Microsoft Azure Elastic SAN from Cloud to On-Prem

What is Azure Elastic SAN

Azure Elastic SAN (AES) is a new (now GA) Azure Cloud native storage service that provides scalable, resilient, easy management with rapid provisioning, high performance, and cost-effective storage. AES (figure 1) supports many workloads and computing resources. Workloads that benefit from AES include tier 1 and tier 2, such as Mission Critical, Database, and VDI, among others traditionally relying upon consolidated Storage Area Network (SAN) shared storage.

Compute resources that can use AES, including bare metal (BM) physical machines (PM), virtual machines (VM), and containers, among others, using iSCSI for access. AES is accessible by computing resources and services within the Azure Cloud in various regions (check Azure Website for specific region availability) and from on-prem core and edge locations using iSCSI. The AES management experience and value proposition are similar to traditional hardware or software-defined shared SAN storage combined with Azure cloud-based management capabilities.

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 1 General Concept and Use of Azure Elastic SAN (AES)

While Microsoft Azure describes AES as a cloud-native storage solution, that does not mean that AES is only for containers and other cloud-native apps or DevOPS. Rather, AES has been built for and is native to the cloud (e.g., software-defined) that can be accessed by various compute and other resources (e.g., VMs, Containers, AKS, etc) using iSCSI.

How Azure Elastic SAN differs from other Azure Storage

AES differs from traditional Azure block storage (e.g., Azure Disks) in that the storage is independent of the host compute server (e.g., BM, PM, VM, containers). With AES, similar to a conventional software-defined or hardware-based shared SAN solution, storage is disaggregated from host servers for sharing and management using iSCSI for connectivity. By comparison, AES differs from traditional Azure VM-based storage typically associated with a given virtual machine in a DAS (Direct Attached Storage) type configuration. Likewise, similar to conventional on-prem environments, there is a mix of DAS and SAN, including some host servers that leverage both.

AES supports Azure VM, Azure Kubernetes Service (AKS), cloud-native, edge, and on-prem computing (BM, VM, etc.) via iSCSI. Support for Azure VMware Solution (AVS) is in preview; check the Microsoft Azure website for updates and new feature functionality enhancements.

Does this mean everything is moving to AES? Similar to traditional SANs, there are roles and needs for various storage options, including DAS, shared block, file, and object, among storage offerings. Likewise, Microsoft and Azure have expanded their storage offerings to include AES, DAS (azure disks, including Ultra, premium, and standard, among other options), append, block, and page blobs (objects), and files, including Azure file sync, tables, and Data Box, among other storage services.

Azure Elastic Storage Feature Highlights

AES feature highlights include, among others:

    • Management via Azure Portal and associated tools
    • Azure cloud-based shared scalable bock storage
    • Scalable capacity, low latency, and high performance (IOPs and throughput)
    • Space capacity-optimized without the need for data reduction
    • Accessible from within Azure cloud and from on-prem using iSCSI
    • Supports Azure compute  (VMs, Containers/AKS, Azure VMware Solution)
    • On-prem access via iSCSI from PM/BM, VM, and containers
    • Variable number of volumes and volume size per volume group
    • Flexible easy to use Azure cloud-based management
    • Encryption and network private endpoint security
    • Local (LRS) and Zone (ZRS) with replication resiliency
    • Volume snapshots and cluster support

Who is Azure Elastic SAN for

AES is for those who need cost-effective, shared, resilient, high capacity, high performance (IOPS, Bandwidth), and low latency block storage within Azure and from on-prem access. Others who can benefit from AES include those who need shared block storage for clustering app workloads, server and storage consolidation, and hybrid and migration. Another consideration is for those familiar with traditional hardware and software-defined SANs to facilitate hybrid and migration strategies.

How Azure Elastic SAN works

Azure Elastic SAN is a software-defined (cloud native if you prefer) block storage offering that presents a virtual SAN accessible within Azure Cloud and to on-prem core and edge locations currently via iSCSI. Using iSCSI, Azure VMs, Clusters, Containers, Azure VMware Solution among other compute and services, and on-prem BM/PM, VM, and containers, among others, can access AES storage volumes.

From the Azure Portal or associated tools (Azure CLI or PowerShell), create an AES SAN, giving it a 3 to 24-character name and specify storage capacity (base units with performance and any additional space capacity). Next, create a Volume Group, assigning it to a specific subscription and resource group (new or existing), then specify which Azure Region to use, type of redundancy (LRS or GRS), and Zone to use. LRS provides local redundancy, while ZRS provides enhanced zone resiliency, with highspeed synchronous resiliency without setting up multiple SAN systems and their associated replication configurations along with networking considerations (e.g., Azure takes care of that for you within their service).

The next step is to create volumes by specifying the volume name, volume group to use, volume size in GB, maximum IOPs, and bandwidth. Once you have made your AES volume group and volumes, you can create private endpoints, change security and access controls, and access the volumes from Azure or on-prem resources using iSCSI. Note that AES currently needs to be LRS (not ZRS) for clustered shared storage and that Key management includes using your keys with Azure key vault.

Using Azure Elastic SAN

Using AES is straightforward, and there are good easy to follow guides from Microsoft Azure, including the following:

The following images show what AES looks like from the Azure Portal, as well as from an Azure Windows Server VM and an onprem physical machine (e.g., Windows 10 laptop).

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 2 AES Azure Portal Big Picture

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 3 AES Volume Groups Portal View

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 4  AES Volumes Portal View

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 5 AES Volume Snapshot Views

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 6 AES Connected Volume Portal View

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 7 AES Volume iSCSI view from on-prem Windows Laptop

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 8 AES iSCSI Volume attached to Azure VM

Azure Elastic SAN Cost Pricing

The cost of AES is elastic, depending on whether you scale capacity with performance (e.g., base unit) or add more space capacity. If you need more performance, add base unit capacity, increasing IOPS, bandwidth, and space. In other words, base capacity includes storage space and performance, which you can grow in various increments. Remember that AES storage resources get shared across volumes within a volume group.

Azure Elastic SAN is billed hourly based on a monthly per-capacity base unit rate, with a minimum of 1TB  provisioned capacity with minimum performance (e.g., 5,000 IOPs, 200MBps bandwidth). The base unit rate varies by region and type of redundancy, aka resiliency. For example, at the time of this writing, looking at US East, the Local Redundant Storage (LRS) base unit rate is 1TB with 5,000 IOPs and 200MBps bandwidth, costing $81.92 per unit per month.

The above example breaks down to a rate of $0.08 per GB per month, or $0.000110 per GB per hour (assumes 730 hours per month). An example of simply adding storage capacity without increasing base unit (e.g., performance) for US East is $61.44 per month. That works out to $0.06 per GB per month (no additional provisioned IOPs or Bandwidth) or $0.000083 per GB per hour.

Note that there are extra fees for Zone Redundant Storage (ZRS). Learn more about Azure Elastic SAN pricing here, as well as via a cost calculator here.

Azure Elastic SAN Performance

Performance for Azure Elastic SAN includes IOPs, Bandwidth, and Latency. AES IOPs get increased in increments of 5,000 per base TB. Thus, an AES with a base of 10TB would have 50,000 IOPs distributed (shared) across all of its volumes (e.g., volumes are not restricted). For example, if the base TB is increased from 10TB to 20TB, then the IOPs would increase from 50,000 to 100,000 IOPs.

On the other hand, if the base capacity (10TB) is not increased, only the storage capacity would increase from 10TB to 20TB, and the AES would have more capacity but still only have the 50,000 IOPs. AES bandwidth throughput increased by 200MBps per TB. For example, a 5TB AES would have 5 x 200MBps (1,000 MBps) throughput bandwidth shared across the volume groups volumes.

Note that while the performance gets shared across volumes, individual volume performance is determined by its capacity with a maximum of 80,000 IOPs and up to 1,024 MBps. Thus, to reach 80,000 IOPS and 1,024 MBps, an AES volume would have to be at least 107GB in space capacity. Also, note that the aggregate performance of all volumes cannot exceed the total of the AES. If you need more performance, then create another AES.

Will all VMs or compute resources see performance improvements with AES? Traditional Azure Disks associated with VMs have per-disk performance resource limits, including IOPs and Bandwidth. Likewise, VMs have storage limits based on their instance type and size, including the number of disks (HDD or SSD), performance (IOPS and bandwidth), and the number of CPUs and memory.

What this means is that an AES volume could have more performance than what a given VM is limited to. Refer to your VM instance sizing and configuration to determine its IOP and bandwidth limits; if needed, explore changing the size of your VM instance to leverage the performance of Azure Elastic SAN storage.

Additional Resources Where to learn more

The following links are additional resources to learn about Microsoft Azure Elastic SAN and related data infrastructures and tradecraft topics.

Azure AKS Storage Concepts 
Azure Elastic SAN (AES) Documentation and Deployment Guides
Azure Elastic SAN Microsoft Blog
Azure Elastic SAN Overview
Azure Elastic SAN Performance topics
Azure Elastic SAN Pricing calculator
Azure Products by Region (see where AES is currently available)
Azure Storage Offerings 
Azure Virtual Machine (VM) sizes
Azure Virtual Machine (VM) types
Azure Elastic SAN General Pricing
Azure Storage redundancy 
Azure Service Level Agreements (SLA) 
StorageIOBlog.com Data Box Family 
StorageIOBlog.com Data Box Review
StorageIOBlog.com Data Box Test Drive 
StorageIOblog.com Microsoft Hyper-V Alive Enhanced with Win Server 2025
StorageIOblog.com If NVMe is the answer, what are the questions?
StorageIOblog.com NVMe Primer (or refresh)

Additional learning experiences along with common questions (and answers), are found in my Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

Azure Elastic SAN (AES) is a new and now generally available shared block storage offering that is accessible using iSCSI from within Azure Cloud and on-prem environments. Even with iSCSI, AES is relatively easy to set up and use for shared storage, mainly if you are used to or currently working with hardware or software-defined SAN storage solutions.

With NVMe over TCP fabrics gaining industry and customer traction, I’m hoping for Microsoft to adding that in the future. Currently, AES supports LRS and ZRS for redundancy, and an excellent future enhancement would be to add Geo Redundant Storage (GRS) capabilities for those who need it.

I like the option of elastic shared storage regarding performance, availability, capacity, and economic costs (PACE). Suppose you understand the value proposition of evolving from dedicated DAS to shared SAN (independent of the underlying fabric network); or are currently using some form of on-prem shared block storage. In that case, you will find AES familiar and easy to use. Granted, AES is not a solution for everything as there are roles for other block storage, including DAS such as Azure disks and VMs within Azure, along with on-prem DAS, as well as file, object, and blobs, tables, among others.

Wrap up

The notion that all cloud storage must be objects or blobs is tied those who only need, provide, or prefer those solutions. The reality is that everything is not the same. Thus, there is a need for various storage mediums, devices, tiers, access, and types of services. Microsoft and Azure have done an excellent job of providing. I like what Microsoft Azure is doing with Azure Elastic SAN.

Ok, nuff said, for now.

Cheers Gs

Greg Schulz – Nine time Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of UnlimitedIO LLC.

2018 Hot Popular New Trending Data Infrastructure Vendors to Watch

2018 Hot Popular New Trending Data Infrastructure Vendors to Watch

2018 Hot Popular New Trending Data Infrastructure Vendors to Watch

2018 Hot Popular New Trending Data Infrastructure Vendors to Watch

Here is the 2018 Hot Popular New Trending Data Infrastructure Vendors To Watch which includes startups as well as established vendors doing new things. This piece follows last year’s hot favorite trending data infrastructure vendors to watch list (here), as well as who will be top of storage world in a decade piece here.

2018 Hot Popular New Trending Data Infrastructure Vendors to Watch
Data Infrastructures Support Information Systems Applications and Their Data

Data Infrastructures are what exists inside physical data centers and cloud availability zones (AZ) that are defined to provide traditional, as well as cloud services. Cloud and legacy data infrastructures are combined by hardware (server, storage, I/O network), software along with management tools, policies, tradecraft techniques (skills), best practices to support applications and their data. There are different types of data infrastructures to meet the needs of various environments that range in size, scope, focus, application workloads, along with Performance and capacity.

Another important aspect of data infrastructures is that they exist to protect, preserve, secure and serve applications that transform data into information. This means that availability and Data Protection including archive, backup, business continuance (BC), business resiliency (BR), disaster recovery (DR), privacy and security among other related topics, technology, techniques, and trends are essential data infrastructure topics.

2018 Hot Popular New Trending Data Infrastructure Vendors to Watch
Different timelines of adoption and deployment for various audiences

2018 Hot Popular New Trending Data Infrastructure Vendors to Watch

Some of those on this year’s list are focused on different technology areas, while others on size or types of vendors, suppliers, service providers. Others on the list are focused on who is new, startup, evolving, or established which varies from if you are an industry insider or IT customer environment. Meanwhile others new and some are established doing new things, mix of some you may not have heard of for those who want or need to have the most current list to rattle off startups for industry adoption (and deployment), as well as what some established players are doing that might lead to customer deployment (and adoption).

AMD – The AMD EPYC family of processors is opening up new opportunities for AMD to challenge Intel among others for a more significant share of the general-purpose compute market in support of data center and data infrastructure markets. An advantage that AMD has and is playing to in the industry speeds feeds, slots and watts price performance game is the ability to support more memory and PCIe lanes per socket than others including Intel. Keep in mind that PCIe lanes will become even more critical as NVMe deployment increases, as well as the use of GPU’s and faster Ethernet among other devices. Name brand vendors including Dell and HPE among others have announced or are shipping AMD EPYC based processors.

Aperion – Cloud and managed service provider with diverse capabilities.

Amazon Web Services (AWS) – Continues to expand its footprint regarding regions, availability zones (AZ) also known as data centers in regions, as well as some services along with the breadth of those capabilities. AWS has recently announced a new Snowball Edge (SBE) which in the past has been a data migration appliance now enhanced with on-prem Elastic Cloud Compute (EC2) capabilities. What this means is that AWS can put on-prem compute capabilities as part of a storage appliance for short-term data movement, migration, conversion, importing of virtual machines and other items.

On the other hand, AWS can also be seen as using SBE as a first entry to placing equipment on-prem for hybrid clouds, or, converged infrastructure (CI), hyper-converged infrastructure (HCI), cloud in a box similar to Microsoft Azure Stack, as well as CI/HCI solutions from others.

My prediction near term, however, is that CI/HCI vendors will either ignore SBE, downplay it, create some new marketing on why it is not CI/HCI or fud about vendor lock-in. In other words, make some popcorn and sit back, watch the show.

Backblaze – Low-cost, high-capacity cloud storage for backup and archiving provider known for their quarterly disk drive reliability ratings (or failure) reports. They have been around for a while, have a good reputation among those who use their services for being a low-cost alternative to the larger providers.

Barefoot networks – Some of you may already be aware of or following Barefoot Networks, while others may not have heard of them outside of the networking space. They have some impressive capabilities, are new, you probably have not heard of them, thus an excellent addition to this list.

Cloudian – Continue to evolve and no longer just another object storage solution, Cloudian has been expanding via organic technology development, as well as acquisitions giving them a broad portfolio of software-defined storage and tiering from on-prem to the cloud, block, file and object access.

Cloudflare – Not exactly a startup, some of you may know or are using Cloudflare, while to others, their role as a web cache, DNS, and other service is transparent. I have been using Cloudflare on my various sites for over a year, and like the security, DNS, cache and analytics tools they provide as a customer.

Cobalt Iron – For some, they might be new, Software-defined Data protection and management is the name of the game over at Cobalt Iron which has been around a few years under the radar compared to more popular players. If you have or are involved with IBM Tivoli aka TSM based backup and data protection among others, check out the exciting capabilities that Cobalt can bring to the table.

CTERA – Having been around for a while, to some they might not be a startup, on the other hand, they may be new to others while offering new data and file management options to others.

DataCore – You might know of DataCore for their software-defined storage and past storage hypervisor activity. However, they have a new piece of software MaxParallel that boost server storage I/O performance. The software installs on your Windows Server instance (bare metal, VM, or cloud instance) and shows you performance with and without acceleration which you can dynamically turn off and off.

DataDirect Networks (DDN) – Recently acquired Lustre assets from Intel, now picking up the storage startup Tintri pieces after it ceased operations. What this means is that while beefing up their traditional High-Performance Compute (HPC) and Super Compute (SC) focus, DDN is also expanding into broader markets.

Dell Technologies – At its recent Dell Technology World event in Las Vegas during late April, early May 2018, several announcements were made, including some tied to emerging Gen-Z along with composability. More recently, Dell Technologies along with VMware announced business structure and finance changes. Changes include VMware declaring a dividend, Dell Technologies being its largest shareholder will use proceeds to fund restricting and debt service. Read more about VMware and Dell Technology business and financial changes here.

Densify – With a name like Densify no surprise they propose to drive densification and automation with AI-powered deep learning to optimize application resource use across on-prem software-defined virtual as well as cloud instances and containers.

FlureDB – If you are into databases (SQL or NoSQL), as well as Blockchain or distributed ledgers, check out FlureDB.

Innovium.com – When it comes to data infrastructure and data center networking, Innovium is probably not on your radar, however, keep an eye on these folks and their TERALYNX switching silicon to see where it ends up given their performance claims.

Komprise – File, and data management solutions including tiering along with partners such as IBM.

Kubernetes – A few years ago OpenStack, then Docker containers was the favorite and trending discussion topic, then Mesos and along comes Kubernetes. It’s safe to say, at least for now, Kubernetes is settling in as a preferred open source industry and customer defecto choice (I want to say standard, however, will hold off on that for now) for container and related orchestration management. Besides, do it yourself (DiY) leveraging open source, there are also managed AWS Elastic Kubernetes Service (EKS), Azure Kubernetes Services (AKS), Google Kubernetes Engine (GKE), and VMware Pivotal Container Service (PKS) among others. Besides Azure, Microsoft also includes Kubernetes support (along with Docker and Windows containers) as part of Windows Servers.

ManageEngine (part of Zoho) – Has data infrastructure monitoring technology called OpManager for keeping an eye on networking.

Marvel – Marvel may not be a familiar name (don’t confuse with comics), however, has been a critical component supplier to partners whose server or storage technology you may be familiar with or have yourself. Server, Storage, I/O Networking chip maker has closed on its acquisition of Cavium (who previously bought Qlogic among others). The combined company is well positioned as a key data infrastructure component supplier to various partners spanning servers, storage, I/O networking including Fibre Channel (FC), Ethernet, InfiniBand, NVMe (and NVMeoF) among others.

Mellanox – Known for their InfiniBand adapters, switches, and associated software, along with growing presence in RDMA over Converged Ethernet (RoCE), they are also well positioned for NVMe over Fabrics among other growth opportunities following recent boardroom updates, along with technology roadmap’s.

Microsoft – Azure public cloud continues to evolve similarly to AWS with more region locations, availability zone (AZ) data centers, as well as features and extensions. Microsoft also introduced about a year ago its hybrid on-prem CI/HCI cloud in a box platform appliance Azure Stack (read about my test drive here). However, there is more to Microsoft than just their current cloud first focus which means Windows (desktop), as well as Server, are also evolving. Currently, in public preview, Windows Server 2019 insiders build available to try out many new capabilities, some of which were covered in the recent free Microsoft Virtual Summit held in June. Key themes of Windows Server 2019 include security, performance, hybrid cloud, containers, software-defined storage and much more.

Microsemi – Has been around for a while is the combination of some vendors you may not have heard of or heard about in some time including PMC-Sierra (acquired Adaptec) and Vitesse among others. The reason I have Microsemi on this list is a combination of their acquisitions which might be an indicator of whom they pick up next. Another reason is that their components span data infrastructure topics from servers, storage, I/O and networking, PCIe and many more.

NVIDIA – GPU high performance compute and related compute offload technologies have been accessible for over a decade. More recently with new graphics and computational demands, GPU such as those NVIDIA are in need. Demand includes traditional graphics acceleration for physical and virtual, augmented and virtual reality, as well as cloud, along with compute-intensive analytics, AI, ML, DL along with other cognitive workloads.

NGDSystems (NGD) – Similar to what NVIDIA and other GPU vendors do for enabling compute offload for specific applications and workloads, NGD is working on a variation. That variation is to move offload compute capabilities for the server I/O storage-intensive workloads closer, in fact into storage system components such as SSDs and emerging SCMs and PMEMs. Unlike GPU based applications or workloads that tend to be more memory and compute intensive, NGD is positioned for applications that are the server I/O and storage intensive.

The premise of NGD is that they move the compute and application closer to where the data is, eliminating extra I/O, as well as reducing the amount of main server memory and compute cycles. If you are familiar with other server storage I/O offload engines and systems such as Oracle Exadata database appliance NGD is working at a tighter integration granularity. How it works is your application gets ported to run on the NGD storage platform which is SSD based and having a general-purpose processor. Your application is initiated from a host server, where it then runs on the NGD meaning I/Os are kept local to the storage system. Keep in mind that the best I/O is the one that you do not have to do, the second best is the one with the least resource or user impact.

Opvisor – Performance activity and capacity monitoring tools including for VMware environments.

Pavillon – Startup with an interesting NVMe based hardware appliance.

Quest – Having gained their independence as a free-standing company since divestiture from Dell Technologies (Dell had previously acquired Quest before EMC acquisition), Quest continues to make their data infrastructure related management tools available. Besides now being a standalone company again, keep an eye on Quest to see how they evolve their existing data protection and data infrastructure resource management tools portfolio via growth, acquisition, or, perhaps Quest will be on somebody else’s future growth list.

Retrospect – Far from being a startup, after gaining their independence from when EMC bought them several years ago, they have since continued to enhance their data protection technology. Disclosure, I have been a Retrospect customer since 2001 using it for on-site, as well as cloud data protection backups to the cloud.

Rubrik – Becoming more of a data infrastructure household name given their expanding technology portfolio and marketing efforts. More commonly known in smaller customer environments, as well as broadly within industry insider circles, Rubrik has potential with continued technology evolution to move further upmarket similar to how Commvault did back in the late 90s, just saying.

SkyScale – Cloud service provider that offers dedicated bare metal, as well as private, hybrid cloud instances along with GPU to support AI, ML, DL and other high performance,  compute workloads.

Snowflake – The name does not describe well what they do or who they are. However, they have an interesting cloud data warehouse (old school) large-scale data lakes (new school) technologies.

Strongbox – Not to be confused with technology such as those from Iosafe (e.g., waterproof, fireproof), Strongbox is a data protection storage solution for storing archives, backups, BC/BR/DR data, as well as cloud tiering. For those who are into buzzword bingo, think cloud tiering, object, cold storage among others. The technology evolved out of Crossroads and with David Cerf at the helm has branched out into a private company with keeping an eye on.

Storbyte – With longtime industry insider sales and marketing pro-Diamond Lauffin (formerly Nexsan) involved as Chief Evangelist, this is worth keeping an eye on and could be entertaining as well as exciting. In some ways it could be seen as a bit of Nexsan meets NVme meets NAND Flash meets cost-effective value storage dejavu play.

Talon – Enterprise storage and management solutions for file sharing across organizations, ROBO and cloud environments.

Ubitqui – Also known as UBNT is a data infrastructure networking vendor whose technologies span from WiFi access points (AP), high-performance antennas, routing, switching and related hardware, along with software solutions. UBNT is not as well-known in more larger environments as a Cisco or others. However, they are making a name for themselves moving from the edge to the core. That is, working from the edge with AP and routers, firewalls, gateways for the SMB, ROBO, SOHO as well as consumer (I have several of their APs, switches, routers and high-performance antennas along with management software), these technologies are also finding their way into larger environments. 

My first use of UBNT was several years ago when I needed to get an IP network connection to a remote building separated by several hundred yards of forest. The solution I found was to get a pair of UBNT NANO Apps, put them in secure bridge mode; now I have a high-performance WiFi service through a forest of trees. Since then have replaced an older Cisco router, several Cisco, and other APs, as well as the phased migration of switches.

UpdraftPlus– If you have a WordPress web or blog site, you should also have a UpdraftPlus plugin (go premium btw) for data protection. I have been using Updraft for several years on my various sites to backup and protect the MySQL databases and all other content. For those of you who are familiar with Spanning (e.g., was acquired by EMC then divested by Dell) and what they do for cloud applications, UpdraftPlus does similar for lower-end, smaller cloud-based applications.

Vexata – Startup scale out NVMe storage solution.

VMware – Expanding their cloud foundation from on-prem to in and on clouds including AWS among others. Data Infrastructure focus continues to expand from core to edge, server, storage, I/O, networking. With recent Dell Technologies and VMware declaring a dividend, should be interesting to see what lies ahead for both entities.

What About Those Not Mentioned?

By the way, if you were wondering about or why others are not in the above list, simple, check out last year’s list which includes Apcera, Blue Medora, Broadcom, Chelsio, Commvault, Compuverde, Datadog, Datrium, Docker, E8 Storage, Elastifile, Enmotus, Everspin, Excelero, Hedvig, Huawei, Intel, Kubernetes, Liqid, Maxta, Micron, Minio, NetApp, Neuvector, Noobaa, NVIDA, Pivot3, Pluribus Networks, Portwork, Rozo Systems, ScaleMP, Storpool, Stratoscale, SUSE Technology, Tidalscale, Turbonomic, Ubuntu, Veeam, Virtuozzo and WekaIO. Note that many of the above have expanded their capabilities in the past year and remain, or have become even more interesting to watch, while some might be on the future where are they now list sometime down the road. View additional vendors and service providers via our industry links and resources page here.

What About New, Emerging, Trending and Trendy Technologies

Bitcoin and Blockchain storage startups, some of which claim or would like to replace cloud storage taking on giants such as AWS S3 in the not so distant future have been popping up lately. Some of these have good and exciting stories if they can deliver on the hype along with the premise. A couple of names to drop include among others Filecoin, Maidsafe, Sia, Storj along with services from AWS, Azure, Google and a long list of others.

Besides Blockchain distributed ledgers, other technologies and trends to keep an eye on include compute processes from ARM to SoC, GPU, FPGA, ASIC for offload and specialized processing. GPU, ASIC, and FPGA are appearing in new deployments across cloud providers as they look to offload processing from their general servers to derive total effective productivity out of them. In other words, innovating by offloading to boost their effective return on investment (old ROI), as well as increase their return on innovation (the new ROI).

Other data infrastructure server I/O which also ties into storage and network trends to watch include Gen-Z that some may claim as the successor to PCIe, Ethernet, InfiniBand among others (hint, get ready for a new round of “something is dead” hype). Near-term the objective of Gen-Z is to coexist, complement PCIe, Ethernet, CPU to memory interconnect, while enabling more granular allocation of data infrastructure resources (e.g., composability). Besides watching who is part of the Gen-Z movement, keep an eye on who is not part of it yet, specifically Intel.

NVMe and its many variations from a server internal to networked NVMe over Fabrics (NVMeoF) along with its derivatives continue to gain both industry adoption, as well as customer deployment. There are some early NVMeoF based server storage deployments (along with marketing dollars). However, the server side NVMe customer adoption is where the dollars are moving to the vendors. In other words, it’s still early in the bigger broader NVMe and NVMeoF game.

Where to learn more

Learn more about data infrastructures and related topics via the following links:

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

Let’s see how those mentioned last year as well as this year, along with some new and emerging vendors, service providers who did not get said end up next year, as well as the years after that.

2018 Hot Popular New Trending Data Infrastructure Vendors to Watch
Different timelines of adoption and deployment for various audiences

Keep in mind that there is a difference between industry adoption and customer deployment, granted they are related. Likewise let’s see who will be at the top in three, five and ten years, which means some of the current top or favorite vendors may or may not be on the list, same with some of the established vendors. Meanwhile, check out the 2018 Hot Popular New Trending Data Infrastructure Vendors to Watch.

Ok, nuff said, for now.

Cheers Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.