Post Holiday IT Shopping Bargains, Dell Buying Exanet?

For consumers, the time leading up to the holiday Christmas season is usually busy including door busters as well as black Friday among other specials for purchasing gifts and other items. However savvy shoppers will wait for after Christmas or the holidays altogether perhaps well into the New Year when some good bargains can become available. IT customers are no different with budgets to use up before the end of the year thus a flurry of acquisitions that should become evident soon as we are entering earnings announcement season.

However there are also bargains for IT organizations looking to take advantage of special vendor promotions trying to stimulate sales, not to mention for IT vendors to do some shopping of their own. Consequently, in addition to the flurry of merger and acquisition (M and A) activity from last summer through the fall, there has been several recent deals, some of which might make Monty Hall blush!

Some recent acquisition activity include among others:

  • Dell bought Perot systems for $3.9B
  • DotHill bought Cloverleaf
  • Texas Memory Systems (TMS) bought Incipient
  • HP bought IBRIX and 3COM among others
  • LSI bought Onstor
  • VMware bought Zimbra
  • Micron bought Numonyx
  • Exar bought Neterion

Now the industry is abuzz about Dell, who is perhaps using some of the lose change left over from holiday sales as being in the process of acquiring Israeli clustered storage startup Exanet for about $12M USD. Compared to previous Dell acquisitions including EqualLogic in 2007 for about $1.4B or last years Perot deal in the $3.9B range, $12M is a bargain and would probably not even put a dent in the selling and marketing advertising budget let alone corporate cash coffers which as of their Q3-F10 balance sheet shows about $12.795B in cash.

Who is Exanet and what is their product solution?
Exanet is a small Israeli startup providing a clustered, scale out NAS file serving storage solution (Figure 1) that began shipping in 2003. The Exanet solution (ExaStore) can be either software based, or, as a package solution ExaStore software installed on standard x86 servers with external RAID storage arrays combining as a clustered NAS file server.

Product features include global name space, distributed metadata, expandable file systems, virtual volumes, quotas, snapshots, file migration, replication, and virus scanning, and load balancing, NFS, CIFS and AFP. Exanet scales up to 1 Exabyte of storage capacity along with supporting large files and billions of file per cluster.

The target market that Exanet pursues is large scale out NAS where performance (either small random or large sequential I/Os) along with capacity are required. Consequently, in the scale out, clustered NAS file serving space, competitors include IPM GPFS (SONAS), HP IBRIX or PolyServe, Sun Lustre and Symantec SFS among others.

Clustered Storage Model: Source The Green and Virtual Data Center (CRC)
Figure 1 Generic clustered storage model (Courtesy The Green and Virtual Data Center(CRC)

For a turnkey solution, Exanet packaged their cluster file system software with various vendors storage combined with 3rd party external Fibre Channel or other storage. This should play well for Dell who can package the Exanet software on its own servers as well as leverage either SAS or Fibre Channel  MD1000/MD3000 external RAID storage among other options (see more below).

Click here to learn more about clustered storage including clustered NAS, clustered and parallel file systems.

Dell

Whats the dell play?

  • Its an opportunity to acquire some intellectual property (IP)
  • Its an opportunity to have IP similar to EMC, HP, IBM, NetApp, Oracle and Symantec among others
  • Its an opportunity to address a market gap or need
  • Its an opportunity to sell more Dell servers, storage and services
  • Its an opportunity time for doing acquisitions (bargain shopping)

Note: IBM also this past week announced their new bundled scale out clustered NAS file serving solution based on GPFS called SONAS. HP has IBRIX in addition to their previous PolyServe acquisition, Sun has ZFS and Lustre.

How does Exanet fit into the Dell lineup?

  • Dell sells Microsoft based NAS as NX series
  • Dell has an OEM relationship with EMC
  • Dell was OEMing or reselling IBRIX in the past for certain applications or environments
  • Dell has needed to expand its NAS story to balance its iSCSI centric storage story as well as compliment its multifunction block storage solutions (e.g. MD3000) and server solutions.

Why Exanet?
Why Exanet, why not one of the other startups or small NAS or cloud file system vendors including BlueArc, Isilon, Panasas, Parascale, Reldata, OpenE or Zetta among others?

My take is that probably because those were either not relevant to what Dell is looking for, lack of seamless technology and business fit, technology tied to non Dell hardware, technology maturity, the investors are still expecting a premium valuation, or, some combination of the preceding.

Additional thoughts on why Exanet
I think that Dell simply saw an opportunity to acquire some intellectual property (IP) probably including a patent or two. The value of the patents could be in the form of current or future product offerings, perhaps a negotiating tool, or if nothing else as marketing tool. As a marketing tool, Dell via their EqualLogic acquisition among others has been able to demonstrate and generate awareness that they actually own some IP vs. OEM or resell those from others. I also think that this is an opportunity to either fill or supplement a solution offering that IBRIX provided to high performance, bulk storage and scale out file serving needs.

NAS and file serving supporting unstructured data are a strong growth market for commercial, high performance, specialized or research as well as small business environments. Thus, where EqualLogic plays to the iSCSI block theme, Dell needs to expand their NAS and file serving solutions to provide product diversity to meet various customer applications needs similar to what they do with block based storage. For example, while iSCSI based EqualLogic PS systems get the bulk of the marketing attention, Dell also has a robust business around the PowerVault MD1000/MD3000 (SAS/iSCSI/FC) and Microsoft multi protocol based PowerVault NX series not to mention their EMC CLARiiON based OEM solutions (E.g. Dell AX, Dell/EMC CX).

Thus, Dell can complement the Microsoft multi protocol (block and NAS file) NX with a packaged (Dell servers and MD (or other affordable block storage) powered with Exanet) solution. While it is possible that Dell will find a way to package Exanet as a NAS gateway in front of the iSCSI based EqualLogic PS systems, which would also make for an expensive scale out NAS solution compared to those from other vendors.

Thats it for now.

Lets see how this all plays out.

Cheers gs

Greg Schulz – Author The Green and Virtual Data Center (CRC) and Resilient Storage Networks (Elsevier)
twitter @storageio

Technorati tags: Dell

Clarifying Clustered Storage Confusion

Clustered storage can be iSCSI, Fibre Channel block based or NAS (NFS or CIFS or proprietary file system) file system based. Clustered storage can also be found in virtual tape library (VTL) including dedupe solutions along with other storage solutions such as those for archiving, cloud, medical or other specialized grids among others.

Recently in the IT and data storage specific industry, there has been a flurry of merger and acquisition (M&A) (Here and here), new product enhancement or announcement activity around clustered storage. For example, HP buying clustered file system vendor IBRIX complimenting their previous acquisition of another clustered file system vendor (PolyServe) a few years ago, or, of iSCSI block clustered storage software vendor LeftHand earlier this year. Another recent acquisition is that of LSI buying clustered NAS vendor ONstor, not to mention Dell buying iSCSI block clustered storage vendor EqualLogic about a year and half ago, not to mention other vendor acquisitions or announcements involving storage and clustering.

Where the confusion enters into play is the term cluster which means many things to different people, and even more so when clustered storage is combined with NAS or file based storage. For example, clustered NAS may infer a clustered file system when in reality a solution may only be multiple NAS filers, NAS heads, controllers or storage processors configured for availability or failover.

What this means is that a NFS or CIFS file system may only be active on one node at a time, however in the event of a failover, the file system shifts from one NAS hardware device (e.g. NAS head or filer) to another. On the other hand, a clustered file system enables a NFS or CIFS or other file system to be active on multiple nodes (e.g. NAS heads, controllers, etc.) concurrently. The concurrent access may be for small random reads and writes for example supporting a popular website or file serving application, or, it may be for parallel reads or writes to a large sequential file.

Clustered storage is no longer exclusive to the confines of high-performance sequential and parallel scientific computing or ultra large environments. Small files and I/O (read or write), including meta-data information, are also being supported by a new generation of multipurpose, flexible, clustered storage solutions that can be tailored to support different applications workloads.

There are many different types of clustered and bulk storage systems. Clustered storage solutions may be block (iSCSI or Fibre Channel), NAS or file serving, virtual tape library (VTL), or archiving and object-or content-addressable storage. Clustered storage in general is similar to using clustered servers, providing scale beyond the limits of a single traditional system—scale for performance, scale for availability, and scale for capacity and to enable growth in a modular fashion, adding performance and intelligence capabilities along with capacity.

For smaller environments, clustered storage enables modular pay-as-you-grow capabilities to address specific performance or capacity needs. For larger environments, clustered storage enables growth beyond the limits of a single storage system to meet performance, capacity, or availability needs.

Applications that lend themselves to clustered and bulk storage solutions include:

  • Unstructured data files, including spreadsheets, PDFs, slide decks, and other documents
  • Email systems, including Microsoft Exchange Personal (.PST) files stored on file servers
  • Users’ home directories and online file storage for documents and multimedia
  • Web-based managed service providers for online data storage, backup, and restore
  • Rich media data delivery, hosting, and social networking Internet sites
  • Media and entertainment creation, including animation rendering and post processing
  • High-performance databases such as Oracle with NFS direct I/O
  • Financial services and telecommunications, transportation, logistics, and manufacturing
  • Project-oriented development, simulation, and energy exploration
  • Low-cost, high-performance caching for transient and look-up or reference data
  • Real-time performance including fraud detection and electronic surveillance
  • Life sciences, chemical research, and computer-aided design

Clustered storage solutions go beyond meeting the basic requirements of supporting large sequential parallel or concurrent file access. Clustered storage systems can also support random access of small files for highly concurrent online and other applications. Scalable and flexible clustered file servers that leverage commonly deployed servers, networking, and storage technologies are well suited for new and emerging applications, including bulk storage of online unstructured data, cloud services, and multimedia, where extreme scaling of performance (IOPS or bandwidth), low latency, storage capacity, and flexibility at a low cost are needed.

The bandwidth-intensive and parallel-access performance characteristics associated with clustered storage are generally known; what is not so commonly known is the breakthrough to support small and random IOPS associated with database, email, general-purpose file serving, home directories, and meta-data look-up (Figure 1). Note that a clustered storage system, and in particular, a clustered NAS may or may not include a clustered file system.

Clustered Storage Model: Source The Green and Virtual Data Center (CRC)
Figure 1 – Generic clustered storage model (Courtesy “The Green and Virtual Data Center  (CRC)”

More nodes, ports, memory, and disks do not guarantee more performance for applications. Performance depends on how those resources are deployed and how the storage management software enables those resources to avoid bottlenecks. For some clustered NAS and storage systems, more nodes are required to compensate for overhead or performance congestion when processing diverse application workloads. Other things to consider include support for industry-standard interfaces, protocols, and technologies.

Scalable and flexible clustered file server and storage systems provide the potential to leverage the inherent processing capabilities of constantly improving underlying hardware platforms. For example, software-based clustered storage systems that do not rely on proprietary hardware can be deployed on industry-standard high-density servers and blade centers and utilizes third-party internal or external storage.

Clustered storage is no longer exclusive to niche applications or scientific and high-performance computing environments. Organizations of all sizes can benefit from ultra scalable, flexible, clustered NAS storage that supports application performance needs from small random I/O to meta-data lookup and large-stream sequential I/O that scales with stability to grow with business and application needs.

Additional considerations for clustered NAS storage solutions include the following.

  • Can memory, processors, and I/O devices be varied to meet application needs?
  • Is there support for large file systems supporting many small files as well as large files?
  • What is the performance for small random IOPS and bandwidth for large sequential I/O?
  • How is performance enabled across different application in the same cluster instance?
  • Are I/O requests, including meta-data look-up, funneled through a single node?
  • How does a solution scale as the number of nodes and storage devices is increased?
  • How disruptive and time-consuming is adding new or replacing existing storage?
  • Is proprietary hardware needed, or can industry-standard servers and storage be used?
  • What data management features, including load balancing and data protection, exists?
  • What storage interface can be used: SAS, SATA, iSCSI, or Fibre Channel?
  • What types of storage devices are supported: SSD, SAS, Fibre Channel, or SATA disks?

As with most storage systems, it is not the total number of hard disk drives (HDDs), the quantity and speed of tiered-access I/O connectivity, the types and speeds of the processors, or even the amount of cache memory that determines performance. The performance differentiator is how a manufacturer combines the various components to create a solution that delivers a given level of performance with lower power consumption.

To avoid performance surprises, be leery of performance claims based solely on speed and quantity of HDDs or the speed and number of ports, processors and memory. How the resources are deployed and how the storage management software enables those resources to avoid bottlenecks are more important. For some clustered NAS and storage systems, more nodes are required to compensate for overhead or performance congestion.

Learn more about clustered storage (block, file, VTL/dedupe, archive), clustered NAS, clustered file system, grids and cloud storage among other topics in the following links:

"The Many faces of NAS – Which is appropriate for you?"

Article: Clarifying Storage Cluster Confusion
Presentation: Clustered Storage: “From SMB, to Scientific, to File Serving, to Commercial, Social Networking and Web 2.0”
Video Interview: How to Scale Data Storage Systems with Clustering
Guidelines for controlling clustering
The benefits of clustered storage

Along with other material on the StorageIO Tips and Tools or portfolio archive or events pages.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved