Industry Trends and Perspectives: RAID Rebuild Rates

This is part of an ongoing series of short industry trends and perspectives blog posts briefs.

These short posts compliment other longer posts along with traditional industry trends and perspective white papers, research reports, solution brief content found at www.storageioblog.com/reports.

There is continued concern about how long large capacity disk drives take to be rebuilt in RAID sets particularly as the continued shift from 1TB to 2TB occurs. It should not be a surprise that a disk with more capacity will take longer to rebuild or copy as well as with more drives; the likely hood of one failing statistically increases.

Not to diminish the issue, however also to avoid saying the sky is falling, we have been here before! In the late 90s and early 2000s there was a similar concern with the then large 9GB, 18GB let alone emerging 36GB and 72GB drives. There have been improvements in RAID as well as rebuild algorithms along with other storage system software or firmware enhancements not to mention boost in processor or IO bus performance.

However not all storage systems are equal even if they use the same underlying processors, IO busses, adapters or disk drives. Some vendors have made significant improvements in their rebuild times where each generation of software or firmware can reconstruct a failed drive faster. Yet for others, each subsequent iteration of larger capacity disk drives brings increased rebuild times.

If disk drive rebuild times are a concern, ask your vendor or solution provider what they are doing as well as have done over the past several years to boost their performance. Look for signs of continued improvement in rebuild and reconstruction performance as well as decrease in error rates or false drive rebuilds.

Related and companion material:
Blog: RAID data protection remains relevant
Blog: Optimize Data Storage for Performance and Capacity Efficiency

That is all for now, hope you find this ongoing series of current and emerging Industry Trends and Perspectives interesting.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Industry Trends and Perspectives: Storage Virtualization and Virtual Storage

This is part of an ongoing series of short industry trends and perspectives blog posts briefs.

These short posts compliment other longer posts along with traditional industry trends and perspective white papers, research reports, solution brief content found at www.storageioblog.com/reports.

The topic of this post is a trend server virtualization and recent EMC virtual storage announcements.

Virtual storage or storage virtualization has been as a technology and topic around for some time now. Some would argue that storage virtualization is several years old while others would say many decades depending on your view or definition which will vary by preferences, product, vendor, open or closed, hardware, network, software not to mention feature and functionality.

Consequently there are many different views and definitions of storage virtualization some tied to that of product specifications often leading to apples and oranges comparison.

Back in the early to mid 2000s, there was plenty of talk around storage virtualization which then gave way to a relative quiet period before seeing adoption pickup in terms of deployment later in the decade (at least for block based).

More recently there has a been a renewed flurry of storage virtualization activity with many vendors now shipping their latest versions of tools and functionality, EMC announcing VPLEX as well as the file virtualization vendors continuing to try and create a market for their wares (give it time, like block based, it will evolve).

One of the trends around storage virtualization and part of the play on words EMC is using is to change the order of the words. That is where storage virtualization is often aligned with product implementation (e.g. software on an appliance or switch or in a storage system) used primarily for aggregation of heterogeneous storage, with VPLEX EMC is referring to it as virtual storage.

What is interesting here is the play on life beyond consolidation a trend that is also occurring with servers or using virtualization for agility, flexibility and ease of management for upgrades, add, move and changes as opposed to simply pooling of LUNs and underlying storage devices. Stay tuned and watch for more in this space as well as read the blog post below about VPLEX for more on this topic.

Related and companion material:
Blog: EMC VPLEX: Virtual Storage Redefined or Respun?

That is all for now, hope you find this ongoing series of current and emerging Industry Trends and Perspectives interesting.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Industry Trends and Perspectives: Tape, Disk and Dedupe Coexistence

This is part of an ongoing series of short industry trends and perspectives blog posts briefs.

These short posts compliment other longer posts along with traditional industry trends and perspective white papers, research reports, solution brief content found at www.storageioblog.com/reports.

The topic of this post is a trend that I am seeing and hearing about during discussions with IT professionals pertaining to how tape is still alive despite common industry FUD.

Not only is tape still very much alive with recent enhancements including LTO5 with an extended range roadmap, it is also finding new roles. In addition to being deployed in new roles, tape is coexisting and complimenting dedupe or other disk based backup and data protection approaches and vice versa.

Hearing tape is alive in the same sentence as dedupe deployments continuing may sound counter intuitive if you only listen to some vendor pitches.

However if you talk with IT customers particularly those in larger environments or with VARs that provide complete solution offering focus you will hear a different tune than tape is dead and dedupe rules. Tape is still alive however its roll is changing. Watch for more on this and related topics.

That is all for now, hope you find this ongoing series of current and emerging Industry Trends and Perspectives interesting.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Industry Trends and Perspectives Blog Series

This is the first in a series of ongoing short industry trends and perspectives blog post briefs. These short posts compliment other longer posts along with traditional industry trends and perspective white papers, research reports, solution brief content found at www.storageioblog.com/reports.

I often get asked by people what Im seeing or hearing new (aka what is the Buzz).

Sometimes when I tell those who ask about new things or what they have not read or heard about yet, I get interesting as well as varied sometimes even funny reactions. In most cases unless the person does not agree or like the trend, the reaction shifts to one of wanting to know more including what is driving or causing the activity, its impact along with what can be done.

As some are new or emerging they may not yet be being covered in other venues, research, surveys, studies or reports. Thus do not be surprised or alarmed if there is something listed here or in one of the subsequent series post that you have not seen or read elsewhere yet while others may already be familiar. Some are emerging trends perhaps even being short lived while others will have longer legs to evolve.

Some general trends that I am seeing and hearing from IT professionals include:

Click on the above links to read more about these the first in a series of quick Industry Trends and Perspectives posts as well as watch for more in the coming weeks and months.

That is all for now. I hope you find these ongoing series of current or emerging Industry Trends and Perspectives interesting.

Cheers gs

Greg Schulz – Author The Green and Virtual Data Center (CRC) and Resilient Storage Networks (Elsevier)
twitter @storageio

Upcoming Event: Industry Trends and Perspective European Seminar

Event Seminar Announcement:

IT Data Center, Storage and Virtualization Industry Trends and Perspective
June 16, 2010 Nijkerk, GELDERLAND Netherlands

Event TypeTraining/Seminar
Event TypeSeminar Training with Greg Schulz of US based Server and StorageIO
SponsorBrouwer Storage Consultancy
Target AudienceStorage Architects, Consultants, Pre-Sales, Customer (technical) decison makers
KeywordsCloud, Grid, Data Protection, Disaster Recovery, Storage, Green IT, VTL, Encryption, Dedupe, SAN, NAS, Backup, BC, DR, Performance, Virtualization, FCoE
Location and VenueAmpt van Nijkerk Berencamperweg
Nijkerk, GELDERLAND NL
WhenWed. June 16, 2010 9AM-5PM Local
Price€ 450,=
Event URLLinkedIn: https://storageioblog.com/book4.html
ContactGert Brouwer
Olevoortseweg 43
3861 MH Nijkerk
The Netherlands
Phone: +31-33-246-6825
Fax: +31-33-245-8956
Cell Phone: +31-652-601-309

info@brouwerconsultancy.com

AbstractGeneral items that will be covered include: What are current and emerging macro trends, issues, challenges and opportunities. Common IT customer and IT trends, issues and challenges. Opportunities for leveraging various current, new and emerging technologies, techniques. What are some new and improved technologies and techniques. The seminar will provide insight on how to address various IT and data storage management challenges, where and how new and emerging technologies can co-exist as well as compliment installed resources for maximum investment protection and business agility. Additional themes include cost and storage resource management, optimization and efficiency approaches along with where and how cloud, virtualizaiton and other topics fit into existing environments.

Buzzwords and topics to be discussed include among others: FC and FCoE, SAS, SATA, iSCSI and NAS, I/O Vritualization (IOV) and convergence SSD (Flash and RAM), RAID, Second Generation MAID and IPM, Tape Performance and Capacity planning, Performance and Capacity Optimization, Metrics IRM tools including DPM, E2E, SRA, SRM, as Well as Federated Management Data movement and migration including automation or policy enabled HA and Data protection including Backup/Restore, BC/DR , Security/Encryption VTL, CDP, Snapshots and replication for virtual and non virtual environments Dynamic IT and Optimization , the new Green IT (efficiency and productivity) Distributed data protection (DDP) and distributed data caching (DDC) Server and Storage Virtualization along with discussion about life beyond consolidation SAN, NAS, Clusters, Grids, Clouds (Public and Private), Bulk and object based Storage Unified and vendor prepackaged stacked solutions (e.g. EMC VCE among others) Data footprint reduction (Servers, Storage, Networks, Data Protection and Hypervisors among others.

Learn about other events involving Greg Schulz and StorageIO at www.storageio.com/events

EMC VPLEX: Virtual Storage Redefined or Respun?

In a flurry of announcements that coincide with EMCworld occurring in Boston this week of May 10 2010 EMC officially unveiled the Virtual Storage vision initiative (aka twitter hash tag of #emcvs) and initial VPLEX product. The Virtual Storage initiative was virtually previewed back in March (See my previous post here along with one from Stu Miniman (twitter @stu) of EMC here or here) and according to EMC the VPLEX product was made generally available (GA) back in April.

The Virtual Storage vision and associated announcements consisted of:

  • Virtual Storage vision – Big picture  initiative view of what and how to enable private clouds
  • VPLEX architecture – Big picture view of federated data storage management and access
  • First VPLEX based product – Local and campus (Metro to about 100km) solutions
  • Glimpses of how the architecture will evolve with future products and enhancements


Figure 1: EMC Virtual Storage and Virtual Server Vision and Big Pictures

The Big Picture
The EMC Virtual Storage vision (Figure 1) is the foundation of a private IT cloud which should enable characteristics including transparency, agility, flexibility, efficient, always on, resiliency, security, on demand and scalable. Think of it this way, EMC wants to enable and facilitate for storage what is being done by server virtualization hypervisor vendors including VMware (which happens to be owned by EMC), Microsoft HyperV and Citrix/Xen among others. That is, break down the physical barriers or constraints around storage similar to how virtual servers release applications and their operating systems from being tied to a physical server.

While the current focus of desktop, server and storage virtualization has been focused on consolidation and cost avoidance, the next big wave or phase is life beyond consolidation where the emphasis expands to agility, flexibility, ease of use, transparency, and portability (Figure 2). In the next phase which puts an emphasis around enablement and doing more with what you have while enhancing business agility focus extends from how much can be consolidated or the number of virtual machines per physical machine to that of using virtualization for flexibility, transparency (read more here and here or watch here).


Figure 2: Virtual Storage Big Picture

That same trend will be happening with storage where the emphasis also expands from how much data can be squeezed or consolidated onto a given device to that of enabling flexibility and agility for load balancing, BC/DR, technology upgrades, maintenance and other routine Infrastructure Resource Management (IRM) tasks.

For EMC, achieving this vision (both directly for storage, and indirectly for servers via their VMware subsidiary) is via local and distributed (metro and wide area) federation management of physical resources to support virtual data center operations. EMC building blocks for delivering this vision including VPLEX, data and storage management federation across EMC and third party products, FAST (fully automated storage tiering), SSD, data protection and data footprint reduction and data protection management products among others.

Buzzword bingo aside (e.g. LAN, SAN, MAN, WAN, Pots and Pans) along with Automation, DWDM, Asynchronous, BC, BE or Back End, Cache coherency, Cache consistency, Chargeback, Cluster, db loss, DCB, Director, Distributed, DLM or Distributed Lock Management, DR, Foe or Fibre Channel over Ethernet, FE or Front End, Federated, FAST, Fibre Channel, Grid, HyperV, Hypervisor, IRM or Infrastructure Resource Management, I/O redirection, I/O shipping, Latency, Look aside, Metadata, Metrics, Public/Private Cloud, Read ahead, Replication, SAS, Shipping off to Boston, SRA, SRM, SSD, Stale Reads, Storage virtualization, Synchronization, Synchronous, Tiering, Virtual storage, VMware and Write through among many other possible candidates the big picture here is about enabling flexibility, agility, ease of deployment and management along with boosting resource usage effectiveness and presumably productivity on a local, metro and future global basis.


Figure 3: EMC Storage Federation and Enabling Technology Big Picture

The VPLEX Big Picture
Some of the tenants of the VPLEX architecture (Figure 3) include a scale out cluster or grid design for local and distributed (metro and wide area) access where you can start small and evolve as needed in a predictable and deterministic manner.


Figure 4: Generic Virtual Storage (Local SAN and MAN/WAN) and where VPLEX fits

The VPLEX architecture is targeted towards enabling next generation data centers including private clouds where ease and transparency of data movement, access and agility are essential. VPLEX sits atop existing EMC and third party storage as a virtualization layer between physical or virtual servers and in theory, other storage systems that rely on underlying block storage. For example in theory a NAS (NFS, CIFS, and AFS) gateway, CAS content archiving or Object based storage system or purpose specific database machine could sit between actual application servers and VPLEX enabling multiple layers of flexibility and agility for larger environments.

At the heart of the architecture is an engine running a highly distributed data caching algorithm that uses an approach where a minimal amount of data is sent to other nodes or members in the VPLEX environment to reduce overhead and latency (in theory boosting performance). For data consistency and integrity, a distributed cache coherency model is employed to protect against stale reads and writes along with load balancing, resource sharing and failover for high availability. A VPLEX environment consists of a federated management view across multiple VPLEX clusters including the ability to create a stretch volume that is accessible across multiple VPLEX clusters (Figure 5).


Figure 5: EMC VPLEX Big Picture


Figure 6: EMC VPLEX Local with 1 to 4 Engines

Each VPLEX local cluster (Figure 6) is made up of 1 to 4 engines (Figure 7) per rack with each engine consisting of two directors each having 64GByte of cache, localized compute Intel processors, 16 Front End (FE) and 16 Back End (BE) Fibre Channel ports configured in a high availability (HA). Communications between the directors and engines is Fibre Channel based. Meta data is moved between the directors and engines in 4K blocks to maintain consistency and coherency. Components are fully redundant and include phone home support.


Figure 7: EMC VPLEX Engine with redundant directors

VPLEX initially host servers supported include VMware, Cisco UCS, Windows, Solaris, IBM AIX, HPUX and Linux along with EMC PowerPath and Windows multipath management drivers. Local server clusters supported include Symantec VCS, Microsoft MSCS and Oracle RAC along with various volume mangers. SAN fabric connectivity supported includes Brocade and Cisco as well as Legacy McData based products.

VPLEX also supports cache (Figure 8 ) write thru to preserve underlying array based functionality and performance with 8,000 total virtualized LUNs per system. Note that underlying LUNs can be aggregated or simply passed through the VPLEX. Storage that attaches to the BE Fibre Channel ports include EMC Symmetrix VMAX and DMX along with CLARiiON CX and CX4. Third party storage supported includes HDS9000 and USPV/VM along with IBM DS8000 and others to be added as they are certified. In theory given that the VPLEX presents block based storage to hosts; one would also expect that NAS, CAS or other object based gateways and servers that rely on underlying block storage to also be supported in the future.


Figure 8: VPLEX Architecture and Distributed Cache Overview

Functionality that can be performed between the cluster nodes and engines with VPLEX include data migration and workload movement across different physical storage systems or sites along with shared access with read caching on a local and distributed basis. LUNS can also be pooled across different vendors underlying storage solutions that also retain their native feature functionality via VPLEX write thru caching.

Reads from various servers can be resolved by any node or engine that checks their cache tables (Figure 8 ) to determine where to resolve the actual I/O operation from. Data integrity checks are also maintained to prevent stale reads or write operations from occurring. Actual meta data communications between nodes is very small to enable state fullness while reducing overhead and maximizing performance. When a change to cache data occurs, meta information is sent to other nodes to maintain the distributed cache management index schema. Note that only pointers to where data and fresh cache entries reside are what is stored and communicated in the meta data via the distributed caching algorithm.


Figure 9: EMC VPLEX Metro Today

For metro deployments, two clusters (Figure 9) are utilized with distances supported up to about 100km or about 5ms of latency in a synchronous manner utilizing long distance Fibre Channel optics and transceivers including Dense Wave Division Multiplexing (DWDM) technologies (See Chapter 6: Metropolitan and Wide Area Storage Networking in Resilient Storage Networking (Elsevier) for additional details on LAN, MAN and WAN topics).

Initially EMC is supporting local or Metro including Campus based VPLEX deployments requiring synchronous communications however asynchronous (WAN) Geo and Global based solutions are planned for the future (Figure 10).


Figure 10: EMC VPLEX Future Wide Area and Global

Online Workload Migration across Systems and Sites
Online workload or data movement and migration across storage systems or sites is not new with solutions available from different vendors including Brocade, Cisco, Datacore, EMC, Fujitsu, HDS, HP, IBM, LSI and NetApp among others.

For synchronization and data mobility operations such as a VMware Vmotion or Microsoft HyperV Live migration over distance, information is written to separate LUNs in different locations across what are known as stretch volumes to enable non disruptive workload relocation across different storage systems (arrays) from various vendors. Once synchronization is completed, the original source can be disconnected or taken offline for maintenance or other common IRM tasks. Note that at least two LUNs are required, or put another way, for every stretch volume, two LUNs are subtracted from the total number of available LUNs similar to how RAID 1 mirroring requires at least two disk drives.

Unlike other approaches that for coherency and performance rely on either no cached data, or, extensive amounts of cached data along with subsequent overhead for maintaining state fullness (consistency and coherency) including avoiding stale reads or writes, VPLEX relies on a combination of distributed cache lookup tables along with pass thru access to underlying storage when or where needed. Consequently large amounts of data does not need to be cached as well as shipped between VPLEX devices to maintain data consistency, coherency or performance which should also help to keep costs affordable.

Approach is not unique, it is the implementation
Some storage virtualization solutions that have been software based running on an appliance or network switch as well as hardware system based have had a focus of emulating or providing competing capabilities with those of mid to high end storage systems. The premise has been to use lower cost, less feature enabled storage systems aggregated behind the appliance, switch or hardware based system to provide advanced data and storage management capabilities found in traditional higher end storage products.

VPLEX while like any tool or technology could be and probably will be made to do other things than what it is intended for is really focused on, flexibility, transparency and agility as opposed to being used as a means of replacing underlying storage system functionality. What this means is that while there is data movement and migration capabilities including ability to synchronize data across sites or locations, VPLEX by itself is not a replacement for the underlying functionality present in both EMC and third party (e.g. HDS, HP, IBM, NetApp, Oracle/Sun or others) storage systems.

This will make for some interesting discussions, debates and applies to oranges comparisons in particular with those vendors whose products are focused around replacing or providing functionality not found in underlying storage system products.

In a nut shell summary, VPLEX and the Virtual Storage story (vision) is about enabling agility, resiliency, flexibility, data and resource mobility to simply IT Infrastructure Resource Management (IRM). One of the key themes of global storage federation is anywhere access on a local, metro, wide area and global basis across both EMC and heterogeneous third party vendor hardware.

Lets Put it Together: When and Where to use a VPLEX
While many storage virtualization solutions are focused around consolidation or pooling, similar to first wave server and desktop virtualization, the next general broad wave of virtualization is life beyond consolidation. That means expanding the focus of virtualization from consolidation, pooling or LUN aggregation to that of enabling transparency for agility, flexibility, data or system movement, technology refresh and other common time consuming IRM tasks.

Some applications or usage scenarios in the future should include in addition to VMware Vmotion, Microsoft HypverV and Microsoft Clustering along with other host server closuring solutions.


Figure 11: EMC VPLEX Usage Scenarios

Thoughts and Industry Trends Perspectives:

The following are various thoughts, comments, perspectives and questions pertaining to this and storage, virtualization and IT in general.

Is this truly unique as is being claimed?

Interestingly, the message Im hearing out of EMC is not the claim that this is unique, revolutionary or the industries first as is so often the case by vendors, rather that it is their implementation and ability to deploy on a broad perspective basis that is unique. Now granted you will probably hear as is often the case with any vendor or fan boy/fan girl spins of it being unique and Im sure this will also serve up plenty of fodder for mudslinging in the blogsphere, YouTube galleries, twitter land and beyond.

What is the DejaVu factor here?

For some it will be nonexistent, yet for others there is certainly a DejaVu depending on your experience or what you have seen and heard in the past. In some ways this is the manifestation of many vision and initiatives from the late 90s and early 2000s when storage virtualization or virtual storage in an open context jumped into the limelight coinciding with SAN activity. There have been products rolled out along with proof of concept technology demonstrators, some of which are still in the market, others including companies have fallen by the way side for a variety of reasons.

Consequently if you were part of or read or listened to any of the discussions and initiatives from Brocade (Rhapsody), Cisco (SVC, VxVM and others), INRANGE (Tempest) or its successor CNT UMD not to mention IBM SVC, StorAge (now LSI), Incipient (now part of Texas Memory) or Troika among others you should have some DejaVu.

I guess that also begs the question of what is VPLEX, in band, out of band or hybrid fast path control path? From what I have seen it appears to be a fast path approach combined with distributed caching as opposed to a cache centric inband approaches such as IBM SVC (either on a server or as was tried on the Cisco special service blade) among others.

Likewise if you are familiar with IBM Mainframe GDPS or even EMC GDDR as well as OpenVMS Local and Metro clusters with distributed lock management you should also have DejaVu. Similarly if you had looked at or are familiar with any of the YottaYotta products or presentations, this should also be familiar as EMC acquired the assets of that now defunct company.

Is this a way for EMC to sell more hardware along with software products?

By removing barriers enabling IT staffs to support more data on more storage in a denser and more agile footprint the answer should be yes, something that we may see other vendors emulate, or, make noise about what they can or have been doing already.

How is this virtual storage spin different from the storage virtualization story?

That all depends on your view or definition as well as belief systems and preferences for what is or what is not virtual storage vs. storage virtualization. For some who believe that storage virtualization is only virtualization if and only if it involves software running on some hardware appliance or vendors storage system for aggregation and common functionality than you probably wont see this as virtual storage let alone storage virtualization. However for others, it will be confusing hence EMC introducing terms such as federation and avoiding terms including grid to minimize confusion yet play off of cloud crowd commotion.

Is VPLEX a replacement for storage system based tiering and replication?

I do not believe so and even though some vendors are making claims that tiered storage is dead, just like some vendors declared a couple of years ago that disk drives were going to be dead this year at the hands of SSD, neither has come to life so to speak pun intended. What this means for VPLEX is that it leverages underlying automated or manual tiering found in storage systems such as EMC FAST enabled or similar policy and manual functions in third party products.

What VPLEX brings to the table is the ability to transparently present a LUN or volume locally or over distance with shared access while maintaining cache and data coherency. This means that if a LUN or volume moves the applications or file system or volume managers expecting to access that storage will not be surprised, panic or encounter failover problems. Of course there will be plenty of details to be dug into and seen how it all actually works as is the case with any new technology.

Who is this for?

I see this as for environments that need flexibility and agility across multiple storage systems either from one or multiple vendors on a local or metro or wide area basis. This is for those environments that need ability to move workloads, applications and data between different storage systems and sites for maintenance, upgrades, technology refresh, BC/DR, load balancing or other IRM functions similar to how they would use virtual server migration such as VMotion or Live migration among others.

Do VPLEX and Virtual Storage eliminate need for Storage System functionality?

I see some storage virtualization solutions or appliances that have a focus of replacing underlying storage system functionality instead of coexisting or complementing. A way to test for this approach is to listen or read if the vendor or provider says anything along the lines of eliminating vendor lock in or control of the underlying storage system. That can be a sign of the golden rule of virtualization of whoever controls the virtualization functionality (at the server hypervisor or storage) controls the gold! This is why on the server side of things we are starting to see tiered hypervisors similar to tiered servers and storage where mixed hypervisors are being used for different purposes. Will we see tiered storage hypervisors or virtual storage solutions the answer could be perhaps or it depends.

Was Invista a failure not going into production and this a second attempt at virtualization?

There is a popular myth in the industry that Invista never saw the light of day outside of trade show expo or other demos however the reality is that there are actual customer deployments. Invista unlike other storage virtualization products had a different focus which was that around enabling agility and flexibility for common IRM tasks, similar the expanded focus of VPLEX. Consequently Invista has often been in apples to oranges comparison with other virtualization appliances that have as focus pooling along with other functions or in some cases serving as an appliance based storage system.

The focus around Invista and usage by those customers who have deployed it that I have talked with is around enabling agility for maintenance, facilitating upgrades, moves or reconfiguration and other common IRM tasks vs using it for pooling of storage for consolidation purposes. Thus I see VPLEX extending on the vision of Invista in a role of complimenting and leveraging underlying storage system functionality instead of trying to replace those capabilities with that of the storage virtualizer.

Is this a replacement for EMC Invista?

According to EMC the answer is no and that customers using Invista (Yes, there are customers that I have actually talked to) will continue to be supported. However I suspect that over time Invista will either become a low end entry for VPLEX, or, an entry level VPLEX solution will appear sometime in the future.

How does this stack up or compare with what others are doing?

If you are looking to compare to cache centric platforms such as IBMs SVC that adds extensive functionality and capabilities within the storage virtualization framework this is an apples to oranges comparison. VPLEX is providing cache pointers on a local and global basis functioning in a compliment to underlying storage system model where SVC caches at the specific cluster basis and enhancing functionality of underlying storage system. Rest assured there will be other apples to oranges comparisons made between these platforms.

How will this be priced?

When I asked EMC about pricing, they would not commit to a specific price prior to the announcement other than indicating that there will be options for on demand or consumption (e.g. cloud pricing) as well as pricing per engine capacity as well as subscription models (pay as you go).

What is the overhead of VPLEX?

While EMC runs various workload simulations (including benchmarks) internally as well as some publicly (e.g. Microsoft ESRP among others) they have been opposed to some storage simulation benchmarks such as SPC. The EMC opposition to simulations such as SPC have been varied however this could be a good and interesting opportunity for them to silence the industry (including myself) who continue ask them (along with a couple of other vendors including IBM and their XIV) when they will release public results.

What the interesting opportunity I think is for EMC is that they do not even have to benchmark one of their own storage systems such as a CLARiiON or VMAX, instead simply show the performance of some third party product that already is tested on the SPC website and then a submission with that product running attached to a VPLEX.

If the performance or low latency forecasts are as good as they have been described, EMC can accomplish a couple of things by:

  • Demonstrating the low latency and minimal to no overhead of VPLEX
  • Show VPLEX with a third party product comparing latency before and after
  • Provide a comparison to other virtualization platforms including IBM SVC

As for EMC submitting a VMAX or CLARiiON SPC test in general, Im not going to hold my breath for that, instead, will continue to look at the other public workload tests such as ESRP.

Additional related reading material and links:

Resilient Storage Networks: Designing Flexible Scalable Data Infrastructures (Elsevier)
Chapter 3: Networking Your Storage
Chapter 4: Storage and IO Networking
Chapter 6: Metropolitan and Wide Area Storage Networking
Chapter 11: Storage Management
Chapter 16: Metropolitan and Wide Area Examples

The Green and Virtual Data Center (CRC)
Chapter 3: (see also here) What Defines a Next-Generation and Virtual Data Center
Chapter 4: IT Infrastructure Resource Management (IRM)
Chapter 5: Measurement, Metrics, and Management of IT Resources
Chapter 7: Server: Physical, Virtual, and Software
Chapter 9: Networking with your Servers and Storage

Also see these:

Virtual Storage and Social Media: What did EMC not Announce?
Server and Storage Virtualization – Life beyond Consolidation
Should Everything Be Virtualized?
Was today the proverbial day that he!! Froze over?
Moving Beyond the Benchmark Brouhaha

Closing comments (For now):
As with any new vision, initiative, architecture and initial product there will be plenty of questions to ask, items to investigate, early adopter customers or users to talk with and determine what is real, what is future, what is usable and practical along with what is nice to have. Likewise there will be plenty of mud ball throwing and slinging between competitors, fans and foes which for those who enjoy watching or reading those you should be well entertained.

In general, the EMC vision and story builds on and presumably delivers on past industry hype, buzz and vision with solutions that can be put into environments as productivity tool that works for the customer, instead of the customer working for the tool.

Remember the golden rule of virtualization which is in play here is that whoever controls the virtualization or associated management controls the gold. Likewise keep in mind that aggregation can cause aggravation. So do not be scared, however look before you leap meaning do your homework and due diligence with appropriate levels of expectations, aligning applicable technology to the task at hand.

Also, if you have seen or experienced something in the past, you are more likely to have DejaVu as opposed to seeing things as revolutionary. However it is also important to leverage lessons learned for future success. YottaYotta was a lot of NaddaNadda, lets see if EMC can leverage their past experiences to make this a LottaLotta.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Happy Earth Day 2010!

Here in the northern hemisphere it is late April and thus mid spring time.

That means the trees sprouting their buds, leaves and flowering while other plants and things come to life.

In Minnesota where I live, there is not a cloud in the sky today, the sun is out and its going to be another warm day in the 60s, a nice day to not be flying or traveling and thus enjoy the fine weather.

Among other things of note on this earth day 2010 include:

  • Minnesota Twins new home Target Field was just named the most Green Major League Baseball (MLB) stadium as well as greenest in the US with its LEED (or see here) certification.
  • Icelands Eyjafjallajokull volcano continues to spew water vapor steam, CO2 and ash at a slower rate than last week when it first erupted with some speculating that there could be impending activity from other Icelandic volcanos. Some estimates placed the initial eruption CO2 impact and subsequent flight cancellations to be neutral, essentially canceling each other out, however Im sure we will be hearing many different stories in the weeks to come.

  • Image of Iceland Eyjafjallajokull Volcano Eruption via Boston.com

  • Flights to/from and within Europe and the UK are returning to normal
  • Toyota continues to deal with recalls on some of their US built automobiles including the energy efficient Prius, some of which may have been purchased during the recent US cash for clunkers (CFC) program (hmm, is that ironic or what?)
  • Greenpeace in addition to using a Facebook page to protest Facebook data center practices is now targeting cloud IT in general including just before the Apple iPad launch (Heres some comments from Microsoft).
  • Vendors in all industries are lining up for the second coming of Green marketing or perhaps Green Washing 2.0

The new Green IT, moving beyond Green wash and hype

Speaking of Green IT including Green Computing, Green Storage, Virtualization, Cloud, Federation and more, here is a link to a post that I did back in February discussing how the Green Gap continues to exist.

The green gap exists and centers around the confusion of what Green means along with the common disconnects between core IT issues or barriers to becoming more efficient, effective, flexible and optimized from both an economic as well as environmental basis to those commonly messaged to under the green umbrella (read more here).

Regardless of where you stand on Green, Green washing, Green hype, environmentalism, eco-tech and other related themes, for at least a moment, set aside the politics and science debates and think in terms of practicality and economics.

That is, look for simple, recurring things that can be done to stretch your dollar or spending ability in order to support demand (See figure below) in a more effective manner along with reducing waste. For example to meet growing demand requirements in the face of shrinking or stagnate budgets, the action is to stretch available resources to do more work when needed, or retain more where applicable with the same or less footprint. What this means is that while common messaging is around reducing costs, look at the inverse which is to do more with available budgets or resources. The result is green in terms of economic and environmental benefits.

IT Resource demand
Increasing IT Resource Demand

Green IT wheel of oppourtunity
Green IT enablement techniques and technologies

Look at and understand the broader aspects of being green which has both economical and environmental benefits without compromising on productivity or functionality. There are many aspects or facets of being green beyond those commonly discussed or perceived to be so (See Green IT enablement techniques and technologies figure above).

Certainly recycling of paper, water, aluminum, plastics and other items including technology equipment are important to reduce waste and are things to consider. Another aspect of reducing waste particularly in IT is to avoid rework that can range from finding network bottlenecks or problems that result in continuous retransmission of data for failed backup, replication or data transfers that cause lost opportunity or resource consumption. Likewise programming errors (bugs) or miss configuration that results in rework or lost productivity also are forms of waste among others.

Another theme is that of shifting from energy avoidance to energy efficiency and effectiveness which are often thought to the same. However the expanded focus is also about getting more work done when needed with the same or less resources (See figure below) for example increasing activity (IOPS, transactions, emails or video served, bandwidth or messages) per watt of energy consumed.

From energy avoidence to effectiveness
Shifting from energy avoidance to effectiveness

One of the many techniques and approaches for addressing energy including stretching resources and being green include intelligent power management (IPM). With IPM, the focus is not strictly centered around energy avoidance, instead about inteligently adapting to different workloads or activity balancing performance and energy. Thus when there is work to be done, get the work done quickly with as little energy as possible (IOP or activity per watt), when there is less work, provide lower performance and thus smaller energy requirements, or when no work to be done, going into additional energy saving modes. Thus power management does not have to be exclusively about turrning off the lights or IT equipment in order to be green.

The following two figures look at Green IT past, present and future with an expanding focus around optimization and effectiveness meaning getting more work done, storing more data for longer periods of time, meeting growth demands with what appears to be additional resources however at a lower per unit cost without compromising on performance, availability or economics.

Green IT wheel of oppourtunity
Green IT: Past, present and future shift from avoidance to efficiency and effectiveness

Green IT wheel of oppourtunity
The new Green IT: Boosting business effectiveness, maximize ROI while helping the environment

If you think about going green as simply doing or using things more effectively, reducing waste, working more intelligently or effectively the benefits are both economical and environmentally positive (See the two figures above).

Instead of finding ways to fund green initiatives, shift the focus to how you can enable enhanced productivity, stretching resources further, doing more in the same or smaller footprint (floor space, power, cooling, energy, personal, licensing, budgets) for business economic and environmental sustainability with the result being environmental encampments.

Also keep in mind that small percentage changes on a large or recurring basis have significant benefits. For example a small change in cooling temperatures while staying within vendor guideline recommendations can result in big savings for large environments.

 

Bottom line

If you are a business and discounting green as simply a fad, or perhaps as a public relations (PR) initiative or activity tied to reducing carbon footprints and recycling then you are missing out on economic (top and bottom line) enhancement opportunities.

Likewise if you think that going green is only about the environment, then there is a missed opportunity to boost economic opportunities to help fund those inititiaves.

Going green means many different things to various people and is often more broad and common sense based than most realize.

That is all for now, happy earth day 2010

Cheers gs

Greg Schulz – Author The Green and Virtual Data Center (CRC) and Resilient Storage Networks (Elsevier)
twitter @storageio

Spring 2010 StorageIO Newsletter

Welcome to the spring 2010 edition of the Server and StorageIO (StorageIO) news letter.

This edition follows the inaugural issue (Winter 2010) incorporating feedback and suggestions as well as building on the fantastic responses received from recipients.

A couple of enhancements included in this issue (marked as New!) include a Featured Related Site along with Some Interesting Industry Links. Another enhancement based on feedback is to include additional comment that in upcoming issues will expand to include a column article along with industry trends and perspectives.

StorageIO News Letter Image
Spring 2010 Newsletter

You can access this news letter via various social media venues (some are shown below) in addition to StorageIO web sites and subscriptions. Click on the following links to view the spring 2010 newsletter as HTML or PDF or, to go to the newsletter page.

Follow via Goggle Feedburner here or via email subscription here.

You can also subscribe to the news letter by simply sending an email to newsletter@storageio.com

Enjoy this edition of the StorageIO newsletter, let me know your comments and feedback.

Also, a very big thank you to everyone who has helped make StorageIO a success!.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press, 2011), The Green and Virtual Data Center (CRC Press, 2009), and Resilient Storage Networks (Elsevier, 2004)

twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2012 StorageIO and UnlimitedIO All Rights Reserved

March Metrics and Measuring Social Media

What metrics matter for social media and networking?

Of course the answer should be it depends.

     

For example, would that be number of followers or how many posts, tweets or videos you post?

How about the number of page hits, pages read or unique visitors to a site, perhaps time on site?

Or, how about the number of times a visitor returns to a site or shares the link or information with others?

What about click through rates, page impressions, revenue per page and related metrics?

Maybe the metric is your blog ranking or number of points on your favorite community site such as Storage Monkeys or Wikibon among others?

Another metrics could be number of comments received particularly if your venue is more interactive for debate or discussion purposes compared to a site with many viewers who prefer to read (lurk). Almost forgot number of LinkedIn contacts or face book friends along with you tube and other videos or pod casts as well as who is on your blog roll.

Lets not forget how many are following or those being followed along with RSS subscribers as metrics.

To say that there are many different metrics along with reasons or interests around them would be an understatement to say the least.

Why do metrics matter in social networking?

One reason metrics are used (even by those who do not admit it) is to compare status amongst peers or others in your sphere of influence or in adjacent areas.

Who Are You and Your Influences
Some spheres of influence and influences

In additional metrics also matter for those looking to land or obtain advertising sponsors for their sites or perhaps to help gain exposure if looking for a new job or career move. Metrics also matter to gauge the effectiveness or return on investment with social media that could range from how many followers to how far your brands reach extends into other realms and venues.

In the case of twitter, for some the key metric is number of followers (e.g. popularity) or those being followed with other metrics being number of posts or tweets along with re tweets and list inclusions.For blogs and web sites, incoming links along with site activity among other metrics factor into various ranking sites. Web site activity can be measured in several ways including total hits or visits, pages read and unique visitors among others.

Having been involved with social media from a blogging along with twitter perspective for a couple of years not to mention being a former server and storage capacity planner I find metrics to be interesting. In addition to the metrics themselves, what is also interesting is how they are used differently for various purposes including gauging cause and effect or return on social networking investment.

Regardless of your motives or objectives with metrics, here is a quick synopsis of some tools and sites that I have come across that you may already be using, or if not, that you might be interested in.

What are some metrics?

If you are interested in your twitter effectiveness, see your report card at tweet grade. Another twitter site that provides a twitter grade based on numerous factors is Twitter Grader while Klout.com characterizes your activity on four different planes similar to a Gartner Magic quadrant. Over at the customer collective they have an example of a more thorough gauge of effectiveness looking at several different metrics some of which are covered here.

Sample metricsSample Metrics

Customer Collective Metrics and Rankings

Similar to Technorati, Tekrati, or other directory and index sites, Wefollow is a popular venue for tracking twitter tweeps based on various has tags for example IT or storage among many others. Tweet level provides a composite ranking determined by influence, popularity, engagement and trust. Talkreview.com provides various metrics of blog and websites including unique visitor traffic estimates while Compete.com shows estimated site visitor traffic with option to compare to others. Interested to see how your website or blog is performing in terms of effectiveness and reach in addition to Compete.com, then check out talkreviews.com or Blog grader that looks at and reports on various blog metrics and information.

The sites and tools mentioned are far from an exhaustive listing of sites or metrics for various purposes, rather a sampling of what is available to meet different needs. For example there are Alexa, Goggle and Yahoo rankings among many others.

Wefollow as an example or discussion topic

One of the things that I find interesting is the diversity in the metrics and rankings for example if you were to say look at wefollow for a particularly category in the top 10 or 20, then use one or more of the other tools to see how the various rankings change.

A month or so ago I was curious to see if some of the sites could be gamed beyond running up the number of posts, tweets, followers or followings along with re tweets of which some sites appear to be influenced by. As part of determining what metrics matter and which to ignore or keep in the back pocket for when needed, I looked at and experiment with wefollow.

For those who might have been aware of what I was doing, I went from barely being visible for example in the storage category to jumping into the top 5. Then with some changes, was able to disappear from the top 5 and show up elsewhere and then when all was said and done, return to top rankings.

Does this mean I put a lot of stock or value in wefollow or simply use it as a gauge and metric along with all of the others? The answer is that it is just that, another metric and tool that can be used for gauging effectiveness and reach, or if you prefer, status or what ever your preference and objective are.

How did I change my rankings on wefollow? Simple, experimented with using various tags in different combinations, sometimes only one, sometimes many however keeping them relevant and then waiting several days. Im sure if you are inclined and have plenty of time on your hands, someone can figure out or find out how the actual algorithms work, however for me right now, I have other projects to pursue.

What is the best metric?

That is going to depends on your objectives or what you are trying to accomplish.

As with other measurements and metrics, those for social media provide different points of reference from how many followers to amount of influence.

Depending on your objective, effectiveness may be gauged by number of followers or those being followed, number of posts or the number of times being quoted or referenced by others including in lists.

In some cases rankings that compare with others are based on those sites knowing about you which may mean having to register so that you can be found.

Bottom line, metrics matter however what they mean and their importance will vary depending on objectives, preferences or for accomplishing different things.

One of the interesting things about social networking and media sites is that if you do not like a particularly ranking, list, grade or status then either work to change the influence of those scores, or, come up with your own.

What is your take on metrics that matter, which is of course unless they do not matter to you?

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Its US Census time, What about IT Data Centers?

It is that once a decade activity time this year referred to as the US 2010 Census.

With the 2010 census underway, not to mention also time for completing and submitting your income tax returns, if you are in IT, what about measuring, assessing, taking inventory or analyzing your data and data center resources?

US 2010 Cenus formsUS 2010 Cenus forms
Figure 1: IT US 2010 Census forms

Have you recently taken a census of your data, data storage, servers, networks, hardware, software tools, services providers, media, maintenance agreements and licenses not to mention facilities?

Likewise have you figured out what if any taxes in terms of overhead or burden exists in your IT environment or where opportunities to become more optimized and efficient to get an IT resource refund of sorts are possible?

If not, now is a good time to take a census of your IT data center and associated resources in what might also be called an assessment, review, inventory or survey of what you have, how its being used, where and who is using and when along with associated configuration, performance, availability, security, compliance coverage along with costs and energy impact among other items.

IT Data Center Resources
Figure 2: IT Data Center Metrics for Planning and Forecasts

How much storage capacity do you have, how is it allocated along with being used?

What about storage performance, are you meeting response time and QoS objectives?

Lets not forget about availability, that is planned and unplanned downtime, how have your systems been behaving?

From an energy or power and cooling standpoint, what is the consumption along with metrics aligned to productivity and effectiveness. These include IOPS per watt, transactions per watt, videos or email along with web clicks or page views per watt, processor GHz per watt along with data movement bandwidth per watt and capacity stored per watt in a given footprint.

Other items to look into for data centers besides storage include servers, data and I/O networks, hardware, software, tools, services and other supplies along with physical facility with metrics such as PUE. Speaking of optimization, how is your environment doing, that is another advantage of doing a data center census.

For those who have completed and sent in your census material along with your 2009 tax returns, congratulations!

For others in the US who have not done so, now would be a good time to get going on those activities.

Likewise, regardless of what country or region you are in, its always a good time to take a census or inventory of your IT resources instead of waiting every ten years to do so.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

March Metric Madness: Fun with Simple Math

Its March and besides being spring in north America, it also means tournament season including the NCAA basket ball series among others known as March Madness.

Given the office pools and other forms of playing with numbers tied to the tournaments and real or virtual money, here is a quick timeout looking at some fun with math.

The fun is showing how simple math can be used to show relative growth for IT resources such as data storage. For example, say that you have 10Tbytes of storage or data and that it is growing at only 10 percent per year, in five years with simple math yields 14.6Tbytes.

Now lets assume growth rate is 50 percent per year and in the course of five years, instead of having 10Tbytes, that now jumps to 50.6Tbytes. If you have 100Tbytes today and at 50 percent growth rate, that would yield 506.3 Tbytes or about half of a petabyte in 5 years. If by chance you have say 1Pbyte or 1,000Tbytes today, at 25% year of year growth you would have 2.44Pbytes in 5 years.
Basic Storage Forecast
Figure 1 Fun with simple math and projected growth rates

Granted this is simple math showing basic examples however the point is that depending on your growth rate and amount of either current data or storage, you might be surprised at the forecast or projected needs in only five years.

In a nutshell, these are examples of very basic primitive capacity forecasts that would vary by other factors including if the data is 10Tbytes and your policies is for 25 percent free space, that would require even more storage than the base amount. Go with a different RAID level, some extra space for replication, snapshots, disk to disk backups and replication not to mention test development and those numbers go up even higher.

Sure those amounts can be offset with thin provisioning, dedupe, archiving, compression and other forms of data footprint reduction, however the point here is to realize how simple math can portray a very basic forecast and picture of growth.

Read more about performance and capacity in Chapter 10 – Performance and capacity planning for storage networks – Resilient Storage Networks (Elsevier) as well as at www.cmg.org (Computer Measurement Group)..

And that is all I have to say about this for now, enjoy March madness and fun with numbers.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Hard product vs. soft product

In the IT industry space and data storage or computers and servers particularly so, mention hard product or software product and what comes to mind?

How about physical vs. virtual servers or storage, hardware vs. software solutions, products vs. services?

By contrast, in the aviation and airline industry among others, mention hard vs. soft product and there is a slight variation, which is the difference between one providers service delivery experience.

For example, two or more different airlines or carriers may fly the same aircraft perhaps even with the same engines, instrumentation, navigation electronics and base features, all part of the hard product.

However, their hard product could vary by type of seats, spacing or pitch along with width, overhead luggage room, Video on Demand (VoD) or In Flight Entertainment (IFE) as well as different cabin treatments (carpeting, wall coverings) and galley configurations. Even in scenarios where carriers have the same equipment and hard product, their soft product can differ.

Example of a Soft Product, that is service (or lack there of) being delivered

Example of a Soft Product (Service or lack there of being delivered)

The soft product is the service delivery experience including by the cabin crew (flight attendants and pursers), food (or lack of), beverage, presentation and so forth. Also part of the soft product can be how seats are allocated or available for selection, boarding process and other items that contribute to the overall customer experience.

This all got me thinking on a recent flight where the hard product (e.g. aircraft) of a particular carrier was identical; however given transitions taking place, the soft product still differed as was not fully integrated or merged yet. What the experience got me thinking about is that in IT, customers or solution providers can buy the same technology or hard product (hardware, software, services) from the same suppliers yet present different soft products or service experience to their customers.

Example IT hard product (hardware and software) delivering soft product services

IT equipment being used for delivery of different soft products

Im sure that some of the cloud crowd cheerleaders might even jump up and down and claim that is the benefit of using managed service producers or similar services to obtain a different soft product. And while that may be true in some instances, it is also true that different traditional IT organizations are able to craft and deploy various types of soft products to their customers to meet different service requirements, cost or economic objectives using the same technology used by others.

A different example of hard vs soft product is a site I have visited that has mainframes, windows and open systems servers whose business requires a soft product that is highly available, reliable, flexible, fast and affordable. Needless to say, in that environment, some of the open systems including windows platforms can have reliability close to if not equal to the mainframes.

Example IT hard product (hardware and software) delivering soft product services
IT equipment being used for delivery of different soft products

What is even more amazing is that no special or different hard products (e.g. servers, storage, networks or software) are being used to achieve those services objectives. Rather it is the soft product that achieves the results in terms of how the techniques are used and managed. Likewise I have heard of other environments that have mixed mainframe and open systems, using common hard products as other organizations yet whose soft product is not as robust or reliable as others. If using the same hard product that is same software, hardware, networks and services, how could the soft product be any less robust?

The answer is that good and reliable technology is important, however the technology is only as good as how it is managed, configured, monitored and deployed centering on processes, procedures and best practices.

Next time you are on an airplane, or, using some other service that leverages common technologies (hardware or software or networks) take a moment to look around at the soft product and how the service experience of a common hard product can vary. That is, using common technology, how can various best practices, policies and operating principals to meet diverse service requirements differ to meet demand as well as economic requirements.

What is your take and experience on different hard vs soft products in or around IT?

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Green IT, Green Gap, Tiered Energy and Green Myths

There are many different aspects of Green IT along with several myths or misperceptions not to mention missed opportunities.

There is a Green Gap or disconnect between environmentally aware, focused messaging and core IT data center issues. For example, when I ask IT professionals whether they have or are under direction to implement green IT initiatives, the number averages in the 10-15% range.

However, when I ask the same audiences who has or sees power, cooling, floor space, supporting growth, or addressing environmental health and safety (EHS) related issues, the average is 75 to 90%. What this means is a disconnect between what is perceived as being green and opportunities for IT organizations to make improvements from an economic and efficiency standpoint including boosting productivity.

 

Some IT Data Center Green Myths
Is “green IT” a convenient or inconvenient truth or a legend?

When it comes to green and virtual environments, there are plenty of myths and realities, some of which vary depending on market or industry focus, price band, and other factors.

For example, there are lines of thinking that only ultra large data centers are subject to PCFE-related issues, or that all data centers need to be built along the Columbia River basin in Washington State, or that virtualization eliminates vendor lock-in, or that hardware is more expensive to power and cool than it is to buy.

The following are some myths and realities as of today, some of which may be subject to change from reality to myth or from myth to reality as time progresses.

Myth: Green and PCFE issues are applicable only to large environments.

Reality: I commonly hear that green IT applies only to the largest of companies. The reality is that PCFE issues or green topics are relevant to environments of all sizes, from the largest of enterprises to the small/medium business, to the remote office branch office, to the small office/home office or “virtual office,” all the way to the digital home and consumer.

 

Myth: All computer storage is the same, and powering disks off solves PCFE issues.

Reality: There are many different types of computer storage, with various performance, capacity, power consumption, and cost attributes. Although some storage can be powered off, other storage that is needed for online access does not lend itself to being powered off and on. For storage that needs to be always online and accessible, energy efficiency is achieved by doing more with less—that is, boosting performance and storing more data in a smaller footprint using less power.

 

Myth: Servers are the main consumer of electrical power in IT data centers.

Reality: In the typical IT data center, on average, 50% of electrical power is consumed by cooling, with the balance used for servers, storage, networking, and other aspects. However, in many environments, particularly processing or computation intensive environments, servers in total (including power for cooling and to power the equipment) can be a major power draw.

 

Myth: IT data centers produce 2 to 8% of all global Carbon Dioxide (CO2) and carbon emissions.

Reality:  Thus might be perhaps true, given some creative accounting and marketing math in order to help build a justification case or to scare you into doing something. However, the reality is that in the United States, for example, IT data centers consume around 2 to 4% of electrical power (depending on when you read this), and less than 80% of all U.S. CO2 emissions are from electrical power generation, so the math does not quite add up. The reality is this, if no action is taken to improve IT data center energy efficiency, continued demand growth will shift IT power-related emissions from myth to reality, not to mention cause constraints on IT and business sustainability from an economic and productivity standpoint.

Myth: Server consolidation with virtualization is a silver bullet to address PCFE issues.

Reality: Server virtualization for consolidation is only part of an overall solution that should be combined with other techniques, including lower power, faster and more energy efficient servers, and improved data and storage management techniques.

 

Myth: Hardware costs more to power than to purchase.

Reality: Currently, for some low-cost servers, standalone disk storage, or entry level networking switches and desktops, this may be true, particularly where energy costs are excessively high and the devices are kept and used continually for three to five years. A general rule of thumb is that the actual cost of most IT hardware will be a fraction of the price of associated management and software tool costs plus facilities and cooling costs. For the most part, at least as of this writing, small standalone individual hard disk drives or small entry level volume servers can be bought and then used in locations that have very high electrical costs over a three  to five year time frame.

 

Regarding this last myth, for the more commonly deployed external storage systems across all price bands and categories, generally speaking, except for extremely inefficient and hot running legacy equipment, the reality is that it is still cheaper to power the equipment than to buy it. Having said that, there are some qualifiers that should also be used as key indicators to keep the equation balanced. These qualifiers include the acquisition cost  if any, for new, expanded, or remodeled habitats or space to house the equipment, the price of energy in a given region, including surcharges, as well as cooling, length of time, and continuous time the device will be used.

For larger businesses, IT equipment in general still costs more to purchase than to power, particularly with newer, more energy efficient devices. However, given rising energy prices, or the need to build new facilities, this could change moving forward, particularly if a move toward energy efficiency is not undertaken.

There are many variables when purchasing hardware, including acquisition cost, the energy efficiency of the device, power and cooling costs for a given location and habitat, and facilities costs. For example, if a new storage solution is purchased for $100,000, yet new habitat or facilities must be built for three to five times the cost of the equipment, those costs must be figured into the purchase cost.

Likewise, if the price of a storage solution decreases dramatically, but the device consumes a lot of electrical power and needs a large cooling capacity while operating in a region with expensive electricity costs, that, too, will change the equation and the potential reality of the myth.

 

Tiered Energy Sources
Given that IT resources and facilitated require energy to power equipment as well as keep them cool, electricity are popular topics associated with Green IT, economics and efficiency with lots of metrics and numbers tossed around. With that in mind, the U.S. national average CO2 emission is 1.34 lb/kWh of electrical power. Granted, this number will vary depending on the region of the country and the source of fuel for the power-generating station or power plant.

Like IT tiered resources (Servers, storage, I/O networks, virtual machines and facilities) of which there are various tiers or types of technologies to meet various needs, there are also multiple types of energy sources. Different tiers of energy sources vary by their cost, availability and environmental characteristics among others. For example, in the US, there are different types of coal and not all coal is as dirty when combined with emissions air scrubbers as you might be lead to believe however there are other energy sources to consider as well.

Coal continues to be a dominant fuel source for electrical power generation both in the United States and abroad, with other fuel sources, including oil, gas, natural gas, liquid propane gas (LPG or propane), nuclear, hydro, thermo or steam, wind and solar. Within a category of fuel, for example, coal, there are different emissions per ton of fuel burned. Eastern U.S. coal is higher in CO2 emissions per kilowatt hour than western U.S. lignite coal. However, eastern coal has more British thermal units (Btu) of energy per ton of coal, enabling less coal to be burned in smaller physical power plants.

If you have ever noticed that coal power plants in the United States seem to be smaller in the eastern states than in the Midwest and western states, it’s not an optical illusion. Because eastern coal burns hotter, producing more Btu, smaller boilers and stockpiles of coal are needed, making for smaller power plant footprints. On the other hand, as you move into the Midwest and western states of the United States, coal power plants are physically larger, because more coal is needed to generate 1 kWh, resulting in bigger boilers and vent stacks along with larger coal stockpiles.

On average, a gallon of gasoline produces about 20 lb of CO2, depending on usage and efficiency of the engine as well as the nature of the fuel in terms of octane or amount of Btu. Aviation fuel and diesel fuel differ from gasoline, as does natural gas or various types of coal commonly used in the generation of electricity. For example, natural gas is less expensive than LPG but also provides fewer Btu per gallon or pound of fuel. This means that more natural gas is needed as a fuel to generate a given amount of power.

Recently, while researching small, 10 to 12 kWh standby generators for my office, I learned about some of the differences between propane and natural gas. What I found was that with natural gas as fuel, a given generator produced about 10.5 kWh, whereas the same unit attached to a LPG or propane fuel source produced 12 kWh. The trade off was that to get as much power as possible out of the generator, the higher cost LPG was the better choice. To use lower cost fuel but get less power out of the device, the choice would be natural gas. If more power was needed, than a larger generator could be deployed to use natural gas, with the trade off of requiring a larger physical footprint.

Oil and gas are not used as much as fuel sources for electrical power generation in the United States as in other countries such as the United Kingdom. Gasoline, diesel, and other petroleum based fuels are used for some power plants in the United States, including standby or peaking plants. In the electrical power G and T industry as in IT, where different tiers of servers and storage are used for different applications there are different tiers of power plants using different fuels with various costs. Peaking and standby plants are brought online when there is heavy demand for electrical power, during disruptions when a lower cost or more environmentally friendly plant goes offline for planned maintenance, or in the event of a trip or unplanned outage.

CO2 is commonly discussed with respect to green and associated emissions however there are other so called Green Houses Gases including Nitrogen Dioxide (NO2) and water vapors among others. Carbon makes up only a fraction of CO2. To be specific, only about 27% of a pound of CO2 is carbon; the balance is not. Consequently, carbon emissions taxes schemes (ETS), as opposed to CO2 tax schemes, need to account for the amount of carbon per ton of CO2 being put into the atmosphere. In some parts of the world, including the EU and the UK, ETS are either already in place or in initial pilot phases, to provide incentives to improve energy efficiency and use.

Meanwhile, in the United States there are voluntary programs for buying carbon offset credits along with initiatives such as the carbon disclosure project. The Carbon Disclosure Project (www.cdproject.net) is a not for profit organization to facilitate the flow of information pertaining to emissions by organizations for investors to make informed decisions and business assessment from an economic and environmental perspective. Another voluntary program is the United States EPA Climate Leaders initiative where organizations commit to reduce their GHG emissions to a given level or a specific period of time.

Regardless of your stance or perception on green issues, the reality is that for business and IT sustainability, a focus on ecological and, in particular, the corresponding economic aspects cannot be ignored. There are business benefits to aligning the most energy efficient and low power IT solutions combined with best practices to meet different data and application requirements in an economic and ecologically friendly manner.

Green initiatives need to be seen in a different light, as business enables as opposed to ecological cost centers. For example, many local utilities and state energy or environmentally concerned organizations are providing funding, grants, loans, or other incentives to improve energy efficiency. Some of these programs can help offset the costs of doing business and going green. Instead of being seen as the cost to go green, by addressing efficiency, the by products are economic as well as ecological.

Put a different way, a company can spend carbon credits to offset its environmental impact, similar to paying a fine for noncompliance or it can achieve efficiency and obtain incentives. There are many solutions and approaches to address these different issues, which will be looked at in the coming chapters.

What does this all mean?
There are real things that can be done today that can be effective toward achieving a balance of performance, availability, capacity, and energy effectiveness to meet particular application and service needs.

Sustaining for economic and ecological purposes can be achieved by balancing performance, availability, capacity, and energy to applicable application service level and physical floor space constraints along with intelligent power management. Energy economics should be considered as much a strategic resource part of IT data centers as are servers, storage, networks, software, and personnel.

The bottom line is that without electrical power, IT data centers come to a halt. Rising fuel prices, strained generating and transmission facilities for electrical power, and a growing awareness of environmental issues are forcing businesses to look at PCFE issues. IT data centers to support and sustain business growth, including storing and processing more data, need to leverage energy efficiency as a means of addressing PCFE issues. By adopting effective solutions, economic value can be achieved with positive ecological results while sustaining business growth.

Some additional links include:

Want to learn or read more?

Check out Chapter 1 (Green IT and the Green Gap, Real or Virtual?) in my book “The Green and Virtual Data Center” (CRC) here or here.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved

Technology Tiering, Servers Storage and Snow Removal

Granted it is winter in the northern hemisphere and thus snow storms should not be a surprise.

However between December 2009 and early 2010, there has been plenty of record activity from in the U.K. (or here), to the U.S. east coast including New York, Boston and Washington DC, across the midwest and out to California, it made for a white christmas and SANta fun along with snow fun in general in the new year.

2010 Snow Storm via www.star-telegram.com

What does this have to do with Information Factories aka IT resources including public or private clouds, facilities, server, storage, networking along with data management let alone tiering?

What does this have to do with tiered snow removal, or even snow fun?

Simple, different tools are needed for addressing various types of snow from wet and heavy to light powdery or dustings to deep downfalls. Likewise, there are different types of servers, storage, data networks along with operating systems, management tools and even hyper visors to deal with various application needs or requirements.

First, lets look at tiered IT resources (servers, storage, networks, facilities, data protection and hyper visors) to meet various efficiency, optimization and service level needs.

Do you have tiered IT resources?

Let me rephrase that question to do you have different types of servers with various performance, availability, connectivity and software that support various applications and cost levels?

Thus the whole notion of tiered IT resources is to be abe to have different resources that can be aligned to the task at hand in order to meet performance, availability, capacity, energy along with economic along with service level agreement (SLA) requirements.

Computers or servers are targeted for different markets including Small Office Home Office (SOHO), Small Medium Business (SMB), Small Medium Enterprise (SME) and ultra large scale or extreme scaling, including high performance super computing. Servers are also positioned for different price bands and deployment scenarios.

General categories of tiered servers and computers include:

  • Laptops, desktops and workstations
  • Small floor standing towers or rack mounted 1U and 2U servers
  • Medium sizes floor standing towers or larger rack mounted servers
  • Blade Centers and Blade Servers
  • Large size floor standing servers, including mainframes
  • Specialized fault tolerant, rugged and embedded processing or real time servers

Servers have different names email server, database server, application server, web server, and video or file server, network server, security server, backup server or storage server associated with them depending on their use. In each of the previous examples, what defines the type of server is the type of software is being used to deliver a type of service. Sometimes the term appliance will be used for a server; this is indicative of the type of service the combined hardware and software solution are providing. For example, the same physical server running different software could be a general purpose applications server, a database server running for example Oracle, IBM, Microsoft or Teradata among other databases, an email server or a storage server.

This can lead to confusion when looking at servers in that a server may be able to support different types of workloads thus it should be considered a server, storage, networking or application platform. It depends on the type of software being used on the server. If, for example, storage software in the form a clustered and parallel file system is installed on a server to create highly scalable network attached storage (NAS) or cloud based storage service solution, then the server is a storage server. If the server has a general purpose operating system such as Microsoft Windows, Linux or UNIX and a database on it, it is a database server.

While not technically a type of server, some manufacturers use the term tin wrapped software in an attempt to not be classified as an appliance, server or hardware vendor but want their software to be positioned more as a turnkey solution. The idea is to avoid being perceived as a software only solution that requires integration with hardware. The solution is to use off the shelf commercially available general purpose servers with the vendors software technology pre integrated and installed ready for use. Thus, tin wrapped software is a turnkey software solution with some tin, or hardware, wrapped around it.

How about the same with tiered storage?

That is different tiers (Figure 1) of fast high performance disk including RAM or flash based SSD, fast Fibre Channel or SAS disk drives, or high capacity SAS and SATA disk drives along with magnetic tape as well as cloud based backup or archive?

Tiered Storage Resources
Figure 1: Tiered Storage resources

Tiered storage is also sometimes thought of in terms large enterprise class solutions or midrange, entry level, primary, secondary, near line and offline. Not to be forgotten, there are also tiered networks that support various speeds, convergence, multi tenancy and other capabilities from IO Virtualization (IOV) to traditional LAN, SAN, MAN and WANs including 1Gb Ethernet (1GbE), 10GbE up to emerging 40GbE and 100GbE not to mention various Fibre Channel speeds supporting various protocols.

The notion around tiered networks is like with servers and storage to enable aligning the right technology to be used for the task at hand economically while meeting service needs.

Two other common IT resource tiering techniques include facilities and data protection. Tiered facilities can indicate size, availability, resiliency among other characteristics. Likewise, tiered data protection is aligning the applicable technology to support different RTO and RPO requirements for example using synchronous replication where applicable vs. asynchronous time delayed for longer distance combined with snapshots. Other forms of tiered data protection include traditional backups either to disk, tape or cloud.

There is a new emerging form of tiering in many IT environments and that is tiered virtualization or specifically tiered server hyper visors in virtual data centers with similar objectives to having different server, storage, network, data protection or facilities tiers. Instead of an environment running all VMware, Microsoft HyperV or Xen among other hyper visors may be deployed to meet different application service class requirements. For example, VMware may be used for premium features and functionality on some applications, where others that do not need those features along with requiring lower operating costs leverage HyperV or Zen based solutions. Taking the tiering approach a step further, one could also declare tiered databases for example Oracle legacy vs. MySQL or Microsoft SQLserver among other examples.

What about IT clouds, are those different types of resources, or, essentially an extension of existing IT capabilities for example cloud storage being another tier of data storage?

There is another form of tiering, particularly during the winter months in the northern hemisphere where there is an abundance of snow this time of the year. That is, tiered snow management, removal or movement technologies.

What about tiered snow removal?

Well lets get back to that then.

Like IT resources, there are different technologies that can be used for moving, removing, melting or managing snow.

For example, I cant do much about getting ready of snow other than pushing it all down the hill and into the river, something that would take time and lots of fuel, or, I can manage where I put snow piles to be prepared for next storm, plus, to help put it where the piles of snow will melt and help avoid spring flood. Some technologies can be used for relocating snow elsewhere, kind of like archiving data onto different tiers of storage.

Regardless of if snowstorm or IT clouds (public or private), virtual, managed service provider (MSP), hosted or traditional IT data centers, all require physical servers, storage, I/O and data networks along with software including management tools.

Granted not all servers, storage or networking technology let alone software are the same as they address different needs. IT resources including servers, storage, networks, operating systems and even hyper visors for virtual machines are often categorized and aligned to different tiers corresponding to needs and characteristics (Figure 2).

Tiered IT Resources
Figure 2: Tiered IT resources

For example, in figure 3 there is a light weight plastic shovel (Shove 1) for moving small amounts of snow in a wide stripe or pass. Then there is a narrow shovel for digging things out, or breaking up snow piles (Shovel 2). Also shown are a light duty snow blower (snow thrower) capable of dealing with powdery or non wet snow, grooming in tight corners or small areas.

Tiered Snow tools
Figure 3: Tiered Snow management and migration tools

For other light dustings, a yard leaf blower does double duty for migrating or moving snow in small or tight corners such as decks, patios or for cleanup. Larger snowfalls, or, where there is a lot of area to clear involves heavier duty tools such as the Kawasaki mule with 5 foot curtis plow. The mule is a multifunction, multi protocol tool capable of being used for hauling items, towing, pulling or recreational tasks.

When all else fails, there is a pickup truck to get or go out and about, not to mention to pull other vehicles out of ditches or piles of snow when they become stuck!

Snow movement
Figure 4: Sometimes the snow light making for fast, low latency migration

Snow movement
Figure 5: And sometimes even snow migration technology goes off line!

Snow movement

And that is it for now!

Enjoy the northern hemisphere winter and snow while it lasts, make the best of it with the right tools to simplify the tasks of movement and management, similar to IT resources.

Keep in mind, its about the tools and when along with how to use them for various tasks for efficiency and effectiveness, and, a bit of snow fun.

Ok, nuff said.

Cheers gs

Greg Schulz – Author Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press) and Resilient Storage Networks (Elsevier)
twitter @storageio

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO LLC All Rights Reserved