Microsoft Azure Elastic SAN from Cloud to On-Prem

What is Azure Elastic SAN

Azure Elastic SAN (AES) is a new (now GA) Azure Cloud native storage service that provides scalable, resilient, easy management with rapid provisioning, high performance, and cost-effective storage. AES (figure 1) supports many workloads and computing resources. Workloads that benefit from AES include tier 1 and tier 2, such as Mission Critical, Database, and VDI, among others traditionally relying upon consolidated Storage Area Network (SAN) shared storage.

Compute resources that can use AES, including bare metal (BM) physical machines (PM), virtual machines (VM), and containers, among others, using iSCSI for access. AES is accessible by computing resources and services within the Azure Cloud in various regions (check Azure Website for specific region availability) and from on-prem core and edge locations using iSCSI. The AES management experience and value proposition are similar to traditional hardware or software-defined shared SAN storage combined with Azure cloud-based management capabilities.

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 1 General Concept and Use of Azure Elastic SAN (AES)

While Microsoft Azure describes AES as a cloud-native storage solution, that does not mean that AES is only for containers and other cloud-native apps or DevOPS. Rather, AES has been built for and is native to the cloud (e.g., software-defined) that can be accessed by various compute and other resources (e.g., VMs, Containers, AKS, etc) using iSCSI.

How Azure Elastic SAN differs from other Azure Storage

AES differs from traditional Azure block storage (e.g., Azure Disks) in that the storage is independent of the host compute server (e.g., BM, PM, VM, containers). With AES, similar to a conventional software-defined or hardware-based shared SAN solution, storage is disaggregated from host servers for sharing and management using iSCSI for connectivity. By comparison, AES differs from traditional Azure VM-based storage typically associated with a given virtual machine in a DAS (Direct Attached Storage) type configuration. Likewise, similar to conventional on-prem environments, there is a mix of DAS and SAN, including some host servers that leverage both.

AES supports Azure VM, Azure Kubernetes Service (AKS), cloud-native, edge, and on-prem computing (BM, VM, etc.) via iSCSI. Support for Azure VMware Solution (AVS) is in preview; check the Microsoft Azure website for updates and new feature functionality enhancements.

Does this mean everything is moving to AES? Similar to traditional SANs, there are roles and needs for various storage options, including DAS, shared block, file, and object, among storage offerings. Likewise, Microsoft and Azure have expanded their storage offerings to include AES, DAS (azure disks, including Ultra, premium, and standard, among other options), append, block, and page blobs (objects), and files, including Azure file sync, tables, and Data Box, among other storage services.

Azure Elastic Storage Feature Highlights

AES feature highlights include, among others:

    • Management via Azure Portal and associated tools
    • Azure cloud-based shared scalable bock storage
    • Scalable capacity, low latency, and high performance (IOPs and throughput)
    • Space capacity-optimized without the need for data reduction
    • Accessible from within Azure cloud and from on-prem using iSCSI
    • Supports Azure compute  (VMs, Containers/AKS, Azure VMware Solution)
    • On-prem access via iSCSI from PM/BM, VM, and containers
    • Variable number of volumes and volume size per volume group
    • Flexible easy to use Azure cloud-based management
    • Encryption and network private endpoint security
    • Local (LRS) and Zone (ZRS) with replication resiliency
    • Volume snapshots and cluster support

Who is Azure Elastic SAN for

AES is for those who need cost-effective, shared, resilient, high capacity, high performance (IOPS, Bandwidth), and low latency block storage within Azure and from on-prem access. Others who can benefit from AES include those who need shared block storage for clustering app workloads, server and storage consolidation, and hybrid and migration. Another consideration is for those familiar with traditional hardware and software-defined SANs to facilitate hybrid and migration strategies.

How Azure Elastic SAN works

Azure Elastic SAN is a software-defined (cloud native if you prefer) block storage offering that presents a virtual SAN accessible within Azure Cloud and to on-prem core and edge locations currently via iSCSI. Using iSCSI, Azure VMs, Clusters, Containers, Azure VMware Solution among other compute and services, and on-prem BM/PM, VM, and containers, among others, can access AES storage volumes.

From the Azure Portal or associated tools (Azure CLI or PowerShell), create an AES SAN, giving it a 3 to 24-character name and specify storage capacity (base units with performance and any additional space capacity). Next, create a Volume Group, assigning it to a specific subscription and resource group (new or existing), then specify which Azure Region to use, type of redundancy (LRS or GRS), and Zone to use. LRS provides local redundancy, while ZRS provides enhanced zone resiliency, with highspeed synchronous resiliency without setting up multiple SAN systems and their associated replication configurations along with networking considerations (e.g., Azure takes care of that for you within their service).

The next step is to create volumes by specifying the volume name, volume group to use, volume size in GB, maximum IOPs, and bandwidth. Once you have made your AES volume group and volumes, you can create private endpoints, change security and access controls, and access the volumes from Azure or on-prem resources using iSCSI. Note that AES currently needs to be LRS (not ZRS) for clustered shared storage and that Key management includes using your keys with Azure key vault.

Using Azure Elastic SAN

Using AES is straightforward, and there are good easy to follow guides from Microsoft Azure, including the following:

The following images show what AES looks like from the Azure Portal, as well as from an Azure Windows Server VM and an onprem physical machine (e.g., Windows 10 laptop).

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 2 AES Azure Portal Big Picture

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 3 AES Volume Groups Portal View

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 4  AES Volumes Portal View

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 5 AES Volume Snapshot Views

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 6 AES Connected Volume Portal View

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 7 AES Volume iSCSI view from on-prem Windows Laptop

Microsoft Azure Elastic SAN from cloud to on-prem server storageioblog
Figure 8 AES iSCSI Volume attached to Azure VM

Azure Elastic SAN Cost Pricing

The cost of AES is elastic, depending on whether you scale capacity with performance (e.g., base unit) or add more space capacity. If you need more performance, add base unit capacity, increasing IOPS, bandwidth, and space. In other words, base capacity includes storage space and performance, which you can grow in various increments. Remember that AES storage resources get shared across volumes within a volume group.

Azure Elastic SAN is billed hourly based on a monthly per-capacity base unit rate, with a minimum of 1TB  provisioned capacity with minimum performance (e.g., 5,000 IOPs, 200MBps bandwidth). The base unit rate varies by region and type of redundancy, aka resiliency. For example, at the time of this writing, looking at US East, the Local Redundant Storage (LRS) base unit rate is 1TB with 5,000 IOPs and 200MBps bandwidth, costing $81.92 per unit per month.

The above example breaks down to a rate of $0.08 per GB per month, or $0.000110 per GB per hour (assumes 730 hours per month). An example of simply adding storage capacity without increasing base unit (e.g., performance) for US East is $61.44 per month. That works out to $0.06 per GB per month (no additional provisioned IOPs or Bandwidth) or $0.000083 per GB per hour.

Note that there are extra fees for Zone Redundant Storage (ZRS). Learn more about Azure Elastic SAN pricing here, as well as via a cost calculator here.

Azure Elastic SAN Performance

Performance for Azure Elastic SAN includes IOPs, Bandwidth, and Latency. AES IOPs get increased in increments of 5,000 per base TB. Thus, an AES with a base of 10TB would have 50,000 IOPs distributed (shared) across all of its volumes (e.g., volumes are not restricted). For example, if the base TB is increased from 10TB to 20TB, then the IOPs would increase from 50,000 to 100,000 IOPs.

On the other hand, if the base capacity (10TB) is not increased, only the storage capacity would increase from 10TB to 20TB, and the AES would have more capacity but still only have the 50,000 IOPs. AES bandwidth throughput increased by 200MBps per TB. For example, a 5TB AES would have 5 x 200MBps (1,000 MBps) throughput bandwidth shared across the volume groups volumes.

Note that while the performance gets shared across volumes, individual volume performance is determined by its capacity with a maximum of 80,000 IOPs and up to 1,024 MBps. Thus, to reach 80,000 IOPS and 1,024 MBps, an AES volume would have to be at least 107GB in space capacity. Also, note that the aggregate performance of all volumes cannot exceed the total of the AES. If you need more performance, then create another AES.

Will all VMs or compute resources see performance improvements with AES? Traditional Azure Disks associated with VMs have per-disk performance resource limits, including IOPs and Bandwidth. Likewise, VMs have storage limits based on their instance type and size, including the number of disks (HDD or SSD), performance (IOPS and bandwidth), and the number of CPUs and memory.

What this means is that an AES volume could have more performance than what a given VM is limited to. Refer to your VM instance sizing and configuration to determine its IOP and bandwidth limits; if needed, explore changing the size of your VM instance to leverage the performance of Azure Elastic SAN storage.

Additional Resources Where to learn more

The following links are additional resources to learn about Microsoft Azure Elastic SAN and related data infrastructures and tradecraft topics.

Azure AKS Storage Concepts 
Azure Elastic SAN (AES) Documentation and Deployment Guides
Azure Elastic SAN Microsoft Blog
Azure Elastic SAN Overview
Azure Elastic SAN Performance topics
Azure Elastic SAN Pricing calculator
Azure Products by Region (see where AES is currently available)
Azure Storage Offerings 
Azure Virtual Machine (VM) sizes
Azure Virtual Machine (VM) types
Azure Elastic SAN General Pricing
Azure Storage redundancy 
Azure Service Level Agreements (SLA) 
StorageIOBlog.com Data Box Family 
StorageIOBlog.com Data Box Review
StorageIOBlog.com Data Box Test Drive 
StorageIOblog.com Microsoft Hyper-V Alive Enhanced with Win Server 2025
StorageIOblog.com If NVMe is the answer, what are the questions?
StorageIOblog.com NVMe Primer (or refresh)

Additional learning experiences along with common questions (and answers), are found in my Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

Azure Elastic SAN (AES) is a new and now generally available shared block storage offering that is accessible using iSCSI from within Azure Cloud and on-prem environments. Even with iSCSI, AES is relatively easy to set up and use for shared storage, mainly if you are used to or currently working with hardware or software-defined SAN storage solutions.

With NVMe over TCP fabrics gaining industry and customer traction, I’m hoping for Microsoft to adding that in the future. Currently, AES supports LRS and ZRS for redundancy, and an excellent future enhancement would be to add Geo Redundant Storage (GRS) capabilities for those who need it.

I like the option of elastic shared storage regarding performance, availability, capacity, and economic costs (PACE). Suppose you understand the value proposition of evolving from dedicated DAS to shared SAN (independent of the underlying fabric network); or are currently using some form of on-prem shared block storage. In that case, you will find AES familiar and easy to use. Granted, AES is not a solution for everything as there are roles for other block storage, including DAS such as Azure disks and VMs within Azure, along with on-prem DAS, as well as file, object, and blobs, tables, among others.

Wrap up

The notion that all cloud storage must be objects or blobs is tied those who only need, provide, or prefer those solutions. The reality is that everything is not the same. Thus, there is a need for various storage mediums, devices, tiers, access, and types of services. Microsoft and Azure have done an excellent job of providing. I like what Microsoft Azure is doing with Azure Elastic SAN.

Ok, nuff said, for now.

Cheers Gs

Greg Schulz – Nine time Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of UnlimitedIO LLC.

ToE NVMeoF TCP Performance Line Boost Performance Reduce Costs

The ToE NVMeoF TCP Performance Line Boost Performance Reduce Costs

ToE NVMeoF TCP Performance Line Boost Performance Reduce Costs.

Yes, you read that correct; leverage TCP offload Engines (TOE) to boost the performance of TCP-based NVMeoF (e.g., NVMe over Fabrics) while reducing costs. Keep in mind that there is a difference between cutting costs (something that causes or moves problems and complexities elsewhere) and reducing and removing costs (e.g., finding, fixing, removing complexities).

Reducing or cutting costs can be easy by simply removing items for lower-priced items and introducing performance bottlenecks or some other compromise. Likewise, boosting performance can be addressed by throwing (deploying) more hardware (and or software) at the problem resulting in higher costs or some other compromise.

On the other hand, as mentioned above, finding, fixing, removing the complexity and overhead results in cost savings while doing the same work or enabling more work done via the same costs, maximizing hardware, software, and network costs. In other words, a better return on investment (ROI) and a lower total cost of ownership (TCO).

Software Defined Storage and Networks Need Hardware

With the continued shift towards software-defined data centers, software-defined data infrastructures, software-defined storage, software-defined networking, and software-defined everything, those all need something in common, and that is hardware-based compute processing.

In the case of software-defined storage, including standalone, shared fabric or networked-based, converged infrastructure (CI) or hyper-converged infrastructure (HCI) deployment models, there is the need for CPU compute, memory, and I/O, in addition to storage devices. This means that the software to create, manage, and perform storage tasks needs to run on a server’s CPU, along with I/O networking software stacks.

However, it should be evident that sometimes the obvious needs to be restarted, which is that software-defined anything requires hardware somewhere in the solution stack. Likewise, depending on how the software is implemented, it may require more hardware resources, including server compute, memory, I/O, and network and storage capabilities.

Keep in mind that networking stacks, including upper and lower-level protocols and interfaces, leverage software to implement their functionality. Therefore, the value proposition of using standard networks such as Ethernet and TCP is the ability to leverage lower-cost network interface cards (or chips), also known as NICs combined with server-based software stacks.

On the one hand, costs can be reduced by using less expensive NICs and using the generally available server CPU compute capabilities to run the TCP and other networking stack software. On systems with a lower application or other software performance demands, this can work out ok. However, for workloads and systems using software-defined storage and other applications that compete for server resources (CPU, memory, I/O), this can result in performance bottlenecks and problems.

Many Server Storage I/O Networking Bottlenecks Are CPU Problems

There is a classic saying that the best I/O is the one that you do not have to do. Likewise, the second-best I/O is the one with the most negligible overhead (and cost) as well as best performance. Another saying is that many application, database, server, and storage I/O problems are actually due to CPU bottlenecks. Fast storage devices need fast applications on fast servers with fast networks. This means finding and removing blockages, including offloading server CPU from performing network I/O processing using TOEs.

Wait a minute, isn’t the value proposition of using software-defined storage or networking to use low-cost general-purpose servers instead of more expensive hardware devices? With some caveats, Yup understands how much server CPU us being used to run the software-defined storage and software stacks and handle upper-level functionality. To support higher performance or larger workloads can be putting in more extensive (scale-up) and more (scale-out) servers and their increased connectivity and management overhead.

This is where the TOEs come into play by leveraging the best of both worlds to run software-defined storage (and networking) stacks, and other software and applications on general-purpose compute servers. The benefit is the TCP network I/O processing gets offloaded from the server CPU to the TOE, thereby freeing up the server CPU to do more work or enabling a smaller, lower-cost CPU to be used.

After all, many servers, storage, and I/O networking problems are often server CPU problems. An example of this is running the TCP networking software stack using CPU cycles on a host server that competes with the other software and applications. In addition, as an application does more I/O, for example, issuing reads and write requests to network and fabric-based storage, the server’s CPUs are also becoming busier with more overhead of running the lower-layer TCP and networking stack.

The result is server resources (CPU, memory) are running at higher utilization; however, there is more overhead. Higher resource utilization with low or no overhead, low latency, and high productivity are good things resulting in lower cost per work done. On the other hand, high CPU utilization, server operating system or kernel mode overhead, poor latency, and low productivity are not good things resulting in host per work done.

This means there is a loss of productivity as more time is spent waiting, and the cost to do a unit of work, for example, an I/O or transaction, increases (there is more overhead). Thus, offload engines (chips, cards, adapters) come into play to shift some software processing from the server CPU to a specialized processor. The result is lower server CPU overhead leaving more server resources for the main application or software-defined storage (and networking) while boosting performance and lowering overall costs.

Graphics, Compute, Network, TCP Offload Engines

Offload engines are not new, they have been around for a while, and in some cases, more common than some realize going by different names. For example, graphical Processing Units (GPUs) are used for offloading graphic and compute-intensive tasks to special chips and adapter cards. Other examples of offload processors include networks such as TCP Offload Engine (TOE), compression, and storage processing, among others.

The basic premise of offload engines is to move or shift processing of specific functions from having their software running on a general-purpose server CPU to a specialized processor (ASIC, FPGA, adapter, or mezzanine card). By moving the processing of functions to the offload or unique processing device, performance can be boosted while freeing up a server’s primary processor (CPU) to do other useful (and productive) work.

There is a cost associated with leveraging offloads and specialized processors; however, the business benefit should be offset by reducing primary server compute expenses or doing more work with available resources and driving network bandwidth line rates performance. The above should result in a net TCO reduction and boost your ROI for a given system or bill of material, including hardware, software, networking, and management.

Cloud File Data Storage Consolidation and Economic Comparison Model

Fast Storage Needs Fast Servers and I/O Networks

Ethernet network TOEs became popular in the industry back in the early 2000s, focusing on networked storage and storage networks that relied on TCP (e.g., iSCSI).

Fast forward to today, and there is continued use of networked (ok, fabric) storage over various interfaces, including Ethernet supporting different protocols. One of those protocols is NVMe in NVMe over Fabrics (NVMeoF) using TCP and underlying Ethernet-based networks for accessing fast Solid State Devices (SSDs).

Chelsio Communications T6 TOE for NVMeoF

An example of server storage I/O network TOEs, including those to support NVMeoF, are those from Chelsio Communications, such as the T6 25/100Gb devices. Chelsio announced today server storage I/O benchmark proof points for TCP based NVMe over Fabric (NVMeoF) TOE accelerated performance. StorageIO had the opportunity to look at the performance-boosting ability and CPU savings benefit of the Chelsio T6 prior to todays announcement.

After reviewing and validating the Chelsio proof points, test methodology, and results, it is clear that the T6 TOE enabled solution boosts server storage I/O performance while reducing host server CPU usage. The Chelsio T6 solution combined with Storage Performance Development Kit (SPDK) software, provides local-like performance of network fabric distributed NVMe (using TCP based NVMeoF) attached SSD storage while reducing host server CPU consumption.

“Boosting application performance, efficiency, and effectiveness of server CPUs are key priorities for legacy and software defined datacenter environments,” said Greg Schulz, Sr. Analyst Server Storage. “The Chelsio NVMe over Fabrics 100GbE NVMe/TCP (TOE) demonstration provides solid proof of how high-performance NVMe SSDs can help datacenters boost performance and productivity, while getting the best return on investment of datacenter infrastructure assets, not to mention optimize cost-of-ownership at the same time. It’s like getting a three for one bonus value from your server CPUs, your network, and your application perform better, now that’s a trifecta!”

You can read more about the technical and business benefits of the Chelsio T6 TOE enabled solution along with associated proof points (benchmarks) in the PDF white paper found here and their Press Release here. Note that the best measure, benchmark, proof point, or test is your application and workload, so contact Chelsio to arrange an evaluation of the T6 using your workload, software, and platform.

Where to learn more

Learn more about TOE, server, compute, GPU, ASIC, FPGA, storage, I/O networking, TCP, data infrastructure and software defined and related topics, trends, techniques, tools via the following links:

Chelsio Communications T6 Performance Press Release (PDF)
Chelsio Communications T6 TOE White Paper (PDF)
Application Data Value Characteristics Everything Is Not the Same
PACE your Infrastructure decision-making, it’s about application requirements
Data Infrastructure Server Storage I/O Tradecraft Trends
Data Infrastructure Overview, Its What’s Inside of Data Centers
Data Infrastructure Management (Insight and Strategies)
Hyper-V and Windows Server 2025 Enhancements

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

The large superscalar web services and other large environments leverage offload engines and specialized processing technologies (chips, ASICs, FPGAs, GPUs, adapters) to boost performance while reducing server compute costs or getting more value out of a given server platform. If it works for the large superscalars, it can also work for your environment or your software-defined platform.

The benefits are reducing the number and cost of your software-defined platform bill of materials (BoM). Another benefit is to free up server CPU cycles to run your storage or network or other software to get more performance and work done. Yet another benefit is the ability to further stretch your software license investments, getting more work done per software license unit.

Have a look at the Chelsio Communications T6 line of TOE for NVMeoF and other workloads to boost performance, reduce CPU usage and lower costs. See for yourself The TOE NVMeoF TCP Performance Line Boost Performance Reduce Costs benefit.

Ok, nuff said, for now.

Cheers GS

Greg Schulz – Microsoft MVP Cloud and Data Center Management, previous 10 time VMware vExpert. Author of Software Defined Data Infrastructure Essentials (CRC Press), Data Infrastructure Management (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Driving ROI with Cloud Storage Consolidation Seminars

Driving ROI with Cloud Storage Consolidation Seminars

Driving ROI with Cloud Storage Consolidation Seminars

Driving ROI with Cloud Storage Consolidation Seminars

Join me in a series of in-person seminars driving ROI with cloud storage consolidation for unstructured file data.

driving roi with cloud storage consolidation seminars
Various Data Infrastructure options from on-prem to edge to cloud and beyond

These initial seminars are being held at Amazon Web Services (AWS) locations April 30 in New York City, May 1 in Chicago and May 2 in Houston Amazon. At each of these three cities, I will be joined by experts from NetApp, Talon and AWS as we look at issues, trends and what can be done today (including hands on demos) driving ROI with cloud storage consolidation for unstructured file data.

What The Seminars Are About

These seminars look at how remove cost and complexity while boosting productivity for distributed sites with unstructured data and NAS file servers. The seminars look at making informed decisions balancing technical considerations with a business return on investment (ROI) model, along with return on innovation (the other ROI) from boosting productivity. It’s not about simply cutting costs that can create chaos or compromise elsewhere, it’s about removing complexity and cost while boosting productivity with smart cloud storage consolidation for unstructured file data.

distributed file server cloud storage consolidation

Distributed File Server Cloud Storage Consolidation ROI Economic Comparison

During these seminars I will discuss various industry and customer trends, challenges as well as solutions, particular for environments with distributed file servers for unstructured file data. As part of my discussion, we will look at both technical, as well as ROI business based model for distributed file server cloud storage consolidation based on the Server StorageIO white paper report titled Cloud File Data Storage Consolidation and Economic Comparison Model (Free PDF download here).

Where When and How to Register

New York City Tuesday April 30, 2019 9:00AM
Amazon Web Services
7 West 34th St.
6th Floor
Learn more and register here.

Chicago Illinois  Wednesday May 1, 2019 9:00AM
Amazon Web Services
222 West Adams Street
Suite 1400
Learn more and register here

Houston Texas Thursday May 2, 2019 9:00AM
Amazon Web Services
825 Town and Country Lane
Suite 1000
Learn more and register here

Where to learn more

Learn more about world backup day, recovery and data protection along with other related topics via the following links:

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

Making informed decisions for data infrastructure resources including cloud storage consolidation and distributed file servers involves technical, application workload as well as business economic analysis. Which of the three (technical, application workload, financial) is more important for enabling a business benefit will depend on your perspective, as well as area of focus. However, all the above need to be considered in the balance as part of making an informed data infrastructure resource decision. That is where a discussion about a business financial ROI model (pro forma if you prefer) comes into play as part of cloud storage consolidation, including for distributed file server of unstructured file data.

I look forward to meeting with attendees and hope to see you at the events April 30th in New York City, May 1 in Chicago, and Houston May 2nd as we discuss driving ROI with cloud storage consolidation at these seminars.

Ok, nuff said, for now.

Cheers GS

Greg Schulz – Multi-year Microsoft MVP Cloud and Data Center Management, ten-time VMware vExpert. Author of Data Infrastructure Insights (CRC Press), Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Also visit www.picturesoverstillwater.com to view various UAS/UAV e.g. drone based aerial content created by Greg Schulz. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. Visit our companion site https://picturesoverstillwater.com to view drone based aerial photography and video related topics. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Cloud File Data Storage Consolidation and Economic Comparison Model #blogtobertech

Cloud File Data Storage Consolidation and Economic Comparison Model #blogtobertech

Cloud File Data Storage Consolidation and Economic Comparison Model

The following is a new Industry Trends Perspective White Paper Report titled Cloud File Data Storage Consolidation and Economic Comparison Model.

Cloud File Data Storage Consolidation and Economic Comparison Model

This new report looks at Distributed File Server and Consolidated Cloud Storage Economic Comparison with a fundamental economic comparison model for remote (on-prem) distributed file-servers and cloud storage consolidation decision-making. IT data infrastructure resource (servers, storage, I/O network, hardware, software, services) decision-making involves evaluating and comparing technical attributes (speeds, feeds, features) of a solution or service. Another aspect of data infrastructure resource decision-making involves assessing how a solution or service will support and enable a given application workload from a Performance, Availability, Capacity, and Economic (PACE) perspective.

Cloud File Data Storage Consolidation and Economic Comparison Model

Keep in mind that all application workloads have some amount of PACE resource requirements that may be high, low or various permutations. Performance, Availability (including data protection along with security) as well as Capacity are addressed via technical speeds, feeds, functionality along with workload suitability analysis. The E in PACE resource decision-making is about the Economic analysis of various costs associated with different solution approaches.

Read more in this Server StorageIO Industry Trends and Perspective (ITP) Report.

Where to learn more

Learn more about Clouds and Data Infrastructure related trends, tools, technologies and topics via the following links:

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

When comparing and making data infrastructure resource decisions, consider the application workload PACE characteristics. Also keep in mind that PACE means Performance (productivity), Availability (data protection), Capacity and Economics. This includes making decisions from a technical feature, functionality (speeds and feeds) capacity as well as how the solution supports your application workload. Leverage resources including tools to perform analysis including Cloud File Data Storage Consolidation and Economic Comparison Model approaches.

Ok, nuff said, for now.

Cheers Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

How I saved money storing more data on aws s3 simple storage service #blogtobertech

How I saved money storing more data on aws s3 simple storage service #blogtobertech

How I saved money storing more data on aws s3 simple storage service

How I saved money storing more data on aws s3 simple storage service is an example of reducing cloud costs as opposed to merely cutting cloud costs. What this means is that instead of just cutting my cloud storage costs with a focus on how much I could save, I wanted to remove some costs while also storing more data without compromise. For example, since making the changes, storage capacity usage has almost doubled, yet prices are remaining 37% lower from two years ago before the changes were made.

How I saved money storing more data on aws s3?

Without adding any context, the typical reaction might be that I saved money storing more data on (or in) AWS S3 as opposed to locally on-site (on-prem). Another typical response would be that I moved all of my data from a different more expensive cloud service to AWS S3. Yet another common reaction would that I moved my AWS S3 data into AWS Glacier cold storage, or, deleted a large amount of data.

Some might even comment that I must have used some type of dedupe, compression or other data footprint reduction (DFR) technology. On the other hand, some might determine that I probably did all or some of the above, or, leveraged AWS tiered storage, aligning different storage classes to the type of data activity.

How I saved money storing more data in AWS S3 actually involved spending some money, to eventually save money by leveraging different S3 storage classes. As part of rebalancing or moving different data to its new storage class, some one-time charges were incurred which recouped after several months of savings. The costs pertained to EC2 compute instances and associated storage used for some of the data tiering, other fees were for access charges along with excessive API calls. For example, some of the data was in storage classes that had fees for early retrieval or deletions, or fees for access among others.

How I use different AWS S3 storage classes (tiers)

  • Standard – Frequently changing data, or data with frequent access
  • Infrequent Access (IA) – Data that does not change frequently or that is not routinely accessed. In the past before OZA, I had placed data that did not need to be in standard, yet to warm for Glacier in this storage class. After the migrations, I have fewer data stored in IA, with more in OZA as well as some in Standard.
  • One Zone Availability (OZA) – Data that is frequently accessed for reading, however, is static, not yet cold enough to move to Glacier or deep archive. A mix of backups, online and active archives. Note that I use OZA as an additional copy or location and not as a single, lowest cost place to store data. In other words, anything that I put into OZA has at least one additional copy somewhere else which may not be in the cloud.
  • Glacier – Very cold, seldom accessed, archives

Where to learn more

Learn more about Clouds and Data Infrastructure related trends, tools, technologies and topics via the following links:

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

I decreased my AWS monthly bill by balancing things around, there was a one-month period where my costs increased during the changes, then a subsequent reduction. However, while I saw my monthly AWS storage invoices decrease, I’m also storing more data per month. How I saved money storing more data on aws s3 simple storage service involved using different storage classes.

Ok, nuff said, for now.

Cheers Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Intel Micron 3D XPoint Evolving

Intel Micron 3D XPoint Evolving

Intel Micron 3D XPoint Evolving

Intel Micron 3D XPoint Evolving

Generations of memory
Major memory classes or categories timeline (Image via Intel and Micron)

Co-Creators of 3D XPoint the next generation of non-volatile memory (NVM) also known as storage class memory (SCM) or Persistent Memory (PMEM) have announced they will complete joint development of second-generation technology, then pursue their separate paths. Intel and Micron jointly announced 3D XPoint three years (July 2015) as a new technology with the first generation of products have appeared in the market or past year or so.

Various industry vs customer adoption deployment timelines
Various Adoption Deployment Timelines for different focus areas

For those in the industry who measure technology on shorter months vs. years adoption and deployment scenarios, or time from press release until new news, some would say 3D XPoint is late, behind schedule, which perhaps it is based on some timelines. On the other hand, IT customers tend to be on a different timeline that may seem like glacial speed to industry focused rapid change. IMHO 3D XPoint is about on the right timeline based on IT customer deployment which may very well accelerate for broader usage with the second generation based products.

3D XPoint based Intel Optane
Top Intel 750 NVMe PCIe AiC SSD, bottom Intel Optane NVMe 900P U.2 SSD with Ableconn carrier

While the focus is easily around Intel and Micron going separate ways, keep in mind that there is the second generation of 3D XPoint in the works. Some might consider the second generation of 3D XPoint as the first real production and volume technology with the first being just that, the first generation. An example of a first generation 3D XPoint based product are the Intel Optane NVMe devices such as the one show above, and discussed in this StorageIO Lab test drive post here.

NVMe and NVM along with SCM as well as PMEM better together

Where to learn more

Learn more about Intel, Micron, NVM, NVMe, 3D XPoint, SCM, PMEM and data infrastructures related topics via the following links:

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

Some may see the announcement of Intel and Micron pursuing separate paths as a negative while others as a positive. While completing the second-generation development together, both can leverage what they have done while seeking different, presumably divergent or expand paths forward.

A concern could be if Intel and Micron merely go their separate ways yet focus on the same market areas. A benefit could be if Intel and Micron pursue different market focus areas with some overlap while expanding to broader opportunities.

The latter scenario could be useful for moving the technology forward by giving it new and different opportunities. For example, some that favor Intel along with its ecosystem would prefer whatever Intel does next. Likewise, those that favor Micron and their ecosystem may influence the direction Micron goes.

Does this mean Micron and Intel are all done collaborating? Tough to say.

However, they still share a fabrication facility (fab) imFLASH in Lehi Utah.

Overall, I think this is a good move for both Intel and Micron once they get the second generation of 3D XPoint developed and into production for customer deployments. With Intel Micron 3D XPoint Evolving, lets see what’s next.

Ok, nuff said, for now.

Cheers Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Google Cloud Platform GCP announced new Los Angeles Region

Google Cloud Platform GCP announced new Los Angeles Region

Google Cloud Platform GCP announced new Los Angeles Region

Google Cloud Platform GCP announced new Los Angeles Region

Google Cloud Platform (GCP) has announced a new Los Angeles Region (e.g., uswest-2) with three initial Availability Zones (AZ) also known as data centers. Keep in mind that a region is a geographic area that is made up of two or more AZ’s. Thus, a region has multiple data centers for availability, resiliency, durability.

The new GCP uswest-2 region is the fifth in the US and seventh in the Americas. GCP regions (and AZ’s) in the Americas include Iowa (us-central1), Montreal Quebec Canada (northamerica-northeast1), Northern Virginia (us-east4), Oregon (us-west1), Los Angeles (us-west2), South Carolina (us-east1) and Sao Paulo Brazil (southamerica-east1). View other Geographies as well as services including Europe and the Asia-Pacific here.

How Does GCP Compare to AWS and Azure?

The following are simple graphical comparisons of what Amazon Web Services (AWS) and Microsoft Azure currently have deployed for regions and AZ’s across different geographies. Note, each region may have a different set of services available so check your cloud providers notes as to what is currently available at various locations.

Google Cloud Compute Platform regions
Google Compute Platform Locations (Regions and AZ’s) Image via Google.com

AWS Regions, AZ locations
AWS Regions and AZ’s image Via AWS.com

Microsoft Azure Cloud Region Locations
Microsoft Azure Regions and AZ’s image Via Azure.com

Where to learn more

Learn more about data infrastructures and related topics via the following links:

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

Google continues to evolve its public cloud platform (GCP) both regarding geographical global physical locations (e.g., regions and AZ’s), also regarding feature, function, extensibility. By adding a new Los Angeles (e.g. uswest-2) Region and three AZ’s within it, Google is providing a local point of presence for data infrastructure intense (server compute, memory, I/O, storage) applications such as those in media, entertainment, high performance compute, aerospace among others in the southern California region.  Overall, Google Cloud Platform GCP announced new Los Angeles Region is good to see not only new features being added to GCP but also physical points of presences.

Ok, nuff said, for now.

Cheers Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

June 2018 Server StorageIO Data Infrastructure Update Newsletter

June 2018 Server StorageIO Data Infrastructure Update Newsletter

June 2018 Server StorageIO Data Infrastructure Update Newsletter

Volume 18, Issue 6 (June 2018)

Hello and welcome to the June 2018 Server StorageIO Data Infrastructure Update Newsletter.

In cased you missed it, the May 2018 Server StorageIO Data Infrastructure Update Newsletter can be viewed here (HTML and PDF).

In this issue buzzwords topics include AI, All Flash, HPC, Lustre, Multi Cloud, NVMe, NVMeoF, SAS, and SSD among others:

Enjoy this edition of the Server StorageIO Data Infrastructure update newsletter.

Cheers GS

Data Infrastructure and IT Industry Activity Trends

June data infrastructure, server, storage, I/O network, hardware, software, cloud, converged, and container as well as data protection industry activity includes among others:

Check out what’s new at Amazon Web Services (AWS) here, as well as Microsoft Azure here, Google Cloud Compute here, IBM Softlayer here, and OVH here. CTERA announced new cloud storage gateways (HC Series) for enterprise environments that include all flash SSD options, capacity up to 96TB (raw), Petabyte scale tiering to public and private cloud, 10 Gbe Ethernet connectivity, virtual machine deployment, along with high availability configuration.

Cray announced enhancements to its Lustre (parallel file system) based ClusterStor storage system for high performance compute (HPC) along with it previously acquired from Seagate (Who had acquired it as part of the Xyratex acquisition). New enhancements for ClusterStor include all flash SSD solution that will integrate and work with our existing hard disk drive (HDD) based systems.

In related Lustre based activity, DataDirect Network (DDN) has acquired from Intel, their Lustre File system capability. Intel acquired its Lustre capabilities via its purchase of Whamcloud back in 2012, and in 2017 announced that it was getting out of the Lustre business (here and here). DDN also announced new storage solutions for enabling HPC environment workloads along with Artificial Intelligence (AI) centric applications.

HPE which held its Discover event announced a $4 Billion USD investment over four years pertaining to development of edge technologies and services including software defined WAN (SD-WAN) and security among others.

Microsoft held its first virtual Windows Server Summit in June that outlined current and future plans for the operating system along with its hybrid cloud future.

Penguin computing has announced the Accelion solution for accessing geographically dispersed data enabling faster file transfer or other data movement functions.

SwiftStack has added multi cloud features (enhanced search, universal access, policy management, automation, data migration) and making them available via 1space open source project. 1space enables a single object namespace across different object storage locations including integration with OpenStack Swift.

Vexata announced a new version of its Vexata operating system (VX-OS) for its storage solution including NVMe over Fabric (NVMe-oF) support.

Speaking of NVMe and fabrics, the Fibre Channel Industry Association (FCIA) announced that the International Committee on Information Technology Standards (INCITS) has published T11 technical committee developed  Fibre Channel over NVMe (FC-NVMe) standard.

NVMe frontend NVMeoF
Various NVMe front-end including NVMeoF along with NVMe back-end devices (U.2, M.2, AiC)

Keep in mind that there are many different facets to NVMe including direct attached (M.2, U.2/8639, PCIe AiC) along with fabrics. Likewise, there are various fabric options for the NVMe protocol including over Fibre Channel (FC-NVMe), along with other NVMe over Fabrics including RDMA over Converged Ethernet (RoCE) as well as IP based among others. NVMe can be used as a front-end on storage systems supporting server attachment (e.g. competes with Fibre Channel, iSCSI, SAS among others).

Another variation of NVMe is as a back-end for attachment of drives or other NVMe based devices in storage systems, as well as servers. There is also end to end NVMe (e.g. both front-end and back-end) options. Keep context in mind when you hear or talk about NVMe and in particular, NVMe over fabrics, learn more about NVMe at https://storageioblog.com/nvme-place-volatile-memory-express/.

Toshiba announced new RM5 series of high capacity SAS SSDs for replacement of SATA devices in servers. The RM5 series being added to the Toshiba portfolio combine capacity and economics traditional associated with SATA SSDs along with performance as well as connectivity of SAS.

Check out other industry news, comments, trends perspectives here.

Data Infrastructure Server StorageIO Comments Content

Server StorageIO Commentary in the news, tips and articles

Recent Server StorageIO industry trends perspectives commentary in the news.

Via SearchStorage: Comments The storage administrator skills you need to keep up today
Via SearchStorage: Comments Managing storage for IoT data at the enterprise edge
Via SearchCloudComputing: Comments Hybrid cloud deployment demands a change in security mindset

View more Server, Storage and I/O trends and perspectives comments here.

Data Infrastructure Server StorageIOblog posts

Server StorageIOblog Data Infrastructure Posts

Recent and popular Server StorageIOblog posts include:

Announcing Windows Server Summit Virtual Online Event
May 2018 Server StorageIO Data Infrastructure Update Newsletter
Solving Application Server Storage I/O Performance Bottlenecks Webinar
Have you heard about the new CLOUD Act data regulation?
Data Protection Recovery Life Post World Backup Day Pre GDPR
Microsoft Windows Server 2019 Insiders Preview
Which Enterprise HDD for Content Server Platform
Server Storage I/O Benchmark Performance Resource Tools
Introducing Windows Subsystem for Linux WSL Overview
Data Infrastructure Primer Overview (Its Whats Inside The Data Center)
If NVMe is the answer, what are the questions?

View other recent as well as past StorageIOblog posts here

Server StorageIO Recommended Reading (Watching and Listening) List

Software-Defined Data Infrastructure Essentials SDDI SDDC

In addition to my own books including Software Defined Data Infrastructure Essentials (CRC Press 2017) available at Amazon.com (check out special sale price), the following are Server StorageIO data infrastructure recommended reading, watching and listening list items. The Server StorageIO data infrastructure recommended reading list includes various IT, Data Infrastructure and related topics including Intel Recommended Reading List (IRRL) for developers is a good resource to check out. Speaking of my books, Didier Van Hoye (@WorkingHardInIt) has a good review over on his site you can view here, also check out the rest of his great content while there.

Watch for more items to be added to the recommended reading list book shelf soon.

Data Infrastructure Server StorageIO event activities

Events and Activities

Recent and upcoming event activities.

July 25, 2018 – Webinar – Data Protect & Storage

June 27, 2018 – Webinar – App Server Performance

June 26, 2018 – Webinar – Cloud App Optimize

May 29, 2018 – Webinar – Microsoft Windows as a Service

April 24, 2018 – Webinar – AWS and on-site, on-premises hybrid data protection

See more webinars and activities on the Server StorageIO Events page here.

Data Infrastructure Server StorageIO Industry Resources and Links

Various useful links and resources:

Data Infrastructure Recommend Reading and watching list
Microsoft TechNet – Various Microsoft related from Azure to Docker to Windows
storageio.com/links – Various industry links (over 1,000 with more to be added soon)
objectstoragecenter.com – Cloud and object storage topics, tips and news items
OpenStack.org – Various OpenStack related items
storageio.com/downloads – Various presentations and other download material
storageio.com/protect – Various data protection items and topics
thenvmeplace.com – Focus on NVMe trends and technologies
thessdplace.com – NVM and Solid State Disk topics, tips and techniques
storageio.com/converge – Various CI, HCI and related SDS topics
storageio.com/performance – Various server, storage and I/O benchmark and tools
VMware Technical Network – Various VMware related items

What this all means and wrap-up

Data Infrastructures are what exists inside physical data centers as well as spanning cloud, converged, hyper-converged, virtual, serverless and other software defined as well as legacy environments. NVMe continues to gain in industry adoption as well as customer deployment. Cloud adoption also continues along with multi-cloud deployments. Enjoy this edition of the Server StorageIO Data Infrastructure update newsletter and watch for more NVMe,cloud, data protection among other topics in future posts, articles, events, and newsletters.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Solving Application Server Storage I/O Performance Bottlenecks Webinar

Solving Application Server Storage I/O Performance Bottlenecks Webinar

Performance Bottlenecks Webinar

Solving Application Server Storage I/O Performance Bottlenecks Webinar

The best I/O is the one you do not have to do, the second best is the one with least server I/O and storage overhead along with application performance bottleneck impact.

Fast applications need fast servers, storage, I/O networking hardware, and software. Merely throwing more hardware as a cache at application performance bottlenecks can help. However, throwing more hardware at performance problems can also cost much cash. On the other hand, a little fast memory and storage in the right place, with robust software performance acceleration can have significant application productivity benefits. Fast hardware also needs fast software to help boost application and user productivity.

As application workloads activity increases, by implementing server software, performance acceleration along with additional fast memory and storage including flash, Storage Class Memories (SCM) among other SSD along with NVMe accessed devices, even more, work can be done boosting productivity while reducing cost.

Join me on June 27 at 1 PM Pacific Time (PT) when I host a free webinar (registration required) sponsored by DataCore and produced by Redmond Magazine/1105 Media as we discuss Solving Application Server Storage I/O Performance Bottlenecks including what you can do today.

I will be joined by guest presenters Augie Gonzalez, Director Technical Product Marketing and Tim Warden, Director Engineering Product Management both from DataCore. During the interactive webinar discussions, we invite you to participate with your questions, as we look at issues, challenges, various approaches, and what you can do today to boost different application performance and productivity.

This webinar is for those whose applications have the need for speed including database, VDI, SharePoint, Exchange, AI, ML and other I/O intensive workloads. Topics that we will be discussing in addition to your questions include:

  • Boosting application performance without breaking the bank
  • Improving application productivity and reducing user wait time
  • Gaining insight and awareness into bottlenecks and what to do
  • Unlocking value in your existing hardware and software licenses
  • What you can do today, literally right after or even during this webinar

Where to learn more

Learn more about Windows Server Summit and related topics via the following links:

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

The best I/O is the one you do not have to do, the second best is the one that has the least impact on your applications, while boosting user productivity. There are many differ net approaches to addressing various server storage I/O performance bottlenecks across applications. Join me on June 27, 2018 at 1 PM PT for the free webinar Solving Application Server Storage I/O Performance Bottlenecks Webinar and learn what you can do today to boost your uses productivity.

 

Ok, nuff said, for now.

Cheers Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

May 2018 Server StorageIO Data Infrastructure Update Newsletter

May 2018 Server StorageIO Data Infrastructure Update Newsletter

May 2018 Server StorageIO Data Infrastructure Update Newsletter

Volume 18, Issue 5 (May 2018)

Hello and welcome to the May 2018 Server StorageIO Data Infrastructure Update Newsletter.

In cased you missed it, the April 2018 Server StorageIO Data Infrastructure Update Newsletter can be viewed here (HTML and PDF).

May has been a busy month with a lot of data infrastructure related activity from software-defined virtual, cloud, container, converged, serverless to legacy, hardware, software, services, server, storage, I/O and networking along with data protection topics among others.

In this issue buzzwords topics include GDPR, NVMe, NVMeoF, Composable, Serverless, Data Protection, SCM, Gen-Z, MaaS:

Enjoy this edition of the Server StorageIO Data Infrastructure update newsletter.

Cheers GS

Data Infrastructure and IT Industry Activity Trends

May has been a busy month, some data infrastructure, server, storage, I/O network, hardware, software, cloud, converged, and container as well as data protection activity includes among others:

Depending on when you read this, the new global data protection regulations (GDPR) are either days away, or already in effect. For those who are not aware of GDPR other than seeing many inbox items in your email pertaining to it, here are some resources as a refresher or primer:

May Buzzword, Buzz Topic and Trends

Besides data protection and GDPR, other recent data infrastructure related news, trends, technologies and topics to keep an eye on (besides AI, ML, DL, AR/VR, IoT, Blockchain, Serverless) include Metal as a Service (MaaS) that might be familiar to some, for others, something new. Canonical has been busy for sometime now with MaaS including in Ubuntu and they are not alone with variations appearing with various managed service providers, hosting and cloud providers as well. NVMe has become a more common topic, technology, trend including for use in servers as well as over fabrics (e.g. NVMe over Fabrics) as a language for server, storage, I/O communication.

A new emerging companion to NVMe is Gen-Z which initially is a companion to PCIe. Longer term, Gen-Z could maybe possibly be a replacement, as well as for use accessing direct random access memory (DRAM) among other uses. Storage Class Memory (SCM) has been an industry conversation topic for several years now with new persistent memories (PMEM) that combine the best of traditional DRAM (Speed and write endurance) as well as persistent, higher capacity, lower cost of traditional NAND flash SSDs.

Another trend topic is that for some, ASIC, FPGA and GPU are new companions to standard commodity compute processors along with servers, yet for others it may be Dejavu as they have been being used for years (ok, decades) in some solutions. For now, two other buzzwords, buzz terms to add or refresh your data infrastructure vocabulary include distributed ledgers (aka blockchains), composable resources and ephemeral instance storage (storage on a cloud instance).

May NVMe Momentum Movement Activity

May saw a lot of NVMe related activity, from chips and components (adapters, devices) to systems spanning direct attached to NVMe over Fabric (NVMeoF). Here is a primer (or refresh) for NVMe along with various deployment options. NVMeoF includes RDMA over Converged Ethernet (RoCE) based, along with NVMe over Fibre Channel (FC-NVMe), as well as emerging NVMe over IP.

NVMe options
NVMe being used for front-end accessed via shared PCIe along with back-end devices

There are many different facets of NVMe including for use as a front-end on storage systems supporting server attachment (e.g. competes with Fibre Channel, iSCSI, SAS among others). Another variation of NVMe is as a back-end for attachment of drives or other NVMe based devices in storage systems, as well as servers.

NVMe backend
Front-end using traditional block SAN access with back-end NVMe, SAS and SATA devices

Read more about the many different options and variations of NVMe including key questions to ask or understand, deployment topology along with other related topics at thenvmeplace.com.

NVMe frontend NVMeoF
Various NVMe front-end including NVMeoF along with NVMe back-end devices (U.2, M.2, AiC)

Software Defined Data Infrastructure Activity

Amazon Web Services (AWS) continues to add new features, functionality as well as extending those as along with existing capabilities into various regions. Some recent updates include new Elastic Cloud Compute (EC2) Microsoft Windows Servers versions 1709 and 1803 Amazon Machine Images (AMIs). Other AWS updates include spot instances support for Red Hat BYOL (Bring Your Own License), VPN enhancements, X1e instances available in Frankfurt, H1 instance price reduction, as well as LightSail now in Canada, Paris, and Seoul regions.

For those who are not familiar with LightSail, they are virtual private servers (VPS) which are different from traditional EC2 instances. LightSail can be a cost-effective way for those who need to move out of general population shared hosting, yet cannot justify a full EC2 instance while requiring more than a container.

The LightSail instance also is available with various software pre-installed such as for WordPress websites among others. For example, I have used LightSail as a backup and standby WordPress site for StorageIOblog using Updraft Plus  Pro for data protection.

In other news, AWS C5d EC2 instances are available in various regions. C5d instances are available with 2, 4, 8, 16, 36 and 72 vCPUs along with up to 1800GB of NVMe based ephemeral storage for on-demand reserved or spot instances.

Note that instance-based storage is temporary meaning that it persists for the life of the instance. What this means is that if you stop and restart the instance, the data is not persistence. Instance-based storage is useful for data that can be protected or persisted to other storage including EBS (Elastic Block Storage). Usage includes batch, log and analytics processing, burst buffers, cache or workspace.

AWS also announced a new Simple Storage Service (S3) storage class a month or so ago called One Zone Availability Infrequent Access. This new storage class primarily provides a lower cost of storage with lower durability (e.g., data spread across one zone vs. multiple). Over the past couple of months, I have been migrating from S3 Infrequent Access (IA) as well as standard into One Zone Availability. Some of my active data remains in S3 Standard storage class, while cold archives are in Glacier.

A tip about migrating to One Zone Availability, as well as between other S3 storage classes is paid attention to your API calls and monthly budget. You might see an increase in S3 costs during the migration time, that then settles into the lower prices once data has been moved due to API calls (gets, puts, lists, dir). In other words, pay attention to how many API calls you are allowed per storage class per month, along with other fees beyond focusing only on cost per TByte. Read about other recent AWS news updates here.

Software-defined storage startup Cloudian announced their technology available for test drive on Google Cloud Platform as part of a continued industry trend. That trend is for storage vendors to make their storage software technology available on different cloud platforms such as AWS, Azure, Google, Softlayer among others.

Dell Technology World 2018

Dell Technologies made several announcements as part of Dell Technologies World that are covered in a series of posts here. Announcements included PowerMax the successor to VMAX, XtremIO X2 updates, new servers, workstations among many other items, read more here.

Besides the data infrastructure, cloud service providers and systems vendors, component suppliers including Cavium announced NVMe over Fibre Channel updates (here and here), along with Marvel NVMe updates here. HPE announced new thin clients and software (t430 Thin Client, HP mt44 Mobile Thin Client, HP ThinPro software), as well as updates to 3PAR and other storage solutions.

IBM announced various storage enhancements (and here) as well as a Happy 30th anniversary to the IBM Power9 based i systems. In other news, Kaseya bought backup data protection vendor Unitrends.

NVMe NAND flash Intel Optane

Micron announced the first quad layer cell (QLC) nand flash solid state device (SSD) named 52100 has begun shipping to select customers (and vendors). QLC packs or stacks 4 bits per cell. The 5200 is optimized for read-intensive workloads with up to 33% higher densities compared to previous generation TLC (triple layer cell) NAND flash. Broader market availability is expected to occur later fall 2018, 5210 form factor is 2.5” as a standard SSD or HDD, with capacities from 1.92TB to 7.68TB.

In other news, Micron also announced a $10 Billion (USD) stock repurchase plan, along with an extension of Intel 3D NAND flash memory partnership involving 3D NAND flash, as well as 96 layer 3D NAND. Meanwhile, various vendors are increasingly talking about how their systems are or will be storage class memory (SCM) ready including for use such as Micron 3D XPoint also known as Intel Optane among others.

Microsoft has placed into public preview Azure Active Directory (AAD) Storage authentication for Azure Blobs and Queues. Azure Storage Explorer is now released as version 1.0. AAD storage authentication enables organizations to implement role-based access control of Azure storage resources. Speaking of Azure, Microsoft has published several architectures, reference and other content at the Azure Virtual Datacenter portal here.

If you have not done so, check out Azure File Sync which is currently in public preview. Having been involved and using it for over a year including during private preview, Azure File Sync is an exciting, useful technology for creating a hybrid distributed file sharing with cloud tiering solutions. Learn more Azure File Sync here and here. In other news, Microsoft has announced a preview as part of the April 2018 Windows 10 build for a Hyper-V Google Android emulator support.

NetApp has had Azure based NAS storage in preview for a while now, and also announced Cloud Volumes on Google Cloud Platform (GCP). In addition to Cloud Volumes on AWS, Azure, and GCP, NetApp also announced enhanced NVMe based storage systems among other updates.

Two companies that have similar names are Opendrives (video workflow acceleration) and Opendrive (cloud storage, backup, and data protection). Meanwhile, data infrastructure startup Pavilion has received new funding as well as begun talking about their NVMe including NVMe over Fabric (NVMeOF) hardware storage system. Long-time data infrastructure converged server storage startup Pivot3 announced additional cloud workload mobility.

Pure storage made a couple of announcements including  FlashArray//X NVMe based shared accelerated storage system as well as NVIDIA (GPU powered) based AIRI Mini for AI/DL/ML.

Have you heard about Snowflake computing, aka, the cloud data warehouse solution? If not, check them out here. Another cloud-related data infrastructure vendor to look into is Upbound.io who have received additional funding for their multi-cloud management solutions.

Building off of recent VMware vSphere updates (here), and Dell Technology World here, the following is an excellent post about Instant Clone in vSphere 6.7, and VMware vSAN HCI assessment tool here.

Check out other industry news, comments, trends perspectives here.

Data Infrastructure Server StorageIO Comments Content

Server StorageIO Commentary in the news, tips and articles

Recent Server StorageIO industry trends perspectives commentary in the news.

Via SearchStorage: Comments Managing storage for IoT data at the enterprise edge
Via SearchCloudComputing: Comments Hybrid cloud deployment demands a change in security mindset
Via SearchStorage: Comments Dell EMC storage IPO, VMware merger plans still unclear
Via SearchStorage: Comments Dell EMC midrange storage keeps its overlapping arrays
Via SearchStorage: Comments Dell EMC all-flash PowerMax replaces VMAX, injects NVMe
Via IronMountain InfoGoto:  The growing Trend of Secondary Data Storage

View more Server, Storage and I/O trends and perspectives comments here.

Data Infrastructure Server StorageIOblog posts

Server StorageIOblog Data Infrastructure Posts

Recent and popular Server StorageIOblog posts include:

Dell Technology World 2018 Announcement Summary
Part II Dell Technology World 2018 Modern Data Center Announcement Details
Part III Dell Technology World 2018 Storage Announcement Details
Part IV Dell Technology World 2018 PowerEdge MX Gen-Z Composable Infrastructure
Part V Dell Technology World 2018 Server Converged Announcement Details
April 2018 Server StorageIO Data Infrastructure Update Newsletter
VMware vSphere vSAN vCenter version 6.7 SDDC Update Summary
PCIe Fundamentals Server Storage I/O Network Essentials
Have you heard about the new CLOUD Act data regulation?
Data Protection Recovery Life Post World Backup Day Pre GDPR
Microsoft Windows Server 2019 Insiders Preview
Application Data Value Characteristics Everything Is Not The Same
Data Infrastructure Resource Links cloud data protection tradecraft trends
IT transformation Serverless Life Beyond DevOps Podcast
Data Protection Diaries Fundamental Topics Tools Techniques Technologies Tips
Introducing Windows Subsystem for Linux WSL Overview
Data Infrastructure Primer Overview (Its Whats Inside The Data Center)
If NVMe is the answer, what are the questions?

View other recent as well as past StorageIOblog posts here

Server StorageIO Recommended Reading (Watching and Listening) List

Software-Defined Data Infrastructure Essentials SDDI SDDC

In addition to my own books including Software Defined Data Infrastructure Essentials (CRC Press 2017) available at Amazon.com (check out special sale price), the following are Server StorageIO data infrastructure recommended reading, watching and listening list items. The Server StorageIO data infrastructure recommended reading list includes various IT, Data Infrastructure and related topics including Intel Recommended Reading List (IRRL) for developers is a good resource to check out. Speaking of my books, Didier Van Hoye (@WorkingHardInIt) has a good review over on his site you can view here, also check out the rest of his great content while there.

Containers, serverless, kubernetes continue to gain in industry adoption, as well as customer deployments. Here is some information about Microsoft Azure Kubernetes Service (AKS). Note that AWS has Elastic Kubernetes Service (EKS), Google, VMware and Pivotal with Pivotal Kubernetes Service (PKS) among others.

Here is an interesting perspective by Ben Kepps about Serverless (e.g. life beyond Kubernetes and containers (e.g. life beyond virtualization which to some is or was life (e.g. life beyond bare metal))) as well as the all to often punditry, evangelism of something new causing something else to be dead.

SNIA has updated their Emerald aka Green energy effectiveness (focus on productivity) measurement specification (V3.01) including NAS NFS file activity (besides block). Learn more at snia.org/forums/green.

Watch for more items to be added to the recommended reading list book shelf soon.

Data Infrastructure Server StorageIO event activities

Events and Activities

Recent and upcoming event activities.

June 27, 2018 – Webinar – TBA

May 29, 2018 – Webinar – Microsoft Windows as a Service

April 24, 2018 – Webinar – AWS and on-site, on-premises hybrid data protection

See more webinars and activities on the Server StorageIO Events page here.

Data Infrastructure Server StorageIO Industry Resources and Links

Various useful links and resources:

Data Infrastructure Recommend Reading and watching list
Microsoft TechNet – Various Microsoft related from Azure to Docker to Windows
storageio.com/links – Various industry links (over 1,000 with more to be added soon)
objectstoragecenter.com – Cloud and object storage topics, tips and news items
OpenStack.org – Various OpenStack related items
storageio.com/downloads – Various presentations and other download material
storageio.com/protect – Various data protection items and topics
thenvmeplace.com – Focus on NVMe trends and technologies
thessdplace.com – NVM and Solid State Disk topics, tips and techniques
storageio.com/converge – Various CI, HCI and related SDS topics
storageio.com/performance – Various server, storage and I/O benchmark and tools
VMware Technical Network – Various VMware related items

Connect and Converse With Us

Storage IO RSS storageio linkedin storageio facebook Server StorageIO on twitter @StorageIO   Google+  Server StorageIO email storageio youtube  storageio instagram

Subscribe to Newsletter – Newsletter Archives StorageIO.comStorageIOblog.com

What this all means and wrap-up

Data Infrastructures are what exists inside physical data centers spanning cloud, converged, hyper-converged, virtual, serverless and other software defined as well as legacy environments. So far this spring there has been a lot of data infrastructure related activity, from new technology announcements, to events, trends among others. Enjoy this edition of the Server StorageIO Data Infrastructure update newsletter and watch for more NVMe, Gen-Z, cloud, data protection among other topics in future posts, articles, events, and newsletters.

Ok, nuff said, for now.

Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2018. Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Part III Dell Technology World 2018 Storage Announcement Details

Part III Dell Technology World 2018 Storage Announcement Details

Part III Dell Technology World 2018 Storage Announcement Details

This is Part III Dell Technology World 2018 Storage Announcement Details that is part of a five-post series (view part I here, part II here, part IV (PowerEdge MX Composable) here and part V here). Last week (April 30-May 3) I traveled to Las Vegas Nevada (LAS) to attend Dell Technology World 2018 (e.g., DTW 2018) as a guest of Dell (that is a disclosure btw).

Dell Technology World 2018 Storage Announcements Include:

  • PowerMax – Enterprise class tier 0 and tier 1 all-flash array (AFA)
  • XtremIO X2 – Native replication and new entry-level pricing

Dell Technology World 2018 PowerMax back view
Back view of Dell PowerMax

Dell PowerMax Something Old, Something New, Something Fast Near You Soon

PowerMax is the new companion to VMAX. Positioned for traditional tier 0 and tier 1 enterprise-class applications and workloads, PowerMax is optimized for dense server virtualization and SDDC, SAP, Oracle, SQL Server along with other low-latency, high-performance database activity. Different target workloads include Mainframe as well as Open Systems, AI, ML, DL, Big Data, as well as consolidation.

The Dell PowerMax is an all-flash array (AFA) architecture with an end to end NVMe along with built-in AI and ML technology. Building on the architecture of Dell EMC VMAX (some models still available) with new faster processors, full end to end NVMe ready (e.g., front-end server attachment, back-end devices).

The AI and ML features of PowerMax PowerMaxOS include an engine (software) that learns and makes autonomous storage management decisions, as well as implementations including tiering. Other AI and ML enabled operations include performance optimizations based on I/O pattern recognition.

Other features of PowerMax besides increased speeds, feeds, performance includes data footprint reduction (DFR) inline deduplication along with enhanced compression. The DFR benefits include up to 5:1 data reduction for space efficiency, without performance impact to boost performance effectiveness. The DFR along with improved 2x rack density, along with up to 40% power savings (your results may vary) based on Dell claims to enable an impressive amount of performance, availability, capacity, economics (e.g., PACE) in a given number of cubic feet (or meters).

There are two PowerMax models including 2000 (scales from 1 to 2 redundant controllers) and 8000 (scales from 1 to 8 redundant controller nodes). Note that controller nodes are Intel Xeon multi-socket, multi-core processors enabling scale-up and scale-out performance, availability, and capacity. Competitors of the PowerMax include AFA solutions from HPE 3PAR, NetApp, and Pure Storage among others.

Dell Technology World 2018 PowerMax Front View
Front view of Dell PowerMax

Besides resiliency, data services along with data protection, Dell is claiming PowerMax is 2x faster than their nearest high-end storage system competitors with up to 150GB/sec (e.g., 1,200Gbps) of bandwidth, as well as up to 10 million IOPS with 50% lower latency compared to previous VMAX.

PowerMax is also a full end to end NVMe ready (both back-end and front-end). Back-end includes NVMe drives, devices, shelves, and enclosures) as well as front-end (future NVMe over Fabrics, e.g., NVMeoF). Being NVMeoF ready enables PowerMax to support future front-end server network connectivity options to traditional SAN Fibre Channel (FC), iSCSI among others.

PowerMax is also ready for new, emerging high speed, low-latency storage class memory (SCM).  SCM is the next generation of persistent memories (PMEM) having performance closer to traditional DRAM while persistence of flash SSD. Examples of SCM technologies entering the market include Intel Optane based on 3D XPoint, along with others such as those from Everspin among others.

IBM Z Zed Mainframe at Dell Technology World 2018
An IBM “Zed” Mainframe (in case you have never seen one)

Based on the performance claims, the Dell PowerMax has an interesting if not potentially industry leading power, performance, availability, capacity, economic footprint per cubic foot (or meter). It will be interesting to see some third-party validation or audits of Dell claims. Likewise, I look forward to seeing some real-world applied workloads of Dell PowerMax vs. other storage systems. Here are some additional perspectives Via SearchStorage: Dell EMC all-flash PowerMax replaces VMAX, injects NVMe


Dell PowerMax Visual Studio (Image via Dell.com)

To help with customer decision making, Dell has created an interactive VMAX and PowerMax configuration studio that you can use to try out as well as learn about different options here. View more Dell PowerMax speeds, feeds, slots, watts, features and functions here (PDF).

Dell Technology World 2018 XtremIO X2

XtremIO X2

Dell XtremIO X2 and XIOS 6.1 operating system (software-defined storage) enhanced with native replication across wide area networks (WAN). The new WAN replication is metadata-aware native to the XtremIO X2 that implements data footprint reduction (DFR) technology reducing the amount of data sent over network connections. The benefit is more data moved in a given amount of time along with better data protection requiring less time (and network) by only moving unique changed data.

Dell Technology World 2018 XtremIO X2 back view
Back View of XtremIO X2

Dell EMC claims to reduce WAN network bandwidth by up to 75% utilizing the new native XtremIO X2 native asynchronous replication. Also, Dell says XtremIO X2 requires up to 38% less storage space at disaster recovery and business resiliency locations while maintaining predictable recovery point objectives (RPO) of 30 seconds. Another XtremIO X2 announcement is a new entry model for customers at up to 55% lower cost than previous product generations. View more information about Dell XtremIO X2 here, along with speeds feeds here, here, as well as here.

What about Dell Midrange Storage Unity and SC?

Here are some perspectives Via SearchStorage: Dell EMC midrange storage keeps its overlapping arrays.

Dell Bulk and Elastic Cloud Storage (ECS)

One of the questions I had going into Dell Technology World 2018 was what is the status of ECS (and its predecessors Atmos as well as Centera) bulk object storage is given lack of messaging and news around it. Specifically, my concern was that if ECS is the platform for storing and managing data to be preserved for the future, what is the current status, state as well as future of ECS.

In conversations with the Dell ECS folks, ECS which has encompassed Centera functionality and it (ECS) is very much alive, stay tuned for more updates. Also, note that Centera has been EOL. However, its feature functionality has been absorbed by ECS meaning that data preserved can now be managed by ECS. While I can not divulge the details of some meeting discussions, I can say that I am comfortable (for now) with the future directions of ECS along with the data it manages, stay tuned for updates.

Dell Data Protection

What about Data Protection? Security was mentioned in several different contexts during Dell Technology World 2018, as was a strong physical security presence seen at the Palazzo and Sands venues. Likewise, there was a data protection presence at Dell Technologies World 2018 in the expo hall, as well as with various sessions.

What was heard was mainly around data protection management tools, hybrid, as well as data protection appliances and data domain-based solutions. Perhaps we will hear more from Dell Technologies World in the future about data protection related topics.

Where to learn more

Learn more about Dell Technology World 2018 and related topics via the following links:

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

If there was any doubt about would Dell keep EMC storage progressing forward, the above announcements help to show some examples of what they are doing. On the other hand, lets stay tuned to see what news and updates appear in the future pertaining to mid-range storage (e.g. Unity and SC) as well as Isilon, ScaleIO, Data Protection platforms as well as software among other technologies.

Continue reading part IV (PowerEdge MX Composable and Gen-Z) here in this series, as well as part I here, part II here, part IV (PowerEdge MX Composable) here, and, part V here.

Ok, nuff said, for now.

Cheers Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Part IV Dell Technology World 2018 PowerEdge MX Gen-Z Composable Infrastructure

Part IV Dell Technology World 2018 PowerEdge MX Gen-Z Composable Infrastructure

Part IV Dell Technology World 2018 PowerEdge MX Gen-Z Composable Infrastructure
This is Part IV Dell Technology World 2018 PowerEdge MX Gen-Z Composable Infrastructure that is part of a five-post series (view part I here, part II here, part III here and part V here). Last week (April 30-May 3) I traveled to Las Vegas Nevada (LAS) to attend Dell Technology World 2018 (e.g., DTW 2018) as a guest of Dell (that is a disclosure btw).

Introducing PowerEdge MX Composable Infrastructure (the other CI)

Dell announced at Dell Technology World 2018 a preview of the new PowerEdge MX (kinetic) family of data infrastructure resource servers. PowerEdge MX is being developed to meet the needs of resource-centric data infrastructures that require scalability, as well as performance availability, capacity, economic (PACE) flexibility for diverse workloads. Read more about Dell PowerEdge MX, Gen-Z and composable infrastructures (the other CI) here.

Some of the workloads being targeted by PowerEdge MX include large-scale dense SDDC virtualization (and containers), private (or public clouds by service providers). Other workloads include AI, ML, DL, data analytics, HPC, SC, big data, in-memory database, software-defined storage (SDS), software-defined networking (SDN), network function virtualization (NFV) among others.

The new PowerEdge MX previewed will be announced later in 2018 featuring a flexible, decomposable, as well as composable architecture that enables resources to be disaggregated and reassigned or aggregated to meet particular needs (e.g., defined or composed). Instead of traditional software defined virtualization carving up servers in smaller virtual machines or containers to meet workload needs, PowerEdge MX is part of a next-generation approach to enable server resources to be leveraged at a finer granularity.

For example, today an entire server including all of its sockets, cores, memory, PCIe devices among other resources get allocated and defined for use. A server gets defined for use by an operating system when bare metal (or Metal as a Service) or a hypervisor. PowerEdge MX (and other platforms expected to enter the market) have a finer granularity where with a proper upper layer (or higher altitude) software resources can be allocated and defined to meet different needs.

What this means is the potential to allocate resources to a given server with more granularity and flexibility, as well as combine multiple server’s resources to create what appears to be a more massive server. There are vendors in the market who have been working on and enabling this type of approach for several years ranging from ScaleMP to startup Liqid and Tidal among others. However, at the heart of the Dell PowerEdge MX is the new emerging Gen-Z technology.

If you are not familiar with Gen-Z, add it to your buzzword bingo lineup and learn about it as it is coming your way. A brief overview of Gen-Z consortium and Gen-Z material and primer information here. A common question is if Gen-Z is a replacement for PCIe which for now is that they will coexist and complement each other. Another common question is if Gen-Z will replace Ethernet and InfiniBand and the answer is for now they complement each other. Another question is if Gen-Z will replace Intel Quick Path and another CPU device and memory interconnects and the answer is potentially, and in my opinion, watch to see how long Intel drags its feet.

Note that composability is another way of saying defined without saying defined, something to pay attention too as well as have some vendor fun with. Also, note that Dell is referent to PowerEdge MX and Kinetic architecture which is not the same as the Seagate Kinetic Ethernet-based object key value accessed drive initiative from a few years ago (learn more about Seagate Kinetic here). Learn more about Gen-Z and what Dell is doing here.

Where to learn more

Learn more about Dell Technology World 2018 and related topics via the following links:

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

Dell has provided a glimpse of what they are working on pertaining composable infrastructure, the other CI, as well as Gen-Z and related next generation of servers with PowerEdge MX as well as Kinetic. Stay tuned for more about Gen-Z and composable infrastructures. Continue reading Part V (servers converged) in this series here, as well as part I here, part II here and part III here.

Ok, nuff said, for now.

Cheers Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

Part V Dell Technology World 2018 Server Converged Announcement Details

Part V Dell Technology World 2018 Server Converged Announcement Details

Part V Dell Technology World 2018 Server Converged Announcement Details
This is Part V Dell Technology World 2018 Server Converged Announcement Details that is part of a five-post series (view part I here, part II here, part III here and part IV here). Last week (April 30-May 3) I traveled to Las Vegas Nevada (LAS) to attend Dell Technology World 2018 (e.g., DTW 2018) as a guest of Dell (that is a disclosure btw).

What was announced:

  • PowerEdge gen 14 four-socket rack mount servers
  • Preview of PowerMX Gen-Z enabled composable data infrastructure resources
  • Converged Infrastructure (CI) and Hyper-Converged Infrastructure (HCI) updates
  • Wyse 5070 Thin Client and other VDI related updates
  • VMware and NSX Cloud Updates

PowerEdge Servers Updates

PowerEdge servers enhanced with generation 14 technologies initially announced last May at Dell EMC World 2017, along with Intel July 2017 technology announcements. New PowerEdge R940xa and PowerEdge R840 are designed to support AI, ML, DL along with other analytics-related demanding workloads. In addition to new PowerEdge R940xa and PowerEdge R840 models, Dell Technologies also announced Dell Precision Optimizer 5.0 with enhanced ML algorithms to intelligently tune performance while boosting productive of Dell Precision workstations.

PowerEdge Rack Servers – New PowerEdge R940xa and R840 gen 14 servers. Dell announced two new four-socket servers that are part of the 14th generation of Dell PowerEdge server portfolio initially announced at Dell EMC World 2017 leveraging new Intel Xeon Scalable processors. These new four-socket servers support up to 112 combined cores (e.g., 4 x 28), along with 6TB of DDR4 memory as well as Non-Volatile DIMM (NVDIMM) options. Other standard features include NVMe drives for high performance, low-latency flash, and other emerging SSD or SCM media.

Dell PowerEdge R840

The Dell PowerEdge R840 2U rack server, features up to 26 2.5” HDD or SSD (24 in front, two in rear bays), of which up to 24 can be NVMe U.2 small form factor (SFF) drive form factor SSD devices. Other storage options include a mix of SAS/SATA HDDs and SSDs, as well as NVMe SSDs. Also supported are up to 48 DIMM DDR4 (RDIMM or LRDIMM up to 2666MT) slots, 12 of which can be for NVDIMMs enabling up to 6TB of memory.

Networking options for the R840 include 4 x 1 GbE, 4 x 10GbE, 2 x 10GbE + 2 x 1GbE, or 2 x 25GbE. Other options include support for two double wide graphics processing units (GPU) or two Field Programmable Gate Arrays (FPGA) for data-intensive computations. Other R840 features include integrated Intel ultra-path interconnect (UPI), smart adaptive cooling, secure instance erase of HDD and SSD devices, along with Dell OpenManager enterprise management software, as well as agent less iDRAC (Integrated Dell Remote Access Controller) for automated server management. View additional Dell PowerEdge R940xa speeds, feeds, slots and watts specifications here (PDF).

Dell PowerEdge R940xa

The Dell PowerEdge R940xa  rack server has the same CPU and memory configuration as the R840 however in a larger 4U package. The larger packaging of the R940xa enables 12 PCIe Gen3 slots (six x16 or two x16 and ten x8), dual M.2 boot devices, network options (4 x 1 GbE, 4 x 10GbE, 2 x 10GbE + 2 x 1Gbe or 2 x 25GbE). Other components include up to 32 x 2.5” SAS/SATA HDD and SSD, and four direct-attached NVMe devices, as well as four double-wide GPUs or 8 FPGAs. With the additional resources, the R940xa is designed for accelerating databases along with other onsite high-performance workloads combines up to four CPUs along with GPUs or FPGAs. View additional Dell PowerEdge R940xa speeds, feeds, slots and watts specifications here (PDF).

Converged and Hyper-Converged

Dell Technologies has enhanced its Converged Infrastructure (CI) as well as Hyper-Converged Infrastructure (HCI) portfolio with gen 14 servers, GPUs, NVMe along with 25 GbE networking. In addition to VxBlock solutions incorporating PowerMax, XtremIO X2 along with mid-range Dell Technologies storage, VxRail as well as VxRack updates were announced in support of VMware vSAN among other items.

Thin Clients and VDI

New Dell Wyse 5070 thin client workstation for on-site or cloud-based applications. Dell EMC VDI solutions leverage PowerEdge 14th generation servers including VxRail and vSAN ready nodes, as well as incorporate NVIDIA Quadro virtual data center workstation (vDWS) and Tesla P40 GPUs. In addition to Wyse thin clients, Dell has also enhanced OptiPlex PCs.

VMware NSX and Cloud

In addition to the recent April SDDC cloud foundation and March Cloud announcements, VMware also announced NSX software-defined networking enhancements. The VMware NSX updates include NSX Cloud support for applications running in Microsoft Azure cloud, Software-Defined WAN (SD-WAN) via its Velo cloud acquisition, along with NSX for container cloud-native and bare metal applications, along with Telco/Network Function Virtualization (NFV) updates.

Introducing PowerEdge MX Composable Infrastructure (the other CI)

Dell announced at Dell Technology World 2018 a preview of the new PowerEdge MX family of data infrastructure resource servers. PowerEdge MX is being developed to meet the needs of resource-centric data infrastructures that require scalability, as well as performance availability, capacity, economic (PACE) characteristics flexibility for diverse workloads. Read more about Dell PowerEdge MX, Gen-Z and composable infrastructures (the other CI) here.

Where to learn more

Learn more about Dell Technology World 2018 and related topics via the following links:

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means

Dell is moving to converge not only technologies, tools, management of their technologies, as well as the data infrastructures of their client customers; they are also doing the same for their organization. We have seen the combination of Dell and EMC into Dell EMC and now into Dell Technologies. What was also noticed is the reinforcement of the Dell Technologies family or what in the past was referred to post-merger (or acquisition) as the EMC Federation.

Dell Technology World 2018 Party Walk The Moon and Sting
Dell Technology World 2018 Party with Walk The Moon before main act Sting

Dell Technologies World 2018 in some ways was a proof point of where the company is as well as how they have progressed in the twenty-some months since the integration of Dell and EMC. While there are still signs, messaging, naming and vestiges of the former EMC, along with EMCworld, make no mistake, this is a Dell Technologies event. From desktops to datacenters, Dell Technologies is showing its technology breadth as well as product lineup.

There were some questions from the press not answered such as what is going on with Dells financial organizational restructure, which as Michael Dell told the attendees, read the SEC 13D documents ( here, here and here) if you have not, as all the answers that Dell (Michael Dell and Dell Technologies) can talk about are there.

Here are some additional perspectives of what Dell Technologies may or may not due concerning business restructuring:

Via SearchStorage: Dell EMC storage strategy talk buzzes Dell Tech World
Via SearchStorage: Dell EMC storage IPO, VMware merger plans still unclear

Leaving Las Vegas and Dell Technology World 2018
Leaving Las Vegas and Dell Technology World 2018

Overall Dell Technology World 2018 was a good event, and I look forward to hearing more from Dell in the weeks as well as months ahead as they roll out more of what was discussed (or previewed) last week.

Ok, nuff said, for now.

Cheers Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.

VMware vSphere vSAN vCenter version 6.7 SDDC Update Summary

VMware vSphere vSAN vCenter version 6.7 SDDC Update Summary

VMware vSphere vSAN vCenter version 6.7 SDDC Update Summary

VMware announced last week vSphere vSAN vCenter version 6.7 among other updates for their software-defined data center (SDDC) and software-defined infrastructure (SDI) solutions. The new April v6.7 announcement updates followed those from this past March when VMware announced cloud enhancements with partner AWS (more on that announcement here).

VMware vSphere 6.7
VMware vSphere Web Client with vSphere 6.7

For those looking for a more extended version with a closer look and analysis of what VMware announced click here for part two and part three here.

What VMware announced is general availability (GA) meaning you can now download from here the bits (e.g., software) that include:

  • ESXi aka vSphere 6.7 hypervisor build 8169922
  • vCenter Server 6.7 build 8217866
  • vCenter Server Appliance 6.7 build 8217866
  • vSAN 6.7 and other related SDDC management tools
  • vSphere Operations Management (vROps) 6.7
  • Increased the speeds, feeds and other configuration maximum limits

For those not sure or need a refresher, vCenter Server is the software for extended management across multiple vSphere ESXi hypervisors that run on a Windows platform.

Major themes of the VMware April announcement is around increased scalability along with performance enhancements, ease of use, security, as well as extended application support. As part of the v6.7 improvements, VMware is focusing on simplifying, as well as accelerating software-defined data infrastructure along with other SDDC lifecycle operation activities.

Extended application support includes for traditional demanding enterprise IT, along with High-Performance Compute (HPC), Big Data, Little Data, Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL), as well as other emerging workloads. Part of supporting demanding workloads includes enhanced support for Graphical Processing Units (GPU) such as those from Nvidia among others.

What Happened to vSphere 6.6?

A question that comes up is that there is a vSphere 6.5 (and its smaller point releases) and now vSphere 6.7 (along with vCenter, vSAN among others). What happened to vSphere 6.6? Good question and not sure what the real or virtual answer from VMware is or would be. My take is that this is a good opportunity for VMware to align their versions of principal components (e.g., vSphere/ESXi, vCenter, vSAN) to a standard or unified numbering scheme.

Where to learn more

Learn more about VMware vSphere, vCenter, vSAN and related software-defined data center (SDDC); software-defined data infrastructures (SDDI) topics via the following links:

Additional learning experiences along with common questions (and answers), as well as tips can be found in Software Defined Data Infrastructure Essentials book.

Software Defined Data Infrastructure Essentials Book SDDC

What this all means and wrap-up

Overall the VMware vSphere vSAN vCenter version 6.7 enhancements are a good evolution of their core technologies for enabling hybrid, converged software-defined data infrastructures and software-defined data centers. Continue reading more about  VMware vSphere vSAN vCenter version 6.7 SDDC Update Summary here in part II (focus on management, vCenter plus security) and part III here (focus on server storage I/O and deployment) of this three-part series.

Ok, nuff said, for now.

Cheers Gs

Greg Schulz – Microsoft MVP Cloud and Data Center Management, VMware vExpert 2010-2017 (vSAN and vCloud). Author of Software Defined Data Infrastructure Essentials (CRC Press), as well as Cloud and Virtual Data Storage Networking (CRC Press), The Green and Virtual Data Center (CRC Press), Resilient Storage Networks (Elsevier) and twitter @storageio. Courteous comments are welcome for consideration. First published on https://storageioblog.com any reproduction in whole, in part, with changes to content, without source attribution under title or without permission is forbidden.

All Comments, (C) and (TM) belong to their owners/posters, Other content (C) Copyright 2006-2024 Server StorageIO and UnlimitedIO. All Rights Reserved. StorageIO is a registered Trade Mark (TM) of Server StorageIO.