Microsoft Azure Elastic SAN from Cloud to On-Prem

What is Azure Elastic SAN

Azure Elastic SAN (AES) is a new (now GA) Azure Cloud native storage service that provides scalable, resilient, easy management with rapid provisioning, high performance, and cost-effective storage. AES (figure 1) supports many workloads and computing resources. Workloads that benefit from AES include tier 1 and tier 2, such as Mission Critical, Database, and VDI, among others traditionally relying upon consolidated Storage Area Network (SAN) shared storage.

Compute resources that can use AES, including bare metal (BM) physical machines (PM), virtual machines (VM), and containers, among others, using iSCSI for access. AES is accessible by computing resources and services within the Azure Cloud in various regions (check Azure Website for specific region availability) and from on-prem core and edge locations using iSCSI. The AES management experience and value proposition are similar to traditional hardware or software-defined shared SAN storage combined with Azure cloud-based management capabilities.

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 1 General Concept and Use of Azure Elastic SAN (AES)

While Microsoft Azure describes AES as a cloud-native storage solution, that does not mean that AES is only for containers and other cloud-native apps or DevOPS. Rather, AES has been built for and is native to the cloud (e.g., software-defined) that can be accessed by various compute and other resources (e.g., VMs, Containers, AKS, etc) using iSCSI.

How Azure Elastic SAN differs from other Azure Storage

AES differs from traditional Azure block storage (e.g., Azure Disks) in that the storage is independent of the host compute server (e.g., BM, PM, VM, containers). With AES, similar to a conventional software-defined or hardware-based shared SAN solution, storage is disaggregated from host servers for sharing and management using iSCSI for connectivity. By comparison, AES differs from traditional Azure VM-based storage typically associated with a given virtual machine in a DAS (Direct Attached Storage) type configuration. Likewise, similar to conventional on-prem environments, there is a mix of DAS and SAN, including some host servers that leverage both.

AES supports Azure VM, Azure Kubernetes Service (AKS), cloud-native, edge, and on-prem computing (BM, VM, etc.) via iSCSI. Support for Azure VMware Solution (AVS) is in preview; check the Microsoft Azure website for updates and new feature functionality enhancements.

Does this mean everything is moving to AES? Similar to traditional SANs, there are roles and needs for various storage options, including DAS, shared block, file, and object, among storage offerings. Likewise, Microsoft and Azure have expanded their storage offerings to include AES, DAS (azure disks, including Ultra, premium, and standard, among other options), append, block, and page blobs (objects), and files, including Azure file sync, tables, and Data Box, among other storage services.

Azure Elastic Storage Feature Highlights

AES feature highlights include, among others:

    • Management via Azure Portal and associated tools
    • Azure cloud-based shared scalable bock storage
    • Scalable capacity, low latency, and high performance (IOPs and throughput)
    • Space capacity-optimized without the need for data reduction
    • Accessible from within Azure cloud and from on-prem using iSCSI
    • Supports Azure compute  (VMs, Containers/AKS, Azure VMware Solution)
    • On-prem access via iSCSI from PM/BM, VM, and containers
    • Variable number of volumes and volume size per volume group
    • Flexible easy to use Azure cloud-based management
    • Encryption and network private endpoint security
    • Local (LRS) and Zone (ZRS) with replication resiliency
    • Volume snapshots and cluster support

Who is Azure Elastic SAN for

AES is for those who need cost-effective, shared, resilient, high capacity, high performance (IOPS, Bandwidth), and low latency block storage within Azure and from on-prem access. Others who can benefit from AES include those who need shared block storage for clustering app workloads, server and storage consolidation, and hybrid and migration. Another consideration is for those familiar with traditional hardware and software-defined SANs to facilitate hybrid and migration strategies.

How Azure Elastic SAN works

Azure Elastic SAN is a software-defined (cloud native if you prefer) block storage offering that presents a virtual SAN accessible within Azure Cloud and to on-prem core and edge locations currently via iSCSI. Using iSCSI, Azure VMs, Clusters, Containers, Azure VMware Solution among other compute and services, and on-prem BM/PM, VM, and containers, among others, can access AES storage volumes.

From the Azure Portal or associated tools (Azure CLI or PowerShell), create an AES SAN, giving it a 3 to 24-character name and specify storage capacity (base units with performance and any additional space capacity). Next, create a Volume Group, assigning it to a specific subscription and resource group (new or existing), then specify which Azure Region to use, type of redundancy (LRS or GRS), and Zone to use. LRS provides local redundancy, while ZRS provides enhanced zone resiliency, with highspeed synchronous resiliency without setting up multiple SAN systems and their associated replication configurations along with networking considerations (e.g., Azure takes care of that for you within their service).

The next step is to create volumes by specifying the volume name, volume group to use, volume size in GB, maximum IOPs, and bandwidth. Once you have made your AES volume group and volumes, you can create private endpoints, change security and access controls, and access the volumes from Azure or on-prem resources using iSCSI. Note that AES currently needs to be LRS (not ZRS) for clustered shared storage and that Key management includes using your keys with Azure key vault.

Using Azure Elastic SAN

Using AES is straightforward, and there are good easy to follow guides from Microsoft Azure, including the following:

The following images show what AES looks like from the Azure Portal, as well as from an Azure Windows Server VM and an onprem physical machine (e.g., Windows 10 laptop).

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 2 AES Azure Portal Big Picture

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 3 AES Volume Groups Portal View

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 4  AES Volumes Portal View

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 5 AES Volume Snapshot Views

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 6 AES Connected Volume Portal View

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 7 AES Volume iSCSI view from on-prem Windows Laptop

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 8 AES iSCSI Volume attached to Azure VM

Azure Elastic SAN Cost Pricing

The cost of AES is elastic, depending on whether you scale capacity with performance (e.g., base unit) or add more space capacity. If you need more performance, add base unit capacity, increasing IOPS, bandwidth, and space. In other words, base capacity includes storage space and performance, which you can grow in various increments. Remember that AES storage resources get shared across volumes within a volume group.

Azure Elastic SAN is billed hourly based on a monthly per-capacity base unit rate, with a minimum of 1TB  provisioned capacity with minimum performance (e.g., 5,000 IOPs, 200MBps bandwidth). The base unit rate varies by region and type of redundancy, aka resiliency. For example, at the time of this writing, looking at US East, the Local Redundant Storage (LRS) base unit rate is 1TB with 5,000 IOPs and 200MBps bandwidth, costing $81.92 per unit per month.

The above example breaks down to a rate of $0.08 per GB per month, or $0.000110 per GB per hour (assumes 730 hours per month). An example of simply adding storage capacity without increasing base unit (e.g., performance) for US East is $61.44 per month. That works out to $0.06 per GB per month (no additional provisioned IOPs or Bandwidth) or $0.000083 per GB per hour.

Note that there are extra fees for Zone Redundant Storage (ZRS). Learn more about Azure Elastic SAN pricing here, as well as via a cost calculator here.

Azure Elastic SAN Performance

Performance for Azure Elastic SAN includes IOPs, Bandwidth, and Latency. AES IOPs get increased in increments of 5,000 per base TB. Thus, an AES with a base of 10TB would have 50,000 IOPs distributed (shared) across all of its volumes (e.g., volumes are not restricted). For example, if the base TB is increased from 10TB to 20TB, then the IOPs would increase from 50,000 to 100,000 IOPs.

On the other hand, if the base capacity (10TB) is not increased, only the storage capacity would increase from 10TB to 20TB, and the AES would have more capacity but still only have the 50,000 IOPs. AES bandwidth throughput increased by 200MBps per TB. For example, a 5TB AES would have 5 x 200MBps (1,000 MBps) throughput bandwidth shared across the volume groups volumes.

Note that while the performance gets shared across volumes, individual volume performance is determined by its capacity with a maximum of 80,000 IOPs and up to 1,024 MBps. Thus, to reach 80,000 IOPS and 1,024 MBps, an AES volume would have to be at least 107GB in space capacity. Also, note that the aggregate performance of all volumes cannot exceed the total of the AES. If you need more performance, then create another AES.

Will all VMs or compute resources see performance improvements with AES? Traditional Azure Disks associated with VMs have per-disk performance resource limits, including IOPs and Bandwidth. Likewise, VMs have storage limits based on their instance type and size, including the number of disks (HDD or SSD), performance (IOPS and bandwidth), and the number of CPUs and memory.

What this means is that an AES volume could have more performance than what a given VM is limited to. Refer to your VM instance sizing and configuration to determine its IOP and bandwidth limits; if needed, explore changing the size of your VM instance to leverage the performance of Azure Elastic SAN storage.

Additional Resources Where to learn more

The following links are additional resources to learn about Microsoft Azure Elastic SAN and related data infrastructures and tradecraft topics.

Azure AKS Storage Concepts 
Azure Elastic SAN (AES) Documentation and Deployment Guides
Azure Elastic SAN Microsoft Blog
Azure Elastic SAN Overview
Azure Elastic SAN Performance topics
Azure Elastic SAN Pricing calculator
Azure Products by Region (see where AES is currently available)
Azure Storage Offerings 
Azure Virtual Machine (VM) sizes
Azure Virtual Machine (VM) types
Azure Elastic SAN General Pricing
Azure Storage redundancy 
Azure Service Level Agreements (SLA) 
StorageIOBlog.com Data Box Family 
StorageIOBlog.com Data Box Review
StorageIOBlog.com Data Box Test Drive 
StorageIOblog.com Microsoft Hyper-V Alive Enhanced with Win Server 2025
StorageIOblog.com If NVMe is the answer, what are the questions?
StorageIOblog.com NVMe Primer (or refresh)
RTO Context Matters (Blog Post)

Additional learning experiences along with common questions (and answers), are found in my Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials (CRC Press) by Greg Schulz

What this all means

Azure Elastic SAN (AES) is a new and now generally available shared block storage offering that is accessible using iSCSI from within Azure Cloud and on-prem environments. Even with iSCSI, AES is relatively easy to set up and use for shared storage, mainly if you are used to or currently working with hardware or software-defined SAN storage solutions.

With NVMe over TCP fabrics gaining industry and customer traction, I’m hoping for Microsoft to adding that in the future. Currently, AES supports LRS and ZRS for redundancy, and an excellent future enhancement would be to add Geo Redundant Storage (GRS) capabilities for those who need it.

I like the option of elastic shared storage regarding performance, availability, capacity, and economic costs (PACE). Suppose you understand the value proposition of evolving from dedicated DAS to shared SAN (independent of the underlying fabric network); or are currently using some form of on-prem shared block storage. In that case, you will find AES familiar and easy to use. Granted, AES is not a solution for everything as there are roles for other block storage, including DAS such as Azure disks and VMs within Azure, along with on-prem DAS, as well as file, object, and blobs, tables, among others.

Wrap up

The notion that all cloud storage must be objects or blobs is tied those who only need, provide, or prefer those solutions. The reality is that everything is not the same. Thus, there is a need for various storage mediums, devices, tiers, access, and types of services. Microsoft and Azure have done an excellent job of providing. I like what Microsoft Azure is doing with Azure Elastic SAN.

Ok, nuff said, for now.

Cheers Gs

Greg Schulz – Nine time Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2025 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of UnlimitedIO LLC.

Microsoft Hyper-V Is Alive Enhanced With Windows Server 2025

Yes, you read that correctly, Microsoft Hyper-V is alive and enhanced with Windows Server 2025, formerly Windows Server v.Next server. Note that  Windows Server 2025 preview build is just a preview available for download testing as of this time.

What about Myth Hyper-V is discontinued?

Despite recent FUD (fear, uncertainty, doubt), misinformation, and fake news, Microsoft Hyper-V is not dead. Nor has Hyper-V been discontinued, as some claim. Some Hyper-V FUD is tied to customers and partners of VMware following Broadcom’s acquisition of VMware looking for alternatives. More on Broadcom and VMware here, here, here, here, and here.

As a result of Broadcom’s VMware acquisition and challenges for partners and customers (see links above), organizations are doing due diligence, looking for replacement or alternatives. In addition, some vendors are leveraging the current VMware challenges to try and position themselves as the best hypervisor virtualization safe harbor for customers. Thus some vendors, their partners, influencers and amplifiers are using FUD to keep prospects from looking at or considering Hyper-V.

Virtual FUD (vFUD)

First, let’s shut down some Virtual FUD (vFUD). As mentioned above, some are claiming that Microsoft has discontinued Hyper-V. Specifically, the vFUD centers on Microsoft terminating a specific license SKU (e.g., the free Hyper-V Server 2019 SKU). For those unfamiliar with the discontinued SKU (Hyper-V Server 2019), it’s a headless (no desktop GUI) version of Windows Server  running Hyper-V VMs, nothing more, nothing less.

Does that mean the Hyper-V technology is discontinued? No.

Does that mean Windows Server and Hyper-V are discontinued? No.

Microsoft is terminating a particular stripped-down Windows Server version SKU (e.g. Hyper-V Server 2019) and not the underlying technology, including Windows Server and Hyper-V.

To repeat, a specific SKU or distribution (Hyper-V Server 2019) has been discontinued not Hyper-V. Meanwhile, other distributions of Windows Server with Hyper-V continue to be supported and enhanced, including the upcoming Windows Server 2025 and Server 2022, among others.

On the other hand, there is also some old vFUD going back many years, or a decade, when some last experienced using, trying, or looking at Hyper-V. For example, the last look at Hyper-V might been in the Server 2016 or before era.

If you are a vendor or influencer throwing vFUD around, at least get some new vFUD and use it in new ways. Better yet, up your game and marketing so you don’t rely on old vFUD. Likewise, if you are a vendor partner and have not extended your software or service support for Hyper-V, now is a good time to do so.

Watch out for falling into the vFUD trap thinking Hyper-V is dead and thus miss out on new revenue streams. At a minimum, take a look at current and upcoming enhancements for Hyper-V doing your due diligence instead of working off of old vFUD.

Where is Hyper-V being used?

From on-site (aka on-premises, on-premises, on-prem) and edge on Windows Servers standalone and clustered, to Azure Stack HCI. From Azure, and other Microsoft platforms or services to Windows Desktops, as well as home labs, among many other scenarios.

Do I use Hyper-V? Yes, when I  retired from the vExpert program after ten years. I moved all of my workloads from VMware environment to Hyper-V including *nix, containers and Windows VMs, on-site and on Azure Cloud.

How Hyper-V Is Alive Enhanced With Windows Server 2025

Is Hyper-V Alive Enhanced With Windows Server 2025?  Yup.

Formerly known as Windows Server v.Next, Microsoft announced the Windows Server 2025 preview build on January 26, 2024 (you can get the bits here). Note that Microsoft uses Windows Server v.Next as a generic placeholder for next-generation Windows Server technology.

A reminder that the cadence of Windows Server Long Term Serving Channels (LTSC) versions has been about three years (2012R2, 2016, 2019, 2022, now 2025), along with interim updates.

What’s enhanced with Hyper-V and Windows Server 2025

    • Hot patching of running server (requires Azure Arc management) with almost instant implementations and no reboot for physical, virtual, and cloud-based Windows Servers.
    • Scaling of even more compute processors and RAM for VMs.
    • Server Storage I/O performance updates, including NVMe optimizations.
    • Active Directory (AD) improvements for scaling, security, and performance.
    • There are enhancements to storage replica and clustering capabilities.
    • Hyper-V GPU partition and pools, including migration of VMs using GPUs.

More Enhancements for Hyper-V and Windows Server 2025

Active Directory (AD)

Enhanced performance using all CPUs in a process group up to 64 cores to support scaling and faster processing. LDAP for TLS 1.3, Kerberos support for AES SHA 256 / 384, new AD functional levels, local KDC, improved replication priority, NTLM retirement, local Kerberos, and other security hardening. In addition, 64-bit Long value IDs (LIDs) are supported along with a new database schema using 32K pages vs the previous 8K pages. You will need to upgrade forest-wide across domain controllers to leverage the new larger page sizes (at least Server 2016 or later). Note that there is also backward compatibility using 8K pages until all ADs are upgraded.

Storage, HA, and Clustering

Windows Server continues to offer flexible options for storage how you want or need to use it, from traditional direct attached storage (DAS) to Storage Area Networks (SAN), to Storage Spaces Direct (S2D) software-defined, including NVMe, NVMe over Fabrics (NVMeoF), SAS, Fibre Channel, iSCSI along with file attached storage. Some other storage and HA enhancements include Storage Replica performance for logging and compression and stretch S2D multi-site optimization.

Failover Cluster enhancements include AD-less clusters, cert-based VM live migration for the edge, cluster-aware updating reliability, and performance improvements. ReFS enhancements include dedupe and compression optimizations.

Other NVMe enhancements include optimization to boost performance while reducing CPU overhead, for example, going from 1.1M IOPS to 1.86M IOPS, and then with a new native NVMe driver (to be added), from 1.1M IOPs to 2.1M IOPs. These performance optimizations will be interesting to look at closer, including baseline configuration, number and type of devices used, and other considerations.

Compute, Hyper-V, and Containers

Microsoft has added and enhanced various Compute, Hyper-V, and Container functionality with Server 2025, including supporting larger configurations and more flexibility with GPUs. There are app compatibility improvements for containers that will be interesting to see and hear more details about besides just Nano (the ultra slimmed-down Windows container).

Hyper-V

Microsoft extensively uses Hyper-V technology across different platforms, including Azure, Windows Servers, and Desktops. In addition, Hyper-V is commonly found across various customer and partner deployments on Windows Servers, Desktops, Azure Stack HCI, running on other clouds, and virtualization (nested). While Microsoft effectively leverages Hyper-V and continues to enhance it, its marketing has not effectively told and amplified the business benefit and value, including where and how Hyper-V is deployed.

Hyper-V with Server 2025 includes discrete device assignment to VM (e.g., resources dedicated to VMs). However, dedicating a device like a GPU to a VM prevents resource sharing, failover cluster, or live migration. On the other hand, Server 2025 Hyper-V supports GPU-P (GPU Partitioning), enabling GPU(s) to be shared across multiple VMs. GPUs can be partitioned and assigned to VMs, with GPUs and GPU partitioning enabled across various hosts.

In addition to partitioning, GPUs can be placed into GPU pools for HA. Live migration and cluster failover (requires PCIe SR-IOV), AMD Lilan or later, Intel Sapphire Rapids, among other requirements, can be done. Another enhancement is Dynamic Processor Compatibility, which allows mixed processor generations to be used across VMs and then masks out functionalities that are not common across processors. Other enhancements include optimized UEFI, secure boot, TPM , and hot add and removal of NICs.

Networking

Network ATC provides intent-based deployments where you specify desired outcomes or states, and the configuration is optimized for what you want to do. Network HUD enables always-on monitoring and network remediation. Software Defined Network (SDN) optimization for transparent multi-site L2 and L3 connectivity and improved SDN gateway performance enhancements.

SMB over QUIC leverages TLS 1.3 security to streamline local, mobile, and remote networking while enhancing security with configuration from the server or client. In addition, there is an option to turn off SMB NTLM at the SMB level, along with controls on which versions of SMB to allow or refuse. Also being added is a brute force attack limiter that slows down SMB authentication attacks.

Management, Upgrades, General user Experience

The upgrade process moving forward with Windows Server 2025 is intended to be seamless and less disruptive. These enhancements include hot patching and flighting (e.g., LTSC Windows server upgrades similar to how you get regular updates). For hybrid management, an easier-to-use wizard to enable Azure Arc is planned. For flexibility, if present, WiFi networking and Bluetooth devices are automatically enabled with Windows Server 2025 focused on edge and remote deployment scenarios.

Also new is an optional subscription-based licensing model for Windows Server 2025 while retaining the existing perpetual use. Let me repeat that so as not to create new vFUD, you can still license Windows Server (and thus Hyper-V) using traditional perpetual models and SKUs.

Additional Resources Where to learn more

The following links are additional resources to learn about Windows Server, Server 2025, Hyper-V, and related data infrastructures and tradecraft topics.

What’s New in Windows Server v.Next video from Microsoft Ignite (11/17/23)
Microsoft Windows Server 2025 Whats New
Microsoft Windows Server 2025 Preview Build Download
Microsoft Windows Server 2025 Preview Build Download (site)
Microsoft Evaluation Center (various downloads for trial)
Microsoft Eval Center Windows Server 2022 download
Microsoft Hyper-V on Windows Information
Microsoft Hyper-V on Windows Server Information
Microsoft Hyper-V on Windows Desktop (e.g., Win10)
Microsoft Windows Server Release Information
Microsoft Hyper-V Server 2019
Microsoft Azure Virtual Machines Trial
Microsoft Azure Elastic SAN
If NVMe is the answer, what are the questions?
NVMe Primer (or refresh), The NVMe Place.

Additional learning experiences along with common questions (and answers), are found in my Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

Hyper-V is very much alive, and being enhanced. Hyper-V is being used from Microsoft Azure to Windows Server and other platforms at scale, and in smaller environments.

If you are looking for alternatives to VMware or simply exploring virtualization options, do your due diligence and check out Hyper-V. Hyper-V may or may not be what you want; however, is it what you need? Looking at Hyper-V now and upcoming enhancements also positions you when asked by management if you have done your due  diligence vs relying on vFUD.

Do a quick Proof of Concept, spin up a lab, and check out currently available Hyper-V. For example, on Server 2022 or 2025 preview, to get a feel for what is there to meet your needs and wants. Download the bits and get some hands on time with Hyper-V and Windows Server 2025.

Wrap up

Hyper-V is alive and enhanced with Windows Server 2025 and other releases.

Ok, nuff said, for now.

Cheers Gs

Greg Schulz – Nine time Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2025 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of UnlimitedIO LLC.