EMC VMAX 10K, looks like high-end storage systems are still alive (part II)

StorageIO industry trends cloud, virtualization and big data

This is the second in a multi-part series of posts (read first post here) looking at if large enterprise and legacy storage systems are dead, along with what todays EMC VMAX 10K updates mean.

Thus on January 14 2013 it is time for a new EMC Virtual Matrix (VMAX) model 10,000 (10K) storage system. EMC has been promoting their January 14 live virtual event for a while now. January significance is that is when (along with May or June) is when many new systems, solutions or upgrades are made on a staggered basis.

Historically speaking, January and February, along with May and June is when you have seen many of the larger announcements from EMC being made. Case in point, back in February of 2012 VFCache was released, then May (2012) in Las Vegas at EMCworld there were 42 announcements made and others later in the year.

Click here to see images of the car stuffing or click here to watch a video.

Let’s not forget back in February of 2012 VFCache was released, and go back to January 2011 there was the record-setting event in New York City complete with 26 people being compressed, deduped, singled instanced, optimized, stacked and tiered into a mini cooper (Coop) automobile (read and view more here).

Now back to the VMAX 10K enhancements

As an example of a company, product family and specific storage system model, still being alive is the VMAX 10K. Although this announcement by EMC is VMAX 10K centric, there is also a new version of the Enginuity software (firmware, storage operating system, valueware) that runs across all VMAX based systems including VMAX 20K and VMAX 40K. Read here, here and here and here to learn more about VMAX and Enginuity systems in general.

Some main themes of this announcement include Tier 1 reliability, availability and serviceability (RAS) storage systems functionality at tier 2 pricing for traditional, virtual and cloud data centers.

Some other themes of this announcement by EMC:

  • Flexible, scalable and resilient with performance to meet dynamic needs
  • Support private, public and hybrid cloud along with federated storage models
  • Simplified decision-making, acquisition, installation and ongoing management
  • Enable traditional, virtual and cloud workloads
  • Complement its siblings VMAX 40K, 20K and SP (Service Provider) models

Note that the VMAX SP is a model configured and optimized for easy self-service and private cloud, storage as a service (SaaS), IT as a Service (ITaaS) and public cloud service providers needing multi-tenant capabilities with service catalogs and associated tools.

So what is new with the VMAX 10K?

It is twice as fast (per EMC performance results) as earlier VMAX 10K by leveraging faster 2.8GHz Intel westmere vs. earlier 2.5GHz westmere processors. In addition to faster cores, there are more, from 4 to 6 on directors, from 8 to 12 on VMAX 10K engines. The PCIe (Gen 2) IO busses remain unchanged as does the RapidIO interconnect.  RapidIO  used for connecting nodes and engines,  while PCIe is used for adapter and device connectivity. Memory stays the same at up to 128GB of global DRAM cache, along with dual virtual matrix interfaces (how the nodes are connected). Note that there is no increase in the amount of DRAM based cache memory in this new VMAX 10K model.

This should prompt the question of for traditional cache centric or dependent for performance storage systems such as VMAX, how much are they now CPU and their associated L1 / L2 cache dependent or effective? Also how much has the Enginuity code under the covers been enhanced to leverage the multiple cores and threads thus shifting from being cache memory dependent processor hungry.

Also new with the updated VMAX 10K include:

  • Support for dense 2.5 inch drives, along with mixed 2.5 inch and 3.5 inch form factor devices with a maximum of 1,560 HDDs. This means support for 2.5 inch 1TB 7,200 RPM SAS HDDs, along with fast SAS HDDs, SLC/MLC and eMLC solid state devices (SSD) also known as electronic flash devices (EFD). Note that with higher density storage configurations, good disk enclosures become more important to counter or prevent the effects of drive vibration, something that leading vendors are paying attention to and so should customers.
  • EMC is also with the VMAX 10K adding support for certain 3rd party racks or cabinets to be used for mounting the product. This means being able to mount the VMAX main system and DAE components into selected cabinets or racks to meet specific customer, colo or other environment needs for increased flexibility.
  • For security, VMAX 10K also supports Data at Rest Encryption or (D@RE) which is implemented within the VMAX platform. All data encrypted on every drive, every drive type (drive independent) within the VMAX platform to avoid performance impacts. AES 256 fixed block encryption with FIPS 140-2 validation (#1610) using embedded or external key management including RSA Key Manager. Note that since the storage system based encryption is done within the VMAX platform or controller, not only is the encrypt / decrypt off-loaded from servers, it also means that any device from SSD to HDD to third-party storage arrays can be encrypted. This is in contrast to drive based approaches such as self encrypting devices (SED) or other full drive encryption approaches. With embedded key management, encryption keys kept and managed within the VMAX system while external mode leverages RSA key management as part of a broader security solution approach.
  • In terms of addressing ease of decision-making and acquisition, EMC has bundled core Enginuity software suite (virtual provisioning, FTS and FLM, DCP (dynamic cache partitioning), host I/O limits, Optimizer/virtual LUN and integrated RecoverPoint splitter). In addition are bundles for optimization (FAST VP, EMC Unisphere for VMAX with heat map and dashboards), availability (TimeFinder for VMAX 10K) and migration (Symmetrix migration suite, Open Replicator, Open Migrator, SRDF/DM, Federated Live Migration). Additional optional software include RecoverPoint CDP, CRR and CLR, Replication Manager, PowerPath, SRDF/S, SRDF/A and SRDF/DM, Storage Configuration Advisor, Open Replicator with Dynamic Mobility and ControlCenter/ProSphere package.

Who needs a VMAX 10K or where can it be used?

As the entry-level model of the VMAX family, certain organizations who are growing and looking for an alternative to traditional mid-range storage systems should be a primary opportunity. Assuming the VMAX 10K can sell at tier-2 prices with a focus of tier-1 reliability, feature functionality, and simplification while allowing their channel partners to make some money, then EMC can have success with this product. The challenge however will be helping their direct and channel partner sales organizations to avoid competing with their own products (e.g. high-end VNX) vs. those of others.

Consolidation of servers with virtualization, along with storage system consolidation to remove complexity in management and costs should be another opportunity with the ability to virtualize third-party storage. I would expect EMC and their channel partners to place the VMAX 10K with its storage virtualization of third-party storage as an alternative to HDS VSP (aka USP/USPV) and the HP XP P9000 (Hitachi based) products, or for block storage needs the NetApp V-Series among others. There could be some scenarios where the VMAX 10K could be positioned as an alternative to the IBM V7000 (SVC based) for virtualizing third-party storage, or for larger environments, some of the software based appliances where there is a scaling with stability (performance, availability, capacity, ease of management, feature functionality) concerns.

Another area where the VMAX 10K could see action which will fly in the face of some industry thinking is for deployment in new and growing managed service providers (MSP), public cloud, and community clouds (private consortiums) looking for an alternative to open source based, or traditional mid-range solutions. Otoh, I cant wait to hear somebody think outside of both the old and new boxes about how a VMAX 10K could be used beyond traditional applications or functionality. For example filling it up with a few SSDs, and then balance with 1TB 2.5 inch SAS HDD and 3.5 inch 3TB (or larger when available) HDDs as an active archive target leveraging the built-in data compression.

How about if EMC were to support cloud optimized HDDs such as the Seagate Constellation Cloud Storage (CS) HDDs that were announced late in 2012 as well as the newer enterprise class HDDs for opening up new markets? Also keep in mind that some of the new 2.5 inch SAS 10,000 (10K) HDDs have the same performance capabilities as traditional 3.5 inch 15,000 (15K) RPM drives in a smaller footprint to help drive and support increased density of performance and capacity with improved energy effectiveness.

How about attaching a VMAX 10K with the right type of cost-effective (aligned to a given scenario) SSD or HDDs or third-party storage to a cluster or grid of servers that are running OpenStack including Swift, CloudStack, Basho Riak CS, Celversafe, Scality, Caringo, Ceph or even EMCs own ATMOS (that supports external storage) for cloud storage or object based storage solutions? Granted that would be thinking outside of the current or new box thinking to move away from RAID based systems in favor or low-cost JBOD storage in servers, however what the heck, let’s think in pragmatic ways.

Will EMC be able to open new markets and opportunities by making the VMAX and its Enginuity software platform and functionality more accessible and affordable leveraging the VMAX 10K as well as the VMAX SP? Time will tell, after all, I recall back in the mid to late 90s, and then again several times during the 2000s similar questions or conversations not to mention the demise of the large traditional storage systems.

Continue reading about what else EMC announced on January 14 2013 in addition to VMAX 10K updates here in the next post in this series. Also check out Chucks EMC blog to see what he has to say.

Ok, nuff said (for now).

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

EMC Storage and Management Software Getting FAST

EMC has announced the availability of the first phase of FAST (Fully Automated Storage Tiering) functionality for their Symmetrix VMAX, CLARiiON and Celerra storage systems.

FAST was first previewed earlier this year (see here and here).

Key themes of FAST are to leverage policies for enabling automation to support large scale environments, doing more with what you have along with enabling virtual data centers for traditional, private and public clouds as well as enhancing IT economics.

This means enabling performance and capacity planning analysis along with facilitating load balancing or other infrastructure optimization activities to boost productivity, efficiency and resource usage effectiveness not to mention enabling Green IT.

Is FAST revolutionary? That will depend on who you talk or listen to.

Some vendors will jump up and down similar to donkey in shrek wanting to be picked or noticed claiming to have been the first to implement LUN or file movement inside of storage systems, or, as operating system or file system or volume manager built in. Others will claim to have done it via third party information lifecycle management (ILM) software including hierarchal storage management (HSM) tools among others. Ok, fair enough, than let their games begin (or continue) and I will leave it up to the variou vendors and their followings to debate whos got what or not.

BTW, anyone remember system manage storage on IBM mainframes or array based movement in HP AutoRAID among others?

Vendors have also in the past provided built in or third party add on tools for providing insight and awareness ranging from capacity or space usage and allocation storage resource management (SRM) tools, performance advisory activity monitors or charge back among others. For example, hot files analysis and reporting tool have been popular in the past, often operating system specific for identifying candidate files for placement on SSD or other fast storage. Granted the tools provided insight and awareness, there was still the time and error prone task of decision making and subsequently data movement, not to mention associated down time.

What is new here with FAST is the integrated approach, tools that are operating system independent, functionality in the array, available for different product family and price bands as well as that are optimized for improving user and IT productivity in medium to high-end enterprise scale environments.

One of the knocks on previous technology is either the performance impact to an application when data was moved, or, impact to other applications when data is being moved in the background. Another issue has been avoiding excessive thrashing due to data being moved at the expense of taking performance cycles from production applications. This would also be similar to having too many snapshots or raid rebuild that are not optimized running in the background on a storage system lacking sufficient performance capability. Another knock has been that historically, either 3rd party host or appliance based software was needed, or, solutions were designed and targeted for workgroup, departmental or small environments.

What is FAST and how is it implemented
FAST is technology for moving data within storage systems (and external for Celerra) for load balancing, capacity and performance optimization to meet quality of service (QoS) performance, availability, capacity along with energy and economic initiatives (figure1) across different tiers or types of storage devices. For example, moving data from slower SATA disks where a performance bottleneck exists to faster Fibre Channel or SSD devices. Similarly, cold or infrequently data on faster more expensive storage devices can be marked as candidates for migration to lower cost SATA devices based on customer policies.

EMC FAST
Figure 1 FAST big picture Source EMC

The premise is that policies are defined based on activity along with capacity to determine when data becomes a candidate for movement. All movement is performed in the background concurrently while applications are accessing data without disruptions. This means that there are no stub files or application pause or timeouts that occur or erratic I/O activity while data is being migrated. Another aspect of FAST data movement which is performed in the actual storage systems by their respective controllers is the ability for EMC management tools to identify hot or active LUNs or volumes (files in the case of Celerra) as candidates for moving (figure 2).

EMC FAST
Figure 2 FAST what it does Source EMC

However, users specify if they want data moved on its own or under supervision enabling a deterministic environment where the storage system and associated management tools makes recommendations and suggestions for administrators to approve before migration occurs. This capacity can be a safeguard as well as a learn mode enabling organizations to become comfortable with the technology along with its recommendations while applying knowledge of current business dynamics (figure 3).

EMC FAST
Figure 3 The Value proposition of FAST Source EMC

FAST is implemented as technology resident or embedded in the EMC VMAX (aka Symmetrix), CLARiiON and Cellera along with external management software tools. In the case of the block (figure 4) storage systems including DMX/VMAX and CLARiiON family of products that support FAST, data movement is on a LUN or volume basis and within a single storage system. For NAS or file based Cellera storage systems, FAST is implanted using FMA technology enabling either in the box or externally to other storage systems on a file basis.

EMC FAST
Figure 4 Example of FAST activity Source EMC

What this means is that data at the LUN or volume level can be moved across different tiers of storage or disk drives within a CLARiiON instance, or, within a VMAX instance (e.g. amongst the nodes). For example, Virtual LUNs are a building block that is leveraged for data movement and migration combined with external management tools including Navisphere for the CLARiiON and Symmetrix management console along with Ionix all of which has been enhanced.

Note however that initially data is not moved externally between different CLARiiONs or VMAX systems. For external data movement, other existing EMC tools would be deployed. In the case of Celerra, files can be moved within a specific CLARiiON as well as externally across other storage systems. External storage systems that files can be moved across using EMC FMA technology includes other Celleras, Centera and ATMOS solutions based upon defined policies.

What do I like most and why?

Integration of management tools providing insight with ability for user to setup polices as well as approve or intercede with data movement and placement as their specific philosophies dictate. This is key, for those who want to, let the system manage it self with your supervision of course. For those who prefer to take their time, then take simple steps by using the solution for initially providing insight into hot or cold spots and then helping to make decisions on what changes to make. Use the solution and adapt it to your specific environment and philosophy approach, what a concept, a tool that works for you, vs you working for it.

What dont I like and why?

There is and will remain some confusion about intra and inter box or system data movement and migration, operations that can be done by other EMC technology today for those who need it. For example I have had questions asking if FAST is nothing more than EMC Invista or some other data mover appliance sitting in front of Symmetrix or CLARiiONs and the answer is NO. Thus EMC will need to articulate that FAST is both an umbrella term as well as a product feature set combining the storage system along with associated management tools unique to each of the different storage systems. In addition, there will be confusion at least with GA of lack of support for Symmetrix DMX vs supported VMAX. Of course with EMC pricing is always a question so lets see how this plays out in the market with customer acceptance.

What about the others?

Certainly some will jump up and down claiming ratification of their visions welcoming EMC to the game while forgetting that there were others before them. However, it can also be said that EMC like others who have had LUN and volume movement or cloning capabilities for large scale solutions are taking the next step. Thus I would expect other vendors to continue movement in the same direction with their own unique spin and approach. For others who have in the past made automated tiering their marketing differentiation, I would suggest they come up with some new spins and stories as those functions are about to become table stakes or common feature functionality on a go forward basis.

When and where to use?

In theory, anyone with a Symmetrix/VMAX, CLARiiON or Celerra that supports the new functionality should be a candidate for the capabilities, that is, at least the insight, analysis, monitoring and situation awareness capabilities Note that does not mean actually enabling the automated movement initially.

While the concept is to enable automated system managed storage (Hmmm, Mainframe DejaVu anyone), for those who want to walk before they run, enabling the insight and awareness capabilities can provide valuable information about how resources are being used. The next step would then to look at the recommendations of the tools, and if you concur with the recommendations, then take remedial action by telling the system when the movement can occur at your desired time.

For those ready to run, then let it rip and take off as FAST as you want. In either situation, look at FAST for providing insight and situational awareness of hot and cold storage, where opportunities exist for optimizing and gaining efficiency in how resources are used, all important aspects for enabling a Green and Virtual Data Center not to mention as well as supporting public and private clouds.

FYI, FTC Disclosure and FWIW

I have done content related projects for EMC in the past (see here), they are not currently a client nor have they sponsored, underwritten, influenced, renumerated, utilize third party off shore swiss, cayman or south american unnumbered bank accounts, or provided any other reimbursement for this post, however I did personally sign and hand to Joe Tucci a copy of my book The Green and Virtual Data Center (CRC) ;).

Bottom line

Do I like what EMC is doing with FAST and this approach? Yes.

Do I think there is room for improvement and additional enhancements? Absolutely!

Whats my recommendation? Have a look, do your homework, due diligence and see if its applicable to your environment while asking others vendors what they will be doing (under NDA if needed).

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved