March 2013 Server and StorageIO Update Newsletter

StorageIO News Letter Image
March 2013 News letter

Welcome to the March 2013 edition of the StorageIO Update news letter including a new format and added content.

You can get access to this news letter via various social media venues (some are shown below) in addition to StorageIO web sites and subscriptions.

Click on the following links to view the March 2013 edition as (HTML sent via Email) version, or PDF versions.

Visit the news letter page to view previous editions of the StorageIO Update.

You can subscribe to the news letter by clicking here.

Enjoy this edition of the StorageIO Update news letter, let me know your comments and feedback.

Nuff said for now

Cheers
Gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Cloud conversations: AWS EBS, Glacier and S3 overview (Part III)

Storage I/O industry trends image

Amazon Web Services (AWS) recently added EBS Optimized support for enhanced bandwidth EC2 instances (read more here). This industry trends and perspective cloud conversation is the third (tying the posts together) in a three-part series companion to the AWS EBS optimized post found here. Part I is here (closer look at EBS) and part II is here (closer look at S3).

AWS image via Amazon.com

Cloud storage and object storage I/O figure
Cloud and object storage access example via Cloud and Virtual Data Storage Networking

AWS cloud storage gateway

In 2012 AWS released their Storage Gateway that you can use and try for free here using either an EC2 Amazon Machine Instance (AMI), or deployed locally on a hypervisor such as VMware vSphere/ESXi. About a year ago I did a storage gateway post (First, second and third impressions) when it was first released. I will do a new post soon following up with my later impressions and experiences of having used it recently. For now, my quick (fourth impressions can be found here in this AWS Marketplace review). In general, the gateway is an AWS alternative to using third product gateway, appliances of software tools for accessing AWS storage.

AWS Storage Gateway
Image courtesy of www.amazon.com

When deployed locally on a VM, the storage gateway communicates using the AWS API’s back to the S3 and EBS (depending on how configured) storage services. Locally, the storage gateway presents an iSCSI block access method for Windows or other servers to use.

There are two modes with one being Gateway-Stored and the other Gateway-Cached. Gateway-Stored uses your primary storage mapped to the storage gateway as primary storage and asynchronous (time delayed) snapshots (user defined) to S3 via EBS volumes. This is a handy way to have local storage for low latency access, yet use AWS for HA, BC and DR, along with a means for doing migration into or out of AWS. Gateway-cache mode places primary storage in AWS S3 with a local cached copy to reduce network overhead.

Storage I/O industry trends image

When I tried the gateway a month or so ago, using both modes, I was not able to view any of my data using standard S3 tools. For example if I looked in my S3 buckets the objects do not appear, something that AWS said had to do with where and how those buckets and objects are managed. Otoh, I was able to see EBS snapshots for the gateway-stored mode including using that as a means of moving data between local and AWS EC2 instances. Note that regardless of the AWS storage gateway mode, some local cache storage is needed, and likewise some EBS volumes will be needed depending on what mode is used.

When I used the gateway, a Windows Server mounted the iSCSI volume presented by the storage gateway and in turn served that to other systems as a shared folder. Thus while having block such as iSCSI is nice, a NAS (NFS or CIFS) presentation and access mode would also be useful. However more on the storage gateway in a future post. Also note that beyond the free trial period (you may have to pay for storage being used) for using the gateway, there are also fees for S3 and EBS storage volumes use.

AWS image via Amazon.com

What about Glacier?

Shortly after its release last year, I did this piece about Glacier and have since been doing some testing proof of concepts with it.

I like Glacier and its prospects for doing some various things, particular for inactive data including deep archives that will seldom if every be accessed, yet need to be retained. The business value proposition of Glacier is that it has a very high durability and low-cost assuming that you do not need to frequently access your data, and when you do, that you can wait 3 to 5 hours before retrieving it from your S3 buckets.

Access to Glacier is via API or AWS console so getting things into and out of it can be a challenge. For example I wanted to see if I could use AWS storage gateway to more easily bulk move things into Glacier via S3, however no luck, or at least today. Speaking of S3, by setting your policies you determine when objects get moved into Glacier as well as how long they will stay there, you can read more about Glacier here and via AWS here.

Storage I/O industry trends image

How much do these AWS services cost?

Fees vary depending on which region is selected, amount of space capacity, level or durability and availability, performance along with type of service. S3 pricing can be found here including a free trial tier along with optional fees. Other AWS fees for EC2 can be found here, EBS pricing here, Glacier here, and storage gateway costs are located here.

Note that there is a myth that cloud vendors have hidden fees which may be the case for some, however so far I have not seen that to be the case with AWS. However, as a consumer, designer or architect, doing your homework and looking at the above links among others you can be ready and understand the various fees and options. Hence like procuring traditional hardware, software or services, do your due diligence and be an informed shopper.

Amazon Web Services (AWS) image

Some more service cost notes include:

Note that with S3 Standard and RRS objects there is not a charge for deletion of objects, however there is a pro-rated charge per GByte of Glacier objects removed prior to 90 days. Glacier also allows up to 5% of your average monthly storage usage (pro-rated daily) to be restored with no charge, other fees apply for restoring larger amounts in a given period. Thus if you are planning on accessing and using data, analyze what your activity and usage will be as part of calculating your costs with Glacier. Read more about Glacier here.

Standard EBS volumes are changed by the amount of storage space capacity you provision in GB until released. For EBS snapshot copies there are fees for transferring data across regions, once moved, the rates of the new region apply for the snapshot.

Amazon Web Services (AWS) image

As with Standard volumes, volume storage for Provisioned IOPS volumes is charged by the amount you provision in GB per month. With Provisioned IOPS volumes, you are also charged by the amount you provision in IOPS pro-rated as a percentage of days you have it in use for the month.

Thus important for cloud storage planning to know not only your space requirements, also IOP’s, bandwidth, and level of availability as well as durability. so for Standard volumes, you will likely see a lower number of I/O requests on your bill than is seen by your application unless you sync all of your I/Os to disk. Thus pay attention to what your needs are in terms of availability (accessibility), durability (resiliency or survivability), space capacity, and performance.

Leverage AWS CloudWatch tools and API’s to monitoring that matter for timely insight and situational awareness into how EBS, EC2, S3, Glacier, Storage Gateway and other services are being used (or costing you). Also visit the AWS service health status dashboard to gain insight into how things are running to help gain confidence with cloud services and solutions.

Storage I/O industry trends image

When it comes to Cloud, Virtualization, Data and Storage Networking along with AWS among other services, tools and technologies including object storage, we are just scratching the surface here.

Hopefully this helps to fill in some gaps giving more information addressing questions, along with generating new ones to prepare for your journey with clouds. After all, don’t be scared of clouds. Be prepared, do your homework, identify your concerns and then address those to gain cloud confidence.

Additional reading and related items:

  • Cloud conversations: AWS EBS optimized instances
  • Cloud conversations: AWS EBS, Glacier and S3 overview (Part I)
  • Cloud conversations: AWS EBS, Glacier and S3 overview (Part II)
  • Cloud conversations: AWS Government Cloud (GovCloud)
  • Cloud conversations: Gaining cloud confidence from insights into AWS outages
  • AWS (Amazon) storage gateway, first, second and third impressions
  • Cloud conversations: Public, Private, Hybrid what about Community Clouds?
  • Amazon cloud storage options enhanced with Glacier
  • Amazon Web Services (AWS) and the NetFlix Fix?
  • Cloud conversation, Thanks Gartner for saying what has been said
  • Cloud and Virtual Data Storage Networking via Amazon.com
  • Seven Databases in Seven Weeks
  • www.objectstoragecenter.com
  • Ok, nuff said (for now).

    Cheers
    Gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    Cloud conversations: AWS EBS, Glacier and S3 overview (Part II S3)

    Storage I/O industry trends image

    Amazon Web Services (AWS) recently added EBS Optimized support for enhanced bandwidth EC2 instances (read more here). This industry trends and perspective cloud conversation is the second (looking at S3 object storage) in a three-part series companion to the AWS EBS optimized post found here. Part I is here (closer look at EBS) and part III is here (tying it all together).

    AWS image via Amazon.com

    For those not familiar, Simple Storage Services (S3), Glacier and Elastic Block Storage (EBS) are part of the AWS cloud storage portfolio of services. With S3, you specify a region where a bucket is created that will contain objects that can be written, read, listed and deleted. You can create multiple buckets in a region with unlimited number of objects ranging from 1 byte to 5 Tbytes in size per bucket. Each object has a unique, user or developer assigned access key. In addition to indicating which AWS region, S3 buckets and objects are provisioned using different levels of availability, durability, SLA’s and costs (view S3 SLA’s here).

    AWS S3 example image

    Cost will vary depending on the AWS region being used, along if Standard or Reduced Redundancy Storage (RSS) selected. Standard S3 storage is designed with 99.999999999% durability (how many copies exists) and 99.99% availability (how often can it be accessed) on an annual basis capable of two data centers becoming un-available.

    As its name implies, for a lower fee and level of durability, S3 RRS has an annual durability of 99.999% and availability of 99.99% capable of a single data center loss. In the following figure durability is how many copies of data exist spread across different servers and storage systems in various data centers and availability zones.

    cloud storage and object storage across availability zone image

    What would you put in RRS vs. Standard S3 storage?

    Items that need some level of persistence that can be refreshed, recreated or restored from some other place or pool of storage such as thumbnails or static content or read caches. Other items would be those that you could tolerant some downtime while waiting for data to be restored, recovered or rebuilt from elsewhere in exchange for a lower cost.

    Different AWS regions can be chosen for regulatory compliance requirements, performance, SLA’s, cost and redundancy with authentication mechanisms including encryption (SSL and HTTPS) to make sure data is kept secure. Various rights and access can be assigned to objects including making them public or private. In addition to logical data protection (security, identity and access management (IAM), encryption, access control) policies also apply to determine level of durability and availability or accessibility of buckets and objects. Other attributes of buckets and objects include life-cycle management polices and logging of activity to the items. Also part of the objects are meta data containing information about the data being stored shown in a generic example below.

    Cloud storage and object storage spread across availability zones figure

    Access to objects is via standard REST and SOAP interfaces with an Application Programming Interface (API). For example default access is via HTTP along with a Bit Torrent interface with optional support via various gateways, appliances and software tools.

    Cloud storage and object storage IO figure
    Example cloud and object storage access

    The above figure via Cloud and Virtual Data Storage Networking (CRC Press) shows a generic example applicable to AWS services including S3 being accessed in different ways. For example I access my S3 buckets and objects via Jungle Disk (one of the tools I use for data protection) that can also access my Rackspace Cloudfiles data. In the following figure there are examples of some of my S3 buckets and objects used by different applications and tools that I have in various AWS regions.

    Image of AWS S3 usage
    AWS S3 buckets and objects in different regions

    Note that I sometimes use other AWS regions outside the US for testing purposes, for compliance purpose my production, business or personal data is only in the US regions.

    The following figure is a generic example of how cloud and object storage are accessed using different tools, hardware, software and API’s along with gateways. AWS is an example of what is shown in the following figure as a Cloud Service and S3, EBS or Glacier as cloud storage. Common example API commands are also shown which will vary by different vendors, products or solution definitions or implementations. While Amazon S3 API which is REST HTTP based has become an industry de facto standard, there are other API’s including CDMI (Cloud Data Management Interface) developed by SNIA which has gained ISO accreditation.

    Cloud storage and object storage I/O figure
    Cloud and object storage access example via Cloud and Virtual Data Storage Networking

    In addition to using Jungle Disk which manages my AWS keys and objects that it creates, I can also access my S3 objects via the AWS management console and web tools, also via third-party tools including Cyberduck.

    Cyberduck tool.

    Additional reading and related items:

    Cloud conversations: AWS EBS, Glacier and S3 overview (Part I)

    Storage I/O industry trends image

    Amazon Web Services (AWS) recently added EBS Optimized support for enhanced bandwidth EC2 instances (read more here). This industry trends and perspective cloud conversation is the first (looking at EBS) in a three-part series companion to the AWS EBS optimized post found here. Part II is here (closer look at S3) and part III is here (tying it all together).

    AWS image via Amazon.com

    For those not familiar, Simple Storage Services (S3), Glacier and Elastic Block Storage (EBS) are part of the AWS cloud storage portfolio of services. There are several other storage and data related service for little data database (SQL and NoSql based) other offerings include compute, data management, application and networking for different needs shown in the following image.

    AWS services console image
    AWS Services Console via www.amazon.com

    Simple Storage Service (S3) is commonly used in the context of cloud storage and object storage accessed via its S3 API. S3 can be used externally from outside AWS as well as within or via other AWS services. For example with Elastic Cloud Compute (EC2) including via the Amazon Storage Gateway (read more here and about EC2 here). Glacier is the AWS cold or deep storage service for inactive data and is a companion to S3 that you can read more about here.

    S3 is well suited for both big and little data repositories of objects ranging from backup to archive to active video images and much more. In fact if you are using some of the different AaaS or SaaS services including backup or file and video sharing, those may be using S3 as its back-end storage repository. For example NetFlix leverages various AWS capabilities as part of its data and applications infrastructure (read more here).

    AWS basics

    AWS consists of multiple regions that contain multiple availability zones where data and applications are supported from.

    yyyy

    Note that objects stored in a region never leave that region, such as data stored in the EU west never leave Ireland, or data in the US East never leaves Virginia.

    AWS does support the ability for user controlled movement of data between regions for business continuance (BC), high availability (HA) and disaster recovery (DR). Read more here at the AWS Security and Compliance site and in this AWS white paper.

    What about EBS?

    That brings us to Elastic Block Storage (EBS) that is used by EC2 (read more about EC2 and instances here) as storage for cloud and virtual machines or compute instances. In addition to using S3 as a persistent backing store or target for holding snapshots EBS can be thought of as primary storage. You can provision and allocate EBS volumes in the different data centers of the various AWS availability zones. As part of allocating your EBS volume you indicate the type (standard) or provisioned IOP’s or the new EBS Optimized volumes. EBS Optimized volumes enables instances that support the feature to have better IO performance to storage.

    The following image shows an EC2 instance with EBS volumes (standard and provisioned IOPS’s) along with S3 volumes and snapshots. In the following example the instance and volumes are being served via the AWS US East region (Northern Virginia) using availability zone US East 1a. In addition, EBS optimized volumes are shown being used in the example to increase bandwidth or throughput performance between storage and the compute instance.

    xxxxxxx

    Using the above as a basis, you can build on that to leverage multiple availability zones or regions for HA, BC and DR combined with application, network load balancing and other capabilities. Note that EBS volumes are protected for durability by being spread across different servers and storage in an availability zone. Additional protection is provided by using snapshots combined with S3. Additional BC and DR or HA protection can be accomplished by replicating data across availability zones.

    SQL applications using cloud and object storage services

    The above is an example of tying various components and services together. For example using different AWS availability zones, instances, EBS, S3 and other tools including those from third parties. Here is a link to a free chapter download from Cloud and Virtual Data Storage Networking (CRC Press) pertaining to data protection, BC and DR (available at Amazon here and Kindle here). In addition here is an AWS white paper on using their services for BC, HA and DR.

    EBS volumes are created ranging in size from 1GByte to 1Tbyte in space capacity with multiple volumes being mapped or attached to an EC2 instances. EBS volumes appear as a virtual disk drive for block storage. From the EC2 instance and guest operating system you can mount, format and use the EBS volumes as any other block disk drive with your favorite tools and file systems. In addition to space capacity, EBS volumes are also provisioned with standard IO (e.g. disk based) performance or high performance Provisioned IOPS (e.g. SSD) for thousands of IOPS per instance. AWS states that a standard EBS volume should support about 100 IOP’s on average, with about 2,000 IOPS for a provisioned IOP volume. Need more than 2,000 IOPS, then the AWS recommendation is to use multiple IOP provisioned volumes with data spread across those. Following is an example of AWS EBS volumes seen via the EC2 management interface.

    Image of mapping AWS EBS to ECS instance
    AWS EC2 and EBS configuration status

    Note that there is a 10 to 1 ratio of space capacity to IOP’s being provisioned. If you try to play a game of 1,000 IOPS provisioned on a 10GByte EBS volume to keep your costs down you are out of luck. Thus to get 1,000 IOPS’s you would need to allocate at least a 100GByte EBS volume of which you will be billed for the actual space used on a monthly pro-rated basis. The following is an example of provisioning an AWS EBS volume using provisioned IOPS in the US East region in the 1a availability zone.

    Image of AWS EBS provisioned IOPs
    Provisioning IOPS with EBS volume

    Standard and Provisioned IOPS EBS volumes

    Standard EBS volumes are good for boot images or other application usage that are not IO performance intensive. For database or other active applications where more performance is needed, then EBS Provisioned IOPS volumes are your option. Note that the provisioned IOP rate is persistent for the specific volume during its life. Thus if you set it and forget it including not using it without turning it off, you will be billed for provisioning it.

    Additional reading and related items:

  • Cloud conversations: AWS EBS optimized instances
  • Cloud conversations: AWS EBS, Glacier and S3 overview (Part II S3)
  • Cloud conversations: AWS EBS, Glacier and S3 overview (Part III)
  • Cloud conversations: AWS Government Cloud (GovCloud)
  • Cloud conversations: Gaining cloud confidence from insights into AWS outages
  • AWS (Amazon) storage gateway, first, second and third impressions
  • Cloud conversations: Public, Private, Hybrid what about Community Clouds?
  • Amazon cloud storage options enhanced with Glacier
  • Amazon Web Services (AWS) and the NetFlix Fix?
  • Cloud conversation, Thanks Gartner for saying what has been said
  • Cloud and Virtual Data Storage Networking via Amazon.com
  • Seven Databases in Seven Weeks
  • www.objectstoragecenter.com
  • Continue reading part II (closer look at S3) here and part III (tying it all together) here.

    Ok, nuff said (for now)

    Cheers
    Gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    Cloud conversations: AWS EBS Optimized Instances

    Storage I/O industry trends image

    Amazon Web Services (AWS) recently announced global availability of Elastic Block Storage (EBS) optimized support for four extra Elastic Cloud Computing (EC2) instance types. The support enables optimized performance between standard and provisioned IOP EBS volumes and EC2 instances to meet different bandwidth or throughput needs (learn more about AWS EBS, EC2, S3 and Glacier here).

    AWS image via Amazon.com

    The four EBS optimized instance types are m3.xlarge, m3.2xlarge, m2.2xlarge and c1.xlarge for dedicated bandwidth or throughput between the EC2 instances and EBS volumes. The performance or bandwidth ranges from 500 Mbits (500 / 8 = 62.5 MBytes) per second, to 1,000 Mbits (1,000 / 8 = 125MBytes) per second depending on the type of instance. As a refresher, EC2 instances (why by time you read this could change) vary in size and functionality with different amounts of EC2 Unit of Compute (ECU), number of virtual cores, amount of storage space included, 32 or 64 bit, storage and networking IO performance, and EBS Optimized or not. In addition to instances, different operating system images can be installed using those licensed from AWS such as various Windows and Unix or supply your own.

    Image of EC2 instance

    There are also different generations of instances such as M1 (first generation where one ECU = 1.0 to 1.2 Ghz of a 2007 era Opteron or Xeon processor), M3 (second generation with faster processors) along with Micro low-cost options. There are also other optimized instances including high or large amounts of memory, high CPU or compute processing, clustered compute, high memory clustered, clustered GPU (e.g. using Nivida Tesla GPUs), high IO and high storage space capacity needs.

    Here is the announcement from AWS:

    Dear Amazon Web Services Customer,

    We are delighted to announce the global availability of EBS-optimized support for four additional instance types: m3.xlarge, m3.2xlarge, m2.2xlarge, and c1.xlarge. EBS-optimized instances deliver dedicated throughput between Amazon EC2 and Amazon EBS, with options between 500 Megabits per second and 1,000 Megabits per second depending on the instance type used. The dedicated throughput minimizes contention between EBS I/O and other traffic from your Amazon EC2 instance, providing the best performance for your EBS volumes.

    EBS-optimized instances are designed for use with both Standard and Provisioned IOPS EBS volumes. Standard volumes deliver 100 IOPS on average with a best effort ability to burst to hundreds of IOPS, making them well-suited for workloads with moderate and bursty I/O needs. When attached to an EBS-optimized instance, Provisioned IOPS volumes are designed to consistently deliver up to 2000 IOPS from a single volume, making them ideal for I/O intensive workloads such as databases. You can attach multiple Amazon EBS volumes to a single instance and stripe your data across them for increased I/O and throughput performance.

    Amazon EBS-optimized support is now available for m3.xlarge, m3.2xlarge, m2.2xlarge, m2.4xlarge, m1.large, m1.xlarge, and c1.xlarge instance types, and is currently supported in the US-East (N. Virginia), US-West (N. California), US-West (Oregon), EU-West (Ireland), Asia Pacific (Singapore), Asia Pacific (Japan), Asia Pacific (Sydney), and South America (São Paulo) Regions.

    You can learn more by visiting the Amazon EC2 detail page.

    Sincerely,

    The Amazon EC2 Team

    What this means is that AWS is enabling customers to size their compute instances and storage volumes with more flexibility to meet different needs. For example, EC2 instances with various compute processing capabilities, amount of memory, network and storage I/O performance to volumes. In addition, storage volumes based on different space capacity size, standard or provisioned IOP’s, bandwidth or throughput performance between the instance and volume, along with data protection such as snapshots.

    This means that the cost per space capacity of an EBS volume varies based on which AWS availability zone it is in, standard (lower IOP performance) or provisioned IOP’s (faster), along with instance type. In other words, cloud storage is not just about the cost per GByte, it’s also about the cost for IOPS, bandwidth to use it, where it is located (e.g. with AWS which Availability Zone), type of service, level of availability and durability among other attributes.

    Additional reading and related items:

    Continue reading part I (closer look at EBS) here, part II (closer look at S3) here and part III (tying it all together) here.

    Ok, nuff said (for now)

    Cheers
    Gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    Welcome to the Cloud Bulk Object Storage Resources Center

    Updated 8/31/19

    Cloud Bulk Big Data Software Defined Object Storage Resources

    server storage I/O trends Object Storage resources

    Welcome to the Cloud, Big Data, Software Defined, Bulk and Object Storage Resources Center Page objectstoragecenter.com.

    This object storage resources, along with software defined, cloud, bulk, and scale-out storage page is part of the server StorageIOblog microsite collection of resources. Software-defined, Bulk, Cloud and Object Storage exist to support expanding and diverse application data demands.

    Other related resources include:

  • Software Defined, Cloud, Bulk and Object Storage Fundamentals
  • Software Defined Data Infrastructure Essentials book (CRC Press)
  • Cloud, Software Defined, Scale-Out, Object Storage News Trends
  •  Object storage SDDC SDDI
    Via Software Defined Data Infrastructure Essentials (CRC Press 2017)

    Bulk, Cloud, Object Storage Solutions and Services

    There are various types of cloud, bulk, and object storage including public services such as Amazon Web Services (AWS) Simple Storage Service (S3), Backblaze, Google, Microsoft Azure, IBM Softlayer, Rackspace among many others. There are also solutions for hybrid and private deployment from Cisco, Cloudian, CTERA, Cray, DDN, Dell EMC, Elastifile, Fujitsu, Vantera/HDS, HPE, Hedvig, Huawei, IBM, NetApp, Noobaa, OpenIO, OpenStack, Quantum, Rackspace, Rozo, Scality, Spectra, Storpool, StorageCraft, Suse, Swift, Virtuozzo, WekaIO, WD, among many others.

    Bulk Cloud Object storage SDDC SDDI
    Via Software Defined Data Infrastructure Essentials (CRC Press 2017)

    Cloud products and services among others, along with associated data infrastructures including object storage, file systems, repositories and access methods are at the center of bulk, big data, big bandwidth and little data initiatives on a public, private, hybrid and community basis. After all, not everything is the same in cloud, virtual and traditional data centers or information factories from active data to in-active deep digital archiving.

    Object Context Matters

    Before discussing Object Storage lets take a step back and look at some context that can clarify some confusion around the term object. The word object has many different meanings and context, both inside of the IT world as well as outside. Context matters with the term object such as a verb being a thing that can be seen or touched as well as a person or thing of action or feeling directed towards.

    Besides a person, place or physical thing, an object can be a software-defined data structure that describes something. For example, a database record describing somebody’s contact or banking information, or a file descriptor with name, index ID, date and time stamps, permissions and access control lists along with other attributes or metadata. Another example is an object or blob stored in a cloud or object storage system repository, as well as an item in a hypervisor, operating system, container image or other application.

    Besides being a verb, an object can also be a noun such as disapproval or disagreement with something or someone. From an IT context perspective, an object can also refer to a programming method (e.g. object-oriented programming [oop], or Java [among other environments] objects and classes) and systems development in addition to describing entities with data structures.

    In other words, a data structure describes an object that can be a simple variable, constant, complex descriptor of something being processed by a program, as well as a function or unit of work. There are also objects unique or with context to specific environments besides Java or databases, operating systems, hypervisors, file systems, cloud and other things.

    The Need For Bulk, Cloud and Object Storage

    There is no such thing as an information recession with more data being generated, moved, processed, stored, preserved and served, granted there are economic realities. Likewise as a society our dependence on information being available for work or entertainment, from medical healthcare to social media and all points in between continues to increase (check out the Human Face of Big Data).

    In addition, people and data are living longer, as well as getting larger (hence little data, big data and very big data). Cloud products and services along with associated object storage, file systems, repositories and access methods are at the center of big data, big bandwidth and little data initiatives on a public, private, hybrid and community basis. After all, not everything is the same in cloud, virtual and traditional data centers or information factories from active data to in-active deep digital archiving.

    Click here to view (and hear) more content including cloud and object storage fundamentals

    Click here to view software defined, bulk, cloud and object storage trend news

    cloud object storage

    Where to learn more

    The following resources provide additional information about big data, bulk, software defined, cloud and object storage.



    Via InfoStor: Object Storage Is In Your Future
    Via FujiFilm IT Summit: Software Defined Data Infrastructures (SDDI) and Hybrid Clouds
    Via MultiChannel: After ditching cloud business, Verizon inks Virtual Network Services deal with Amazon
    Via MultiChannel: Verizon Digital Media Services now offers integrated Microsoft Azure Storage
    Via StorageIOblog: AWS EFS Elastic File System (Cloud NAS) First Preview Look
    Via InfoStor: Cloud Storage Concerns, Considerations and Trends
    Via InfoStor: Object Storage Is In Your Future
    Via Server StorageIO: April 2015 Newsletter Focus on Cloud and Object storage
    Via StorageIOblog: AWS S3 Cross Region Replication storage enhancements
    Cloud conversations: AWS EBS, Glacier and S3 overview
    AWS (Amazon) storage gateway, first, second and third impressions
    Cloud and Virtual Data Storage Networking (CRC Book)

    View more news, trends and related cloud object storage activity here.

    Videos and podcasts at storageio.tv also available via Applie iTunes.

    Human Face of Big Data
    Human Face of Big Data (Book review)

    Seven Databases in Seven weeks Seven Databases in Seven Weeks (Book review)

    Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

    Software Defined Data Infrastructure Essentials Book SDDC

    What This All Means

    Object and cloud storage are in your future, the questions are when, where, with what and how among others.

    Watch for more content and links to be added here soon to this object storage center page including posts, presentations, pod casts, polls, perspectives along with services and product solutions profiles.

    Ok, nuff said, for now.

    Gs

    Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

    Some things keep going around, Seagate ships 2 Billion HDD’s

    Seagate

    Seagate (@Seagate) announced today that it reached a milestone of having shipped 2 Billion hard disk drives (HDD’s), something that is round stores data that keeps growing. As part of their announcement, Seagate has a good info graphics and facts page here going back to 1979 when it was founded as Shugart Technology (read about Al Shugart here).

    By coincidence, just a few years before Seagate was founded, McDonalds (who makes round things as well) announced that they had served over 20 billion hamburgers. Thus McDonald feeds the appetites of consumers hungry for a quick meal while Seagate feeds the information demands, perhaps while stopping for a quick breakfast, lunch, coffee or dinner. Speaking of things that go around (like HDD’s), check out what NAS, NASA and NASCAR have in common all of which are also involved in big data as well as little data.

    Storage I/O industry trends image

    Both Seagate and McDonalds have also expanded their menu of offerings over the years maintaining their core products while expanding into new and adjacent areas given different appetites and preferences. After all, in the data cloud, virtual or physical data center also known as an information factory not everything is the same either.

    Cloud

    Granted Seagate is helping to feed or fuel the internet along with traditional hungry demand for data, not to mention people and data are living longer, as well as getting larger.

    Cloud, virtual server, big data and little data storage I/O image

    In the case of Seagate and other driver manufactures of which have consolidated down to three (Toshiba, Seagate and Western Digital), the physical devices are getting smaller, however capacities are increasing.

    Storage I/O

    Why the continued growth? As mentioned data is getting larger (big data and little data) and living longer, there is also no such thing as a data or information recession. Consequently data storage is an important pillar or part of cloud, virtual and traditional information services with HDD’s remaining popular along side nand flash solid state devices (SSD).

    The Seagate info graphic page can be seen here and is a good walk back in time for some, perhaps a history lesson for others. It goes back to the Sony Walkman which some might remember, launch of the PC and Apple Macintosh in the 80s, Linux and the web in the 90s and moving forward from then to now.

    HDD
    A few of my HDD’s, different types for various tasks.

    If you think or believe HDD’s are a dead technology, take a few minutes to view the info graphic to update your insight on what has been an important aspect of computing and remains popular in cloud environments. Otoh, if you believe that HDD’s are still a core piece of computing and will remain so including in roles in the future, have a look to see how things have progressed, maybe some Dejavu.

    Oh, for those who are thinking that the HDD did not begin in 1979, you are absolutely correct as it dates back into the 1950s. Here is a link to something that I wrote a few years ago on the HDD’s 50th birthday and looks like it will easily celebrate 60 and beyond.

    Additional related reading:
    In the data center or information factory, not everything is the same
    Hard Disk Drives (HDDs) for virtual and physical environments
    Happy 50th, hard drive. But will you make it to 60?
    Seagate to say goodbye to Cayman Islands, Hello Ireland
    More Storage IO momentus HHDD and SSD moments part II
    In the data center or information factory, not everything is the same
    The Human Face of Big Data, a Book Review

    Congratulations to Seagate, now how long until the 3 billion served, excuse me, shipped HDD occurs?

    Disclosure: Its been almost a month since my last visit to McDonalds or buying another HDD (or SSD) from Amazon.com.

    Ok, nuff said

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    February 2013 Server and StorageIO Update Newsletter

    StorageIO News Letter Image
    February 2013 News letter

    Welcome to the February 2013 edition of the StorageIO Update news letter including a new format and added content.

    You can get access to this news letter via various social media venues (some are shown below) in addition to StorageIO web sites and subscriptions.

    Click on the following links to view the February 2013 edition as (HTML sent via Email) version, or PDF versions.

    Visit the news letter page to view previous editions of the StorageIO Update.

    You can subscribe to the news letter by clicking here.

    Enjoy this edition of the StorageIO Update news letter, let me know your comments and feedback.

    Nuff said for now

    Cheers
    Gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    Cloud, virtualization, Storage I/O trends for 2013 and beyond

    StorageIO Industry trends and perspectives image

    It is still early in 2013, so I can make some cloud, virtualization, storage and IO related predictions, or more aptly, talk about some trends, in addition to those that I made in late 2012, looking forward and back. Common over-riding themes will continue to include convergence (people and technology), valueware, clouds (public, private, hybrid and community) among others.

    cloud virtualization storage I/O data center image

    Certainly, solid state drives (SSDs) will remain popular, both in terms of industry adoption, and industry deployment. Big-data (and little data) management tools and purpose-build storage systems or solutions continue to be popular, as are those for supporting little data applications. On the cloud storage front, there are many options for various use cases available. Watch for more emphasis on service-level agreements (SLA), service-level objectives (SLO), security, pricing transparency, and tiers of service.

    storage I/O rto rpo dcim image

    Cloud and object storage will continue to gain in awareness, functionality, and options from various providers in terms of products, solutions, and services. There will be a mix of large-scale solutions and smaller ones, with a mix of open-source and proprietary pieces. Some of these will be for archiving, some for backup or data protection. Others will be for big-data, high-performance computing, or cloud on a local or wide area basis, while others for general file sharing.

    Ceph object storage architecture example

    Along with cloud and object storage, watch for more options about how those products or services can be accessed using traditional NAS (NFS, CIFS, HDFS and others) along with block, such as iSCSI object API’s, including Amazon S3, REST, HTTP, JSON, XML, iOS and CDMI along with programmatic bindings.

    Data protection modernization, including backup/restore, high-availability, business continuity, disaster recovery, archiving, and related technologies for cloud, virtual, and traditional environments will remain popular themes.

    cloud and virtual data center image

    Expect more Fibre Channel over Ethernet for networking with your servers and storage, PCIe Gen 3 to move data in and out of servers, and Serial-attached SCSI (SAS) as a means of attaching storage to servers or as the back-end storage for larger storage systems and appliances. For those who like to look out over the horizon, keep an eye and ear open for more discussion around PCI gen 3 deployment and gen 4 definitions, not to mention DDR4 and nand flash moving close to the processors.

    With VMware buying Virsto, that should keep software defined marketing (SDM) and Storage hypervisors, storage virtualization, virtual storage, virtual storage arrays (VSA’s) active topic themes. Lets also keep in mind for storage space capacity optimization Data footprint reduction (DFR) including archiving, backup and data protection modernization, compression, consolidation, dedupe and data management.

    Ok, nuff said.

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    Cloud conversations: Public, Private, Hybrid and Community Clouds? (Part II)

    StorageIO Industry trends and perspectives image

    This is the second of a two part series, read part I here.

    Common community cloud conversation questions include among others:

    Who defines the standards for community clouds?
    The members or participants, or whoever they hire or get to volunteer to do it.

    Who pays for the community cloud?
    The members or participants do, think about a co-op or other resource sharing consortium with multi-tenant (shared) capabilities to isolate and keep members along with what they are doing separate.

    cloud image

    Who are community clouds for, when to use them?
    If you cannot justify a private cloud for yourself, or, if you need more resiliency than what can be provided by your site and you know of a peer, partner, member or other with common needs, those could be a fit. Another variation is you are in an industry or agency or district where pooling of resources, yet operating separate has advantages or already being done. These range from medical and healthcare to education along with various small medium businesses (SMBs) that do not want to or cannot use a public facility for various reasons.

    What technology is needed for building a community cloud?
    Similar to deploying a public or private cloud, you will need various hard products including servers, storage, networking, management software tools for provisioning, orchestration, show back or charge back, multi-tenancy, security and authentication, data protection (backup, bc, dr, ha) along with various middleware and applications.

    Storage I/O cloud building block image

    What are community clouds used for?
    Almost anything, granted there are limits and boundaries based tools, technologies, security and access controls among other constraints. Applications can range from big-data to little-data on all if not most points in between. On the other hand, if they are not safe or secure enough for your needs, then use a private cloud or whatever it is that you are currently using.

    What about community cloud security, privacy and compliance regulations?
    Those are topics and reasons why like-minded or affected groups might be able to leverage a community cloud. By being like-minded or affected groups, labs, schools, business, entities, agencies, districts, or other organizations that are under common mandates for security, compliance, privacy or other regulations can work together, yet keep their interests separate. What tools or techniques for achieving those goals and objectives would be dependent on those who offer services to those entities now?

    data centers, information factories and clouds

    Where can you get a community cloud?
    Look around using Google or your favorite search tool; also watch the comments section to see how long it takes someone to jump in to say how he or she can help. Also talk with solution providers, business partners and VARs. Note that they may not know the term or phrases per say, so here is what to tell them. Tell them that you would like to deploy a private cloud at some place that will then be used in a multi-tenant way to safely and securely support different members of your consortium.

    For those who have been around long enough, you can also just tell them that you want to do something like the co-op or consortium time-sharing type systems from past generations and they may know what you are looking for. If although they look at you with a blank deer in the head-light stare eyes glazed over, just tell them it’s a new lead-edge, software defined new and revolutionary (add some superlatives if you feel inclined) and then they might get excited.  If they still don’t know what to do or help you with, have them get in touch with me and I will explain it to them, or, I’ll put you in touch with those can help.

    data centers, information factories and clouds

    Where do you put a community cloud?
    You could deploy them in your own facility, other member’s locations or both for resiliency. You could also use a safe secure co-lo facility already being used for other purposes.

    Do community clouds have organizers?
    Perhaps, however they are probably more along the lines of a coordinator, administrator, manager, controller as opposed to a community organizer per say. In other words, do not confuse a community cloud with a cloud community organized, aligned and activated for some particular cause. On the other hand, maybe there is value prop for some cloud activist to be  organized and take up the cause for community clouds in your area of interest ;).

    data centers, information factories and clouds

    Are community clouds more of a concept vs. a product?
    If you have figured out that a community or peer cloud is nothing more than a different way of deploying, using and managing a combination of private, public and hybrid and putting a marketing name on them, congratulations, you are now thinking outside of the box, or outside of the usual cloud conversations.

    What about public cloud services for selected audiences such as Amazons GovCloud? On one hand, I guess you could call or think of that as a semi-private public cloud, or a semi-public private cloud, or if you like superlatives an uber gallistic hybrid community cloud.

    How you go about building, deploying and managing your community, coop, consortium, and agency, district or peer cloud will be how you leverage various hard and software products. The results of which will be your return on innovation (the new ROI) to address various needs and concerns or also known as valueware. Those results should be able to address or help close gaps and leverage clouds in general as a resource vs. simply as a tool, technology or technique.

    Ok, nuff said…

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    Cloud conversations: Public, Private, Hybrid what about Community Clouds?

    StorageIO Industry trends and perspectives image

    Have you heard of a community clouds?

    Cloud computing including cloud storage and services as products, solutions and services offer different functionality and enable benefits for various types of organizations, entities or individuals.

    various types of clouds image

    Public clouds, private clouds and hybrids leveraging public and private continue to evolve in technology, reliability, security and functionality along with the awareness around them.

    IT professionals tell me they are interested in clouds however they have concerns.

    Cloud concerns range from security, compliance, industry or government regulations, privacy and budgets among others with private, public or hybrid clouds. Peer, cooperative (co-op), consortium or community clouds can be a solution for those that traditional public, private, hybrid, AaaS, SaaS, PaaS or IaaS do not meet their needs.

    various types, layers and services of clouds image

    From a technology standpoint, there should have to be much if any difference between a community cloud and a public, private or hybrid. Instead, they community clouds are more about thinking outside of the box, or outside of common cloud thinking per say. This means thinking beyond what others are talking about or doing and looking at how cloud products, services and practices can be used in different ways to meet your concerns or requirements.

    cloud image

    What’s your take on clouds, click here to cast your vote and see results

    Read more about community clouds including common questions in part II here.

    Ok, nuff said (for now)…

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    Tape is still alive, or at least in conversations and discussions

    StorageIO Industry trends and perspectives image

    Depending on whom you talk to or ask, you will get different views and opinions, some of them stronger than others on if magnetic tape is dead or alive as a data storage medium. However an aspect of tape that is alive are the discussions by those for, against or that simply see it as one of many data storage mediums and technologies whose role is changing.

    Here is a link to an a ongoing discussion over in one of the Linked In group forums (Backup & Recovery Professionals) titled About Tape and disk drives. Rest assured, there is plenty of fud and hype on both sides of the tape is dead (or alive) arguments, not very different from the disk is dead vs. SSD or cloud arguments. After all, not everything is the same in data centers, clouds and information factories.

    Fwiw, I removed tape from my environment about 8 years ago, or I should say directly as some of my cloud providers may in fact be using tape in various ways that I do not see, nor do I care one way or the other as long as my data is safe, secure, protected and SLA’s are meet. Likewise, I consult and advice for organizations where tape still exists yet its role is changing, same with those using disk and cloud.

    Storage I/O data center image

    I am not ready to adopt the singular view that tape is dead yet as I know too many environments that are still using it, however agree that its role is changing, thus I am not part of the tape cheerleading camp.

    On the other hand, I am a fan of using disk based data protection along with cloud in new and creative (including for my use) as part of modernizing data protection. Although I see disk as having a very bright and important future beyond what it is being used for now, at least today, I am not ready to join the chants of tape is dead either.

    StorageIO Industry trends and perspectives image

    Does that mean I can’t decide or don’t want to pick a side? NO

    It means that I do not have to nor should anyone have to choose a side, instead look at your options, what are you trying to do, how can you leverage different things, techniques and tools to maximize your return on innovation. If that means that tape is, being phased out of your organization good for you. If that means there is a new or different role for tape in your organization co-existing with disk, then good for you.

    If somebody tells you that tape sucks and that you are dumb and stupid for using it without giving any informed basis for those comments then call them dumb and stupid requesting they come back when then can learn more about your environment, needs, and requirements ready to have an informed discussion on how to move forward.

    Likewise, if you can make an informed value proposition on why and how to migrate to new ways of modernizing data protection without having to stoop to the tape is dead argument, or cite some research or whatever, good for you and start telling others about it.

    StorageIO Industry trends and perspectives image

    Otoh, if you need to use fud and hype on why tape is dead, why it sucks or is bad, at least come up with some new and relevant facts, third-party research, arguments or value propositions.

    You can read more about tape and its changing role at tapeisalive.com or Tapesummit.com.

    Ok, nuff said.

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    In the data center or information factory, not everything is the same

    StorageIO Industry trends and perspectives image

    Sometimes what should be understood, or that is common sense or that you think everybody should know needs to be stated. After all, there could be somebody who does not know what some assume as common sense or what others know for various reasons. At times, there is simply the need to restate or have a reminder of what should be known.

    Storage I/O data center image

    Consequently, in the data center or information factory, either traditional, virtual, converged, private, hybrid or public cloud, everything is not the same. When I say not everything is the same, is that different applications with various service level objectives (SLO’s) and service level agreements (SLA’s). These are based on different characteristics from performance, availability, reliability, responsiveness, cost, security, privacy among others. Likewise, there are different size and types of organizations with various requirements from enterprise to SMB, ROBO and SOHO, business or government, education or research.

    Various levels of HA, BC and DR

    There are also different threat risks for various applications or information services within in an organization, or across different industry sectors. Thus various needs for meeting availability SLA’s, recovery time objectives (RTO’s) and recovery point objectives (RPO’s) for data protection ranging from backup/restore, to high-availability (HA), business continuance (BC), disaster recovery (DR) and archiving. Let us not forget about logical and physical security of information, assets and people, processes and intellectual property.

    Storage IO RTO and RPO image

    Some data centers or information factories are compute intensive while others are data centric, some are IO or activity intensive with a mix of compute and storage. On the other hand, some data centers such as a communications hub may be network centric with very little data sticking or being stored.

    SLA and SLO image

    Even within in a data center or information factory, various applications will have different profiles, protection requirements for big data and little data. There can also be a mix of old legacy applications and new systems developed in-house, purchased, open-source based or accessed as a service. The servers and storage may be software defined (a new buzzword that has already jumped the shark), virtualized or operated in a private, hybrid or community cloud if not using a public service.

    Here are some related posts tied to everything is not the same:
    Optimize Data Storage for Performance and Capacity
    Is SSD only for performance?
    Cloud conversations: Gaining cloud confidence from insights into AWS outages
    Data Center Infrastructure Management (DCIM) and IRM
    Saving Money with Green IT: Time To Invest In Information Factories
    Everything Is Not Equal in the Datacenter, Part 1
    Everything Is Not Equal in the Datacenter, Part 2
    Everything Is Not Equal in the Datacenter, Part 3

    Storage I/O data center image

    Thus, not all things are the same in the data center, or information factories, both those under traditional management paradigms, as well as those supporting public, private, hybrid or community clouds.

    Ok, nuff said.

    Cheers gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

    January 2013 Server and StorageIO Update Newsletter

    StorageIO News Letter Image
    January 2013 News letter

    Welcome to the January 2013 edition of the StorageIO Update news letter including a new format and added content.

    You can get access to this news letter via various social media venues (some are shown below) in addition to StorageIO web sites and subscriptions.

    Click on the following links to view the January 2013 edition as (HTML sent via Email) version, or PDF versions.

    Visit the news letter page to view previous editions of the StorageIO Update.

    You can subscribe to the news letter by clicking here.

    Enjoy this edition of the StorageIO Update news letter, let me know your comments and feedback.

    Nuff said for now

    Cheers
    Gs

    Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
    twitter @storageio

    All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved