

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    Determining Computer or Server Energy Use

    Recently I posted a response to a question over at IT Knowledge Exchange (e.g. ITKE) about how to determine power or energy use.

    In a nutshell:

    Depending on what you are looking for, or trying to accomplish, you may, or may not need a formula per say.

    For example, if all you need to know is how many volts, amps, watts, kva, or btu’s are used by a particular computer or other IT device for that matter, first things first check the “tag” or “label” on the device as well as included documentation, or, on-line spec sheets and documentation.

    There are also some measuring devices including among others Kill A Watt that you can plug a device into and see volts, amps, watts, and so forth.

    Ok, that might have been the obvious and easy part, now on to the next step.

    Often a name plate may give kva however not watts, or perhaps amps and volts however not kva or some other metric. This is where the various conversion formulas come into play.

    For example, if you know volts and amps, you can get watts, if you know kva along with watts, amps or volts, you can derive the others, or, if you have btus, you can watts, or if you know watts you can get btus and so forth.

    Btu/Hour = watts * 3.413
    Watts = Btu/Hour * 0.293
    Watts = Amps * Volts
    Volts = Watts / Amps
    Amps = Watts / Volts
    VoltAmps (Va) = Volts * amps
    KVA = (Volts * Amps) / 1000

    Here’s a link to some additional conversions and formulas that along with many others are found in my new book “The Green and Virtual Data Center” (CRC).

    www.thegreenandvirtualdatacenter.com/greenmetrics.html

    In “The Green and Virtual Data Center” (CRC). book, there is an entire chapter on metrics, where and how to find them, formulas, conversions as well as other related items including determining energy costs, carbon footprints, cooling and more across servers, storage, networks, facilities along with associated management tools.

    Ok, nuff said.

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    Happy Earth Day 2009

    Its that time of the year again, that’s right, earth day April 22 2009!

    If you frequent this blog, visit my websites (StorageIO, The Green and Virtual Data Center or Green Data Storage), track twitter, attended any of my speaking engagements, webcast, podcast, videos, radio interviews, seen press or media coverage, not to mention read any of my reports, articles, tips or books, it should not come as a surprise that I have something to say about Green IT and closing the Green Gap.

    The Green and Virtual Data Center (CRC)

    Common themes have included awareness of the green gap and how to address or close it including discussions around IT transformation, infrastructure optimization, boosting productivity and efficiency to support business sustainability among others. While its tempting to go on and on about different trends, topics, techniques, technologies and related themes with a back drop of earth day, lets leave it at this for now in the sake of brevity and efficiency.

    There’s plenty of existing content to be recycled and reused or seen and viewed for today including at some of the above links. However, rest assured, there is more content in the works pertaining to enabling Green IT with a focus around data center productivity, efficiency and sustainability, doing more with less, or, doing more with what is available.

    So happy earth day 2009, chat with you again soon.

    Ok, nuff said.

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

    MSP Business Journal Names Greg Schulz an Eco-tech Warrior

    In the April 10th, 2009 issue of the Minneapolis St. Paul (MSP) Business Journal, guess who was named one of three Eco-Tech Warriors? That’s right, yours truly (See the article here).

    Photo by Nancy Kuehn – MSP Business Journal

    What can I say, I’m flattered and appreciate the coverage. Besides seeing the finished article in the special report, the real fun was doing the photo shoot with the props including the heavy swords, those were not plastic (Hummm, Iron Chef?)!

    The photo shoot with the other two “Eco-Warriors” Tom Diamond of New Boundary Technology, and Travis Pakonen of Encompass Solutions along with Nancy Kuehn our photographer as well as the artistic and project management folks from MSP Business Journal were an absolute blast to work with.

    For those of you looking for policy management as well as energy management tools for desktops, workstations and PCs, checkout Tom Diamonds New Boundary Technologies and their solutions. Likewise, I hear good things from friends who have used the services of Travis Pakonen and N’Compass for their data center projects.

    Ok, nuff said.

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved